File: Validator.txt

package info (click to toggle)
python-formencode 1.3.0-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 1,880 kB
  • sloc: python: 6,564; makefile: 114; sh: 8
file content (643 lines) | stat: -rw-r--r-- 25,920 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
.. comment (set Emacs mode) -*- doctest -*-

    >>> import sys
    >>> import formencode

+++++++++++++++++++++
FormEncode Validation
+++++++++++++++++++++

:author: Ian Bicking <ianb@colorstudy.com>
:version: |release|
:date: |today|

.. contents::

Introduction
============

Validation (which encompasses conversion as well) is the core function
of FormEncode.  FormEncode really tries to *encode* the values from
one source into another (hence the name).  So a Python structure can
be encoded in a series of HTML fields (a flat dictionary of strings).
A HTML form submission can in turn be turned into a the original
Python structure.

Using Validation
================

In FormEncode validation and conversion happen simultaneously.
Frequently you cannot convert a value without ensuring its validity,
and validation problems can occur in the middle of conversion.

The basic metaphor for validation is **to_python** and
**from_python**.  In this context "Python" is meant to refer to "here"
-- the trusted application, your own Python objects.  The "other" may
be a web form, an external database, an XML-RPC request, or any data
source that is not completely trusted or does not map directly to
Python's object model.  :meth:`to_python` is the process of taking
external data and preparing it for internal use, :meth:`from_python`
generally reverses this process (:meth:`from_python` is usually the less
interesting of the pair, but provides some important features).

The core of this validation process is two methods and an exception::

    >>> import formencode
    >>> from formencode import validators
    >>> validator = validators.Int()
    >>> validator.to_python("10")
    10
    >>> validator.to_python("ten")
    Traceback (most recent call last):
        ...
    Invalid: Please enter an integer value

``"ten"`` isn't a valid integer, so we get a :class:`formencode.Invalid`
exception.  Typically we'd catch that exception, and use it for some
sort of feedback.  Like:

.. comment (fake raw_input):

    >>> raw_input_input = []
    >>> def raw_input(prompt):
    ...     value = raw_input_input.pop(0)
    ...     print '%s%s' % (prompt, value)
    ...     return value
    >>> raw_input_input.extend(['ten', '10'])
    >>> raw_input_input.extend(['bob', 'bob@nowhere.com'])
    >>> if unicode is str:  # Python 3
    ...    input = raw_input

::

    >>> def get_integer():
    ...     while 1:
    ...         try:
    ...             value = raw_input('Enter a number: ')
    ...             return validator.to_python(value)
    ...         except formencode.Invalid, e:
    ...             print e
    ...
    >>> get_integer()
    Enter a number: ten
    Please enter an integer value
    Enter a number: 10
    10

We can also generalize this kind of function::

    >>> def valid_input(prompt, validator):
    ...     while 1:
    ...         try:
    ...             value = raw_input(prompt)
    ...             return validator.to_python(value)
    ...         except formencode.Invalid, e:
    ...             print e
    >>> valid_input('Enter your email: ', validators.Email())
    Enter your email: bob
    An email address must contain a single @
    Enter your email: bob@nowhere.com
    'bob@nowhere.com'

:class:`Invalid` exceptions generally give a good, user-readable error
message about the problem with the input.  Using the exception gets
more complicated when you use compound data structures (dictionaries
and lists), which we'll talk about later__.

.. __: `Compound Validators`_

We'll talk more about these individual validators later, but first
we'll talk about more complex validation than just integers or
individual values.

.. _Schemas:

Available Validators
--------------------

There's lots of validators.  The best way to read about the individual
validators available in the :mod:`formencode.validators` module is to read
about :mod:`~formencode.validators` and :mod:`~formencode.national`.

Compound Validators
-------------------

While validating single values is useful, it's only a *little* useful.
Much more interesting is validating a set of values.  This is called a
*Schema*.

For instance, imagine a registration form for a website.  It takes the
following fields, with restrictions:

* ``first_name`` (not empty)
* ``last_name`` (not empty)
* ``email`` (not empty, valid email)
* ``username`` (not empty, unique)
* ``password`` (reasonably secure)
* ``password_confirm`` (matches password)

There's a couple validators that aren't part of FormEncode, because
they'll be specific to your application::

    >>> # We don't really have a database of users, so we'll fake it:
    >>> usernames = []
    >>> class UniqueUsername(formencode.FancyValidator):
    ...     def _convert_to_python(self, value, state):
    ...         if value in usernames:
    ...             raise formencode.Invalid(
    ...                 'That username already exists',
    ...                 value, state)
    ...         return value

.. note::
   The class :class:`formencode.FancyValidator` is the superclass
   for most validators in FormEncode, and it provides a number of useful
   features that most validators can use -- for instance, you can pass
   ``strip=True`` into any of these validators, and they'll strip
   whitespace from the incoming value before any other validation.

