1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491
|
"""
test_spa unit test suite from pvlib
===================================
Vendorized version from:
https://github.com/pvlib/pvlib-python/
The rational for not including this library as a strict dependency is to avoid
including a dependency on pandas, keeping load time low, and PyPy compatibility
.
.. moduleauthor :: Tony Lorenzo <atlorenzo@email.arizona.edu>
.. moduleauthor :: Will Holmgren <william.holmgren@gmail.com>
.. moduleauthor :: Volker Beutner < VolkerBeu@gmail.com >
Some tests were changed and added as well.
The copyright notice (BSD-3 clause) is as follows:
BSD 3-Clause License
Copyright (c) 2013-2018, Sandia National Laboratories and pvlib python Development Team
All rights reserved.
Redistribution and use in source and binary forms, with or without modification,
are permitted provided that the following conditions are met:
Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this
list of conditions and the following disclaimer in the documentation and/or
other materials provided with the distribution.
Neither the name of the {organization} nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
import datetime as dt
try:
from importlib import reload
except ImportError:
try:
from imp import reload
except ImportError:
pass
import unittest
import numpy as np
import pandas as pd
import pytest
from numpy.testing import assert_allclose, assert_almost_equal
try:
from numba import __version__ as numba_version
numba_version_int = int(numba_version.split('.')[0] +
numba_version.split('.')[1])
except ImportError:
numba_version_int = 0
except:
numba_version_int = -1
from fluids.optional import spa
times = (pd.date_range('2003-10-17 12:30:30', periods=1, freq='D')
.tz_localize('America/Phoenix'))
unixtimes = np.array(times.tz_convert('UTC').view(np.int64)*1.0/10**9)
unixtimes = float(np.array(times.tz_convert('UTC').view(np.int64)*1.0/10**9)[0])
lat = 39.742476
lon = -105.1786
elev = 1830.14
pressure = 820
temp = 11
delta_t = 67.0
atmos_refract= 0.5667
JD = 2452930.312847
JC = 0.0379277986858
JDE = 2452930.313623
JCE = 0.037927819916852
JME = 0.003792781991685
L = 24.0182616917
B = -0.0001011219
R = 0.9965422974
Theta = 204.0182616917
beta = 0.0001011219
X0 = 17185.861179
X1 = 1722.893218
X2 = 18234.075703
X3 = 18420.071012
X4 = 51.686951
dPsi = -0.00399840
dEpsilon = 0.00166657
epsilon0 = 84379.672625
epsilon = 23.440465
dTau = -0.005711
lamd = 204.0085519281
v0 = 318.515579
v = 318.511910
alpha = 202.227408
delta = -9.31434
H = 11.10590
xi = 0.002451
dAlpha = -0.000369
alpha_prime = 202.22704
delta_prime = -9.316179
H_prime = 11.10627
e0 = 39.872046
de = 0.016332
e = 39.888378
theta = 50.11162
theta0 = 90 - e0
Gamma = 14.340241
Phi = 194.340241
year = 1985
month = 2
year_array = np.array([-499, 500, 1000, 1500, 1800, 1900, 1950, 1970, 1985, 1990, 2000, 2005])
month_array = np.array([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12])
dt_actual = 54.413442486
dt_actual_array = np.array([1.7184831e+04, 5.7088051e+03, 1.5730419e+03,
1.9801820e+02, 1.3596506e+01, -2.1171894e+00,
2.9289261e+01, 4.0824887e+01, 5.4724581e+01,
5.7426651e+01, 6.4108015e+01, 6.5038015e+01])
mix_year_array = np.full((10), year)
mix_month_array = np.full((10), month)
mix_year_actual = np.full((10), dt_actual)
mix_month_actual = mix_year_actual
class SpaBase:
"""Test functions common to numpy and numba spa"""
def test_julian_day_dt(self):
dt = times.tz_convert('UTC')[0]
year = dt.year
month = dt.month
day = dt.day
hour = dt.hour
minute = dt.minute
second = dt.second
microsecond = dt.microsecond
assert_almost_equal(JD,
self.spa.julian_day_dt(year, month, day, hour,
minute, second, microsecond), 6)
def test_julian_ephemeris_day(self):
assert_almost_equal(JDE, self.spa.julian_ephemeris_day(JD, delta_t), 5)
def test_julian_century(self):
assert_almost_equal(JC, self.spa.julian_century(JD), 6)
def test_julian_ephemeris_century(self):
assert_almost_equal(JCE, self.spa.julian_ephemeris_century(JDE), 10)
def test_julian_ephemeris_millenium(self):
assert_almost_equal(JME, self.spa.julian_ephemeris_millennium(JCE), 10)
def test_heliocentric_longitude(self):
assert_almost_equal(L, self.spa.heliocentric_longitude(JME), 6)
def test_heliocentric_latitude(self):
assert_almost_equal(B, self.spa.heliocentric_latitude(JME), 6)
def test_heliocentric_radius_vector(self):
assert_almost_equal(R, self.spa.heliocentric_radius_vector(JME), 6)
def test_geocentric_longitude(self):
assert_almost_equal(Theta, self.spa.geocentric_longitude(L), 6)
def test_geocentric_latitude(self):
assert_almost_equal(beta, self.spa.geocentric_latitude(B), 6)
def test_mean_elongation(self):
assert_almost_equal(X0, self.spa.mean_elongation(JCE), 5)
def test_mean_anomaly_sun(self):
assert_almost_equal(X1, self.spa.mean_anomaly_sun(JCE), 5)
def test_mean_anomaly_moon(self):
assert_almost_equal(X2, self.spa.mean_anomaly_moon(JCE), 5)
def test_moon_argument_latitude(self):
assert_almost_equal(X3, self.spa.moon_argument_latitude(JCE), 5)
def test_moon_ascending_longitude(self):
assert_almost_equal(X4, self.spa.moon_ascending_longitude(JCE), 6)
def test_longitude_nutation(self):
assert_almost_equal(dPsi, self.spa.longitude_nutation(JCE, X0, X1, X2,
X3, X4), 6)
def test_obliquity_nutation(self):
assert_almost_equal(dEpsilon, self.spa.obliquity_nutation(JCE, X0, X1,
X2, X3, X4),
6)
def test_mean_ecliptic_obliquity(self):
assert_almost_equal(epsilon0, self.spa.mean_ecliptic_obliquity(JME), 6)
def test_true_ecliptic_obliquity(self):
assert_almost_equal(epsilon, self.spa.true_ecliptic_obliquity(
epsilon0, dEpsilon), 6)
def test_aberration_correction(self):
assert_almost_equal(dTau, self.spa.aberration_correction(R), 6)
def test_apparent_sun_longitude(self):
assert_almost_equal(lamd, self.spa.apparent_sun_longitude(
Theta, dPsi, dTau), 6)
def test_mean_sidereal_time(self):
assert_almost_equal(v0, self.spa.mean_sidereal_time(JD, JC), 3)
def test_apparent_sidereal_time(self):
assert_almost_equal(v, self.spa.apparent_sidereal_time(
v0, dPsi, epsilon), 5)
def test_geocentric_sun_right_ascension(self):
assert_almost_equal(alpha, self.spa.geocentric_sun_right_ascension(
lamd, epsilon, beta), 6)
def test_geocentric_sun_declination(self):
assert_almost_equal(delta, self.spa.geocentric_sun_declination(
lamd, epsilon, beta), 6)
def test_local_hour_angle(self):
assert_almost_equal(H, self.spa.local_hour_angle(v, lon, alpha), 4)
def test_equatorial_horizontal_parallax(self):
assert_almost_equal(xi, self.spa.equatorial_horizontal_parallax(R), 6)
def test_parallax_sun_right_ascension(self):
u = self.spa.uterm(lat)
x = self.spa.xterm(u, lat, elev)
y = self.spa.yterm(u, lat, elev)
assert_almost_equal(dAlpha, self.spa.parallax_sun_right_ascension(
x, xi, H, delta), 4)
def test_topocentric_sun_right_ascension(self):
assert_almost_equal(alpha_prime,
self.spa.topocentric_sun_right_ascension(
alpha, dAlpha), 5)
def test_topocentric_sun_declination(self):
u = self.spa.uterm(lat)
x = self.spa.xterm(u, lat, elev)
y = self.spa.yterm(u, lat, elev)
assert_almost_equal(delta_prime, self.spa.topocentric_sun_declination(
delta, x, y, xi, dAlpha,H), 5)
def test_topocentric_local_hour_angle(self):
assert_almost_equal(H_prime, self.spa.topocentric_local_hour_angle(
H, dAlpha), 5)
def test_topocentric_elevation_angle_without_atmosphere(self):
assert_almost_equal(
e0, self.spa.topocentric_elevation_angle_without_atmosphere(