This overrides the internal :meth:`_convert_to_python()` method:
:class:`formencode.FancyValidator` adds a number of extra features, and then
calls the internal :meth:`_convert_to_python` method, which is the method you'll
typically write.  Contrary to the external method :meth:`to_python`, its
only concern is the conversion part, not the validation part.  If further
validation is necessary, this can be done in two other internal methods,
either :meth:`_validate_python()` or :meth:`_validate_other()`.  We will give
an example for that later.  When a validator finds an error, it raises an
exception (:class:`formencode.Invalid`), with the error message and the
value and "state" objects.  We'll talk about state_ later. Here's the
other custom validator, that checks passwords against words in the
standard Unix word file::

    >>> class SecurePassword(formencode.FancyValidator):
    ...     words_filename = '/usr/share/dict/words'
    ...     def _convert_to_python(self, value, state):
    ...         f = open(self.words_filename)
    ...         lower = value.strip().lower()
    ...         for line in f:
    ...             if line.strip().lower() == lower:
    ...                 raise formencode.Invalid(
    ...                     'Please do not base your password on a '
    ...                     'dictionary term', value, state)
    ...         return value

And here's a schema::

    >>> class Registration(formencode.Schema):
    ...     first_name = validators.ByteString(not_empty=True)
    ...     last_name = validators.ByteString(not_empty=True)
    ...     email = validators.Email(resolve_domain=True)
    ...     username = formencode.All(validators.PlainText(),
    ...                               UniqueUsername())
    ...     password = SecurePassword()
    ...     password_confirm = validators.ByteString()
    ...     chained_validators = [validators.FieldsMatch(
    ...         'password', 'password_confirm')]

Like any other validator, a :class:`Registration` instance will have the
:meth:`to_python` and :meth:`from_python` methods.  The input should be a
dictionary (or a Paste MultiDict), with keys like ``"first_name"``,
``"password"``, etc.  The validators you give as attributes will be
applied to each of the values of the dictionary.  *All* the values
will be validated, so if there are multiple invalid fields you will
get information about all of them.

Most validators (anything that subclasses
:class:`formencode.FancyValidator`) will take a certain standard
set of constructor keyword arguments.  See
:class:`formencode.api.FancyValidator` for more -- here we use
``not_empty=True``.

Another notable validator is :class:`formencode.compound.All` -- this
is a *compound validator* -- that is, it's a validator that takes
validators as input.  Schemas are one example; in this case :class:`All`
takes a list of validators and applies each of them in turn.
:class:`formencode.compound.Any` is its compliment, that uses the
first passing validator in its list.

.. _pre_validators:
.. _chained_validators:

:attr:`chained_validators` are validators that are run on the entire
dictionary after other validation is done (:attr:`pre_validators` are
applied before the schema validation).  chained_validators will also
allow for multiple validators to fail and report to the error_dict
so, for example, if you have an email_confirm and a password_confirm
fields and use FieldsMatch on both of them as follows:

    >>> chained_validators = [
    ...     validators.FieldsMatch('password',
    ...                            'password_confirm'),
    ...     validators.FieldsMatch('email',
    ...                            'email_confirm')]

This will leave the error_dict with both password_confirm and
email_confirm error keys, which is likely the desired behavior
for web forms.

Since a :class:`formencode.schema.Schema` is just another kind of
validator, you can nest these indefinitely, validating dictionaries of
dictionaries.

.. _SimpleFormValidator:

Another way to do simple validation of a complete form is with
:class:`formencode.schema.SimpleFormValidator`.  This class wraps a simple
function that you write.  For example::

    >>> from formencode.schema import SimpleFormValidator
    >>> def validate_state(value_dict, state, validator):
    ...     if value_dict.get('country', 'US') == 'US':
    ...         if not value_dict.get('state'):
    ...             return {'state': 'You must enter a state'}
    >>> ValidateState = SimpleFormValidator(validate_state)
    >>> ValidateState.to_python({'country': 'US'}, None)
    Traceback (most recent call last):
        ...
    Invalid: state: You must enter a state