lat, delta_prime, H_prime), 6)
def test_atmospheric_refraction_correction(self):
assert_almost_equal(de, self.spa.atmospheric_refraction_correction(
pressure, temp, e0, atmos_refract), 6)
def test_topocentric_elevation_angle(self):
assert_almost_equal(e, self.spa.topocentric_elevation_angle(e0, de), 6)
def test_topocentric_zenith_angle(self):
assert_almost_equal(theta, self.spa.topocentric_zenith_angle(e), 5)
def test_topocentric_astronomers_azimuth(self):
assert_almost_equal(Gamma, self.spa.topocentric_astronomers_azimuth(
H_prime, delta_prime, lat), 5)
def test_topocentric_azimuth_angle(self):
assert_almost_equal(Phi, self.spa.topocentric_azimuth_angle(Gamma), 5)
def test_solar_position(self):
assert_almost_equal(np.array([theta, theta0, e, e0, Phi]),
self.spa.solar_position(unixtimes, lat, lon, elev, pressure, temp, delta_t, atmos_refract)[:-1], 5)
assert_almost_equal(np.array([v, alpha, delta]),
self.spa.solar_position(unixtimes, lat, lon, elev, pressure, temp, delta_t, atmos_refract, sst=True)[:3], 5)
def test_equation_of_time(self):
eot = 14.64
M = self.spa.sun_mean_longitude(JME)
assert_almost_equal(eot, self.spa.equation_of_time(
M, alpha, dPsi, epsilon), 2)
def test_transit_sunrise_sunset(self):
# tests at greenwich
times = pd.DatetimeIndex([dt.datetime(1996, 7, 5, 0),
dt.datetime(2004, 12, 4, 0)]
).tz_localize('UTC').view(np.int64)*1.0/10**9
sunrise = pd.DatetimeIndex([dt.datetime(1996, 7, 5, 7, 8, 15),
dt.datetime(2004, 12, 4, 4, 38, 57)]
).tz_localize('UTC').view(np.int64)*1.0/10**9
sunset = pd.DatetimeIndex([dt.datetime(1996, 7, 5, 17, 1, 4),
dt.datetime(2004, 12, 4, 19, 2, 2)]
).tz_localize('UTC').view(np.int64)*1.0/10**9
times = np.array(times)
sunrise = np.array(sunrise)
sunset = np.array(sunset)
result = [self.spa.transit_sunrise_sunset(t, -35.0, 0.0, 64.0) for t in times]
for i in range(2):
assert_almost_equal(sunrise[i]/1e3, result[i][1]/1e3, 3)
assert_almost_equal(sunset[i]/1e3, result[i][2]/1e3, 3)
times = pd.DatetimeIndex([dt.datetime(1994, 1, 2),]
).tz_localize('UTC').view(np.int64)*1.0/10**9
sunset = pd.DatetimeIndex([dt.datetime(1994, 1, 2, 16, 59, 55),]
).tz_localize('UTC').view(np.int64)*1.0/10**9
sunrise = pd.DatetimeIndex([dt.datetime(1994, 1, 2, 7, 8, 12),]
).tz_localize('UTC').view(np.int64)*1.0/10**9
times = np.array(times)
sunrise = np.array(sunrise)
sunset = np.array(sunset)
result = [self.spa.transit_sunrise_sunset(t, 35.0, 0.0, 64.0) for t in times]
for i in range(1):
assert_almost_equal(sunrise[i]/1e3, result[i][1]/1e3, 3)
assert_almost_equal(sunset[i]/1e3, result[i][2]/1e3, 3)
# tests from USNO
# Golden
times = pd.DatetimeIndex([dt.datetime(2015, 1, 2),
dt.datetime(2015, 4, 2),
dt.datetime(2015, 8, 2),
dt.datetime(2015, 12, 2),],
).tz_localize('UTC').view(np.int64)*1.0/10**9
sunrise = pd.DatetimeIndex([dt.datetime(2015, 1, 2, 7, 19),
dt.datetime(2015, 4, 2, 5, 43),
dt.datetime(2015, 8, 2, 5, 1),
dt.datetime(2015, 12, 2, 7, 1),],
).tz_localize('America/Phoenix').view(np.int64)*1.0/10**9
sunset = pd.DatetimeIndex([dt.datetime(2015, 1, 2, 16, 49),
dt.datetime(2015, 4, 2, 18, 24),
dt.datetime(2015, 8, 2, 19, 10),
dt.datetime(2015, 12, 2, 16, 38),],
).tz_localize('America/Phoenix').view(np.int64)*1.0/10**9
times = np.array(times)
sunrise = np.array(sunrise)
sunset = np.array(sunset)
result = [self.spa.transit_sunrise_sunset(t, 39.0, -105.0, 64.0) for t in times]
for i in range(4):
assert_almost_equal(sunrise[i]/1e3, result[i][1]/1e3, 1)
assert_almost_equal(sunset[i]/1e3, result[i][2]/1e3, 1)
# Beijing
times = pd.DatetimeIndex([dt.datetime(2015, 1, 2),
dt.datetime(2015, 4, 2),
dt.datetime(2015, 8, 2),
dt.datetime(2015, 12, 2),],
).tz_localize('UTC').view(np.int64)*1.0/10**9