The :func:`validate_state` function (or any validation function) returns
any errors in the form (or it may raise Invalid directly).  It can
also modify the :obj:`value_dict` dictionary directly.  When it returns
None this indicates that everything is valid.  You can use this with a
:class:`Schema` by putting :class:`ValidateState` in :attr:`pre_validators`
(all validation will be done before the schema's validation, and if there's
an error the schema won't be run).  Or you can put it in
:attr:`chained_validators` and it will be run *after* the schema.  If the
schema fails (the values are invalid) then :class:`ValidateState` will not
be run, unless you set :attr:`validate_partial_form` to True (like
``ValidateState = SimpleFormValidator(validate_state,
validate_partial_form=True)``.  If you validate a partial form you
should be careful that you handle missing keys and other
possibly-invalid values gracefully.

.. _ForEach:

You can also validate lists of items using
:class:`formencode.foreach.ForEach`.  For example, let's say we have a
form where someone can edit a list of book titles.  Each title has an
associated book ID, so we can match up the new title and the book it
is for::

    >>> class BookSchema(formencode.Schema):
    ...     id = validators.Int()
    ...     title = validators.ByteString(not_empty=True)
    >>> validator = formencode.ForEach(BookSchema())

The :obj:`validator` we've created will take a list of dictionaries as
input (like ``[{"id": "1", "title": "War & Peace"}, {"id": "2",
"title": "Brave New World"}, ...]``).  It applies the :class:`BookSchema`
to each entry, and collects any errors and reraises them.  Of course,
when you are validating input from an HTML form you won't get well
structured data like this (we'll talk about that later__).

.. __: `HTTP/HTML Form Input`_

Writing Your Own Validator
--------------------------

We gave a brief introduction to creating a validator earlier
(:class:`UniqueUsername` and :class:`SecurePassword`).  We'll discuss
that a little more.  Here's a more complete implementation of
:class:`SecurePassword`::

    >>> import re
    >>> class SecurePassword(validators.FancyValidator):
    ...
    ...     min = 3
    ...     non_letter = 1
    ...     letter_regex = re.compile(r'[a-zA-Z]')
    ...
    ...     messages = {
    ...         'too_few': 'Your password must be longer than %(min)i '
    ...                   'characters long',
    ...         'non_letter': 'You must include at least %(non_letter)i '
    ...                      'characters in your password',
    ...         }
    ...
    ...     def _convert_to_python(self, value, state):
    ...         # _convert_to_python gets run before _validate_python.
    ...         # Here we strip whitespace off the password, because leading
    ...         # and trailing whitespace in a password is too elite.
    ...         return value.strip()
    ...
    ...     def _validate_python(self, value, state):
    ...         if len(value) < self.min:
    ...             raise Invalid(self.message("too_few", state,
    ...                                        min=self.min),
    ...                           value, state)
    ...         non_letters = self.letter_regex.sub('', value)
    ...         if len(non_letters) < self.non_letter:
    ...             raise Invalid(self.message("non_letter", state,
    ...                                         non_letter=self.non_letter),
    ...                           value, state)

With all validators, any arguments you pass to the constructor will be
used to set instance variables.  So :class:`SecureValidator(min=5)` will
be a minimum-five-character validator.  This makes it easy to also
subclass other validators, giving different default values.

Unlike the previous implementation we use the already mentioned
:meth:`_validate_python` method, which is another internal method
:class:`FancyValidator` allows us to override.  :meth:`_validate_python`
doesn't have any return value, it simply raises an exception if it
needs to.  It validates the value *after* it has been converted
(by :meth:`_convert_to_python`).  :meth:`_validate_other` validates before
conversion, but that's usually not that useful.  The external method
:meth:`to_python` cares about the extra features such as the
:attr:`if_empty` parameter, and uses the internal methods to do the
actual conversion and validation; first it calls :meth:`_validate_other`,
then :meth:`_convert_to_python` and at last :meth:`_validate_python`.

The use of ``self.message(...)`` is meant to make the messages easy to
format for different environments, and replacable (with translations,
or simply with different text).  Each message should have an
identifier (``"min"`` and ``"non_letter"`` in this example).  The
keyword arguments to :meth:`message` are used for message substitution.
See Messages_ for more.

Other Validator Usage
---------------------

Validators use instance variables to store their customization
information.  You can use either subclassing or normal instantiation
to set these.  These are (effectively) equivalent::

    >>> plain = validators.Regex(regex='^[a-zA-Z]+$')
    >>> # and...
    >>> class Plain(validators.Regex):
    ...     regex = '^[a-zA-Z]+$'
    >>> plain = Plain()

You can actually use classes most places where you could use an
instance; :meth:`.to_python()` and :meth:`.from_python()` will create
instances as necessary, and many other methods are available on both
the instance and the class level.