sunrise = pd.DatetimeIndex([dt.datetime(2015, 1, 2, 7, 36),
dt.datetime(2015, 4, 2, 5, 58),
dt.datetime(2015, 8, 2, 5, 13),
dt.datetime(2015, 12, 2, 7, 17),],
).tz_localize('Asia/Shanghai'
).view(np.int64)*1.0/10**9
sunset = pd.DatetimeIndex([dt.datetime(2015, 1, 2, 17, 0),
dt.datetime(2015, 4, 2, 18, 39),
dt.datetime(2015, 8, 2, 19, 28),
dt.datetime(2015, 12, 2, 16, 50),],
).tz_localize('Asia/Shanghai'
).view(np.int64)*1.0/10**9
times = np.array(times)
sunrise = np.array(sunrise)
sunset = np.array(sunset)
result = [self.spa.transit_sunrise_sunset(t, 39.917, 116.383, 64.0) for t in times]
for i in range(4):
assert_almost_equal(sunrise[i]/1e3, result[i][1]/1e3, 1)
assert_almost_equal(sunset[i]/1e3, result[i][2]/1e3, 1)
def test_earthsun_distance(self):
times = (pd.date_range('2003-10-17 12:30:30', periods=1, freq='D')
.tz_localize('America/Phoenix'))
unixtimes = times.tz_convert('UTC').view(np.int64)*1.0/10**9
unixtimes = float(np.array(unixtimes)[0])
result = self.spa.earthsun_distance(unixtimes, 64.0)
assert_almost_equal(R, result, 6)
def test_calculate_deltat(self):
result_mix_year = [self.spa.calculate_deltat(t, month) for t in mix_year_array]
assert_almost_equal(mix_year_actual, result_mix_year)
result_mix_month = self.spa.calculate_deltat(year, mix_month_array)
assert_almost_equal(mix_month_actual, result_mix_month)
result_array = [self.spa.calculate_deltat(t, m) for t, m in zip(year_array, month_array)]
assert_almost_equal(dt_actual_array, result_array, 3)
result_scalar = self.spa.calculate_deltat(year,month)
assert_almost_equal(dt_actual, result_scalar)
class NumpySpaTest(unittest.TestCase, SpaBase):
"""Import spa without compiling to numba then run tests"""
@classmethod
def setUpClass(self):
from fluids.optional import spa
spa = reload(spa)
self.spa = spa
@classmethod
def tearDownClass(self):
pass
def test_julian_day(self):
assert_almost_equal(JD, self.spa.julian_day(unixtimes), 6)
@pytest.mark.skipif(numba_version_int < 17,
reason='Numba not installed or version not >= 0.17.0')
class NumbaSpaTest(unittest.TestCase, SpaBase):
"""Import spa, compiling to numba, and run tests"""
@classmethod
def setUpClass(self):
if numba_version_int >= 17:
from fluids.optional import spa
spa = reload(spa)
self.spa = spa
@classmethod
def tearDownClass(self):
pass
def test_julian_day(self):
assert_almost_equal(JD, self.spa.julian_day(unixtimes), 6)
def test_solar_position_singlethreaded(self):
assert_almost_equal(
np.array([theta, theta0, e, e0, Phi]), self.spa.solar_position(
unixtimes, lat, lon, elev, pressure, temp, delta_t,
atmos_refract)[:-1], 5)
assert_almost_equal(
np.array([v, alpha, delta]), self.spa.solar_position(
unixtimes, lat, lon, elev, pressure, temp, delta_t,
atmos_refract, sst=True)[:3], 5)
try:
import astropy
except:
astropy = None
@pytest.mark.skipif(astropy is None, reason='Astropy is not installed')
def test_deltat_astropy():
# Can't do a full range of tests because astropy doesn't have
# answers before 1960, after 1999 in this version
from datetime import datetime
from astropy.time import Time
def delta_t_astropy(dt):
t = Time(dt, scale='utc')
return -(dt - t.tt.value).total_seconds()
# years = range(1, 3000, 100) + [3000]
years = range(1960, 1999, 1)
months = range(1, 13)
for year in years:
for month in months:
delta_t_pvlib = spa.calculate_deltat(year, month)
dt = datetime(year, month, 1)
delta_t_external = delta_t_astropy(dt)
assert_allclose(delta_t_pvlib, delta_t_external, atol=.5, rtol=.01)
#suite = unittest.TestSuite()
#suite.addTest(NumpySpaTest("testItIsHot"))
#runner = unittest.TextTestRunner()
#runner.run(suite)
#
#NumpySpaTest.test_calculate_deltat()
if __name__ == '__main__':
unittest.main()
|