When dealing with nested validators this class syntax is often easier
to work with, and better displays the structure.

.. _FancyValidator:

There are several options that most validators support (including your
own validators, if you subclass from :class:`formencode.FancyValidator`):

:attr:`if_empty`:
      If set, then this value will be returned if the input evaluates
      to false (empty list, empty string, None, etc), but not the 0 or
      False objects.  This only applies to ``.to_python()``.

:attr:`not_empty`:
      If true, then if an empty value is given raise an error.
      (Both with ``.to_python()`` and also ``.from_python()``
      if ``.validate_python`` is true).

:attr:`strip`:
      If true and the input is a string, strip it (occurs before empty
      tests).

:attr:`if_invalid`:
      If set, then when this validator would raise Invalid during
      ``.to_python()``, instead return this value.

:attr:`if_invalid_python`:
      If set, when the Python value (converted with
      ``.from_python()``) is invalid, this value will be returned.

:attr:`accept_python`:
      If True (the default), then ``._validate_python()`` and
      ``._validate_other()`` will not be called when
      ``.from_python()`` is used.

:attr:`if_missing`:
      Typically when a field is missing the schema will raise an
      error.  In that case no validation is run -- so things like
      ``if_invalid`` won't be triggered.  This special attribute (if
      set) will be used when the field is missing, and no error will
      occur.  (``None`` or ``()`` are common values)

State
-----

All the validators receive a magic, somewhat meaningless ``state``
argument (which defaults to ``None``).  It's used for very little in
the validation system as distributed, but is primarily intended to be
an object you can use to hook your validator into the context of the
larger system.

For instance, imagine a validator that checks that a user is permitted
access to some resource.  How will the validator know which user is
logged in?  State!  Imagine you are localizing it, how will the
validator know the locale?  State!  Whatever else you need to pass in,
just put it in the state object as an attribute, then look for that
attribute in your validator.

Also, during compound validation (a :class:`formencode.schema.Schema`
or :class:`formencode.foreach.ForEach`) the state (if not None) will
have more instance variables added to it.  During a :class:`Schema`
(dictionary) validation the instance variable ``key`` and
``full_dict`` will be added -- ``key`` is the current key (i.e.,
validator name), and ``full_dict`` is the rest of the values being
validated.  During a :class:`ForEeach` (list) validation, ``index`` and
``full_list`` will be set.

Invalid Exceptions
------------------

Besides the string error message, :class:`formencode.Invalid`
exceptions have a few other instance variables:

:attr:`value`:
    The input to the validator that failed.

:attr:`state`:
    The associated state_.

:attr:`msg`:
    The error message (``str(exc)`` returns this)

:attr:`error_list`:
    If the exception happened in a ``ForEach`` (list) validator, then
    this will contain a list of ``Invalid`` exceptions.  Each item
    from the list will have an entry, either None for no error, or an
    exception.

:attr:`error_dict`:
    If the exception happened in a :class:`Schema` (dictionary) validator,
    then this will contain :class:`Invalid` exceptions for each failing
    field.  Passing fields not be included in this dictionary.

:meth:`.unpack_errors()`:
    This method returns a set of lists and dictionaries containing
    strings, for each error.  It's an unpacking of :attr:`error_list`,
    :attr:`error_dict` and :attr:`msg`.  If you get an Invalid exception
    from a :class:`Schema`, you probably want to call this method on the
    exception object.

.. _Messages:

Messages, Language Customization
--------------------------------

All of the error messages can be customized.  Each error message has a
key associated with it, like ``"too_few"`` in the registration
example.  You can overwrite these messages by using you own ``messages
= {"key": "text"}`` in the class statement, or as an argument when you
call a class.  Either way, you do not lose messages that you do not
define, you only overwrite ones that you specify.

Messages often take arguments, like the number of characters, the
invalid portion of the field, etc.  These are always substituted as a
dictionary (by name).  So you will use placeholders like ``%(key)s``
for each substitution.  This way you can reorder or even ignore
placeholders in your new message.

When you are creating a validator, for maximum flexibility you should
use the :meth:`message` method, like::

    messages = {
        'key': 'my message (with a %(substitution)s)',
        }

    def _validate_python(self, value, state):
        raise Invalid(self.message('key', state, substitution='apples'),
                      value, state)

Localization of Error Messages (i18n)
-------------------------------------

When a failed validation occurs FormEncode tries to output the error
message in the appropriate language. For this it uses the standard
`gettext <http://docs.python.org/library/gettext.html>`_ mechanism of
python. To translate the message in the appropirate message FormEncode
has to find a gettext function that translates the string. The
language to be translated into and the used domain is determined by
the found gettext function. To serve a standard translation mechanism
and to enable custom translations it looks in the following order to
find a gettext (``_``) function:

1. method of the :obj:`state` object

2. function :func:`__builtin__._`.  This function is only used when::

       Validator.use_builtin_gettext == True #True is default

3. formencode builtin :func:`_stdtrans` function

   for standalone use of FormEncode. The language to use is determined
   out of the locale system (see gettext documentation). Optionally you
   can also set the language or the domain explicitly with the
   function::

       formencode.api.set_stdtranslation(domain="FormEncode", languages=["de"])

   Formencode comes with a Domain ``FormEncode`` and the corresponding
   messages in the directory
   ``localedir/language/LC_MESSAGES/FormEncode.mo``

4. Custom gettext function and addtional parameters

   If you use a custom gettext function and you want FormEncode to
   call your function with additional parameters you can set the
   dictionary::

       Validators.gettextargs

Available languages
~~~~~~~~~~~~~~~~~~~

All available languages are distributed with the code. You can see the
currently available languages in the source under the directory
``formencode/i18n``.

If your language is not present yet, please consider contributing a
translation (where ``<lang>`` is you language code)::

    $ svn co http://svn.formencode.org/FormEncode/trunk/
    $ easy_install Babel
    $ python setup.py init_catalog -l <lang>
    $ emacs formencode/i18n/<lang>/LC_MESSAGES/FormEncode.po # or whatever
      # editor you prefer make the translation
    $ python setup.py compile_catalog -l <lang>

Then test, and send the PO and MO files to g...@gregor-horvath.com.

See also `the Python internationalization documents
<http://docs.python.org/library/gettext.html>`_.

Optionally you can also add a test of your language to
``tests/test_i18n.py``.  An Example of a language test::

    ne = formencode.validators.NotEmpty()
    [...]
    def test_de():
        _test_lang("de", u"Bitte einen Wert eingeben")

And the test for your language::

    def test_<lang>():
        _test_lang("<lang>", u"<translation of Not Empty Text in the language <lang>")

HTTP/HTML Form Input
--------------------

The validation expects nested data structures; specifically
:class:`formencode.schema.Schema` and
:class:`formencode.foreach.ForEach` deal with these structures well.
HTML forms, however, do not produce nested structures -- they produce
flat structures with keys (input names) and associated values.

Validator includes the module :mod:`formencode.variabledecode`,
which allows you to encode nested dictionary and list structures into
a flat dictionary.

To do this it uses keys with ``"."`` for nested dictionaries, and
``"-int"`` for (ordered) lists.  So something like:

+--------------------+--------------------+
|        key         |       value        |
+====================+====================+
| names-1.fname      | John               |
+--------------------+--------------------+
| names-1.lname      | Doe                |
+--------------------+--------------------+
| names-2.fname      | Jane               |
+--------------------+--------------------+
| names-2.lname      | Brown              |
+--------------------+--------------------+
| names-3            | Tim Smith          |
+--------------------+--------------------+
| action             | save               |
+--------------------+--------------------+
| action.option      | overwrite          |
+--------------------+--------------------+
| action.confirm     | yes                |
+--------------------+--------------------+

Will be mapped to::

    {'names': [{'fname': "John", 'lname': "Doe"},
               {'fname': "Jane", 'lname': 'Brown'},
               "Tim Smith"],
     'action': {None: "save",
                'option': "overwrite",
                'confirm': "yes"},
    }

In other words, ``'a.b'`` creates a dictionary in ``'a'``, with
``'b'`` as a key (and if ``'a'`` already had a value, then that value
is associated with the key ``None``).  Lists are created with keys
with ``'-int'``, where they are ordered by the integer (the integers
are used for sorting, missing numbers in a sequence are ignored).

:class:`formencode.variabledecode.NestedVariables` is a validator that
decodes and encodes dictionaries using this algorithm.  You can use it
with a Schema's `pre_validators`_ attribute.

Of course, in the example we use the data is rather eclectic -- for
instance, Tim Smith doesn't have his name separated into first and
last.  Validators work best when you keep lists homogeneous.  Also, it
is hard to access the ``'action'`` key in the example; storing the
options (action.option and action.confirm) under another key would be
preferable.