1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
Collections
===========
Unite
-----
.. function:: merge(*colls)
Merges several collections of same type into one: dicts, sets, lists, tuples, iterators or strings. For dicts values of later dicts override values of former ones with same keys.
Can be used in variety of ways, but merging dicts is probably most common::
def utility(**options):
defaults = {...}
options = merge(defaults, options)
...
If you merge sequences and don't need to preserve collection type, then use :func:`concat` or :func:`lconcat` instead.
.. function:: join(colls)
Joins collections of same type into one. Same as :func:`merge`, but accepts iterable of collections.
Use :func:`cat` and :func:`lcat` for non-type preserving sequence join.
Transform and select
--------------------
All functions in this section support :ref:`extended_fns`.
.. function:: walk(f, coll)
Returns a collection of same type as ``coll`` consisting of its elements mapped with the given function::
walk(inc, {1, 2, 3}) # -> {2, 3, 4}
walk(inc, (1, 2, 3)) # -> (2, 3, 4)
When walking dict, ``(key, value)`` pairs are mapped, i.e. this lines :func:`flip` dict::
swap = lambda (k, v): (v, k)
walk(swap, {1: 10, 2: 20})
:func:`walk` works with strings too::
walk(lambda x: x * 2, 'ABC') # -> 'AABBCC'
walk(compose(str, ord), 'ABC') # -> '656667'
One should use :func:`map` when there is no need to preserve collection type.
.. note about constructor interface?
.. function:: walk_keys(f, coll)
Walks keys of ``coll``, mapping them with the given function. Works with mappings and collections of pairs::
walk_keys(str.upper, {'a': 1, 'b': 2}) # {'A': 1, 'B': 2}
walk_keys(int, json.loads(some_dict)) # restore key type lost in translation
Important to note that it preserves collection type whenever this is simple :class:`py3:dict`, :class:`~py3:collections.defaultdict`, :class:`~py3:collections.OrderedDict` or any other mapping class or a collection of pairs.
.. function:: walk_values(f, coll)
Walks values of ``coll``, mapping them with the given function. Works with mappings and collections of pairs.
Common use is to process values somehow::
clean_values = walk_values(int, form_values)
sorted_groups = walk_values(sorted, groups)
Hint: you can use :func:`partial(sorted, key=...) <partial>` instead of :func:`py3:sorted` to sort in non-default way.
Note that ``walk_values()`` has special handling for :class:`defaultdicts <py3:collections.defaultdict>`. It constructs new one with values mapped the same as for ordinary dict, but a default factory of new ``defaultdict`` would be a composition of ``f`` and old default factory::
d = defaultdict(lambda: 'default', a='hi', b='bye')
walk_values(str.upper, d)
# -> defaultdict(lambda: 'DEFAULT', a='HI', b='BYE')
.. function:: select(pred, coll)
Filters elements of ``coll`` by ``pred`` constructing a collection of same type. When filtering a dict ``pred`` receives ``(key, value)`` pairs. See :func:`select_keys` and :func:`select_values` to filter it by keys or values respectively::
select(even, {1, 2, 3, 10, 20})
# -> {2, 10, 20}
select(lambda (k, v): k == v, {1: 1, 2: 3})
# -> {1: 1}
.. function:: select_keys(pred, coll)
Select part of a dict or a collection of pairs with keys passing the given predicate.
This way a public part of instance attributes dictionary could be selected::
is_public = complement(re_tester('^_'))
public = select_keys(is_public, instance.__dict__)
.. function:: select_values(pred, coll)
Select part of a dict or a collection of pairs with values passing the given predicate::
# Leave only str values
select_values(isa(str), values)
# Construct a dict of methods
select_values(inspect.isfunction, cls.__dict__)
.. function:: compact(coll)
Removes falsy values from given collection. When compacting a dict all keys with falsy values are removed.
Extract integer data from request::
compact(walk_values(silent(int), request_dict))
Dict utils
----------
.. function:: merge_with(f, *dicts)
join_with(f, dicts, strict=False)
Merge several dicts combining values for same key with given function::
merge_with(list, {1: 1}, {1: 10, 2: 2})
# -> {1: [1, 10], 2: [2]}
merge_with(sum, {1: 1}, {1: 10, 2: 2})
# -> {1: 11, 2: 2}
join_with(first, ({n % 3: n} for n in range(100, 110)))
# -> {0: 102, 1: 100, 2: 101}
Historically ``join_with()`` will return a dict as is if there is only one, which might be inconvenient. To always apply the summarization func use ``strict`` param::
join_with(list, [{1: 2}]) # {1: 2}
join_with(list, [{1: 2}], strict=True) # {1: [2]}
join_with(len, [{1: 2}], strict=True) # {1: 1}
.. function:: zipdict(keys, vals)
Returns a dict with the ``keys`` mapped to the corresponding ``vals``. Stops pairing on shorter sequence end::
zipdict('abcd', range(4))
# -> {'a': 0, 'b': 1, 'c': 2, 'd': 3}
zipdict('abc', count())
# -> {'a': 0, 'b': 1, 'c': 2}
.. function:: flip(mapping)
Flip passed dict swapping its keys and values. Also works for sequences of pairs. Preserves collection type::
flip(OrderedDict(['aA', 'bB']))
# -> OrderedDict([('A', 'a'), ('B', 'b')])
.. function:: project(mapping, keys)
Returns a dict containing only those entries in ``mapping`` whose key is in ``keys``.
Most useful to shrink some common data or options to predefined subset. One particular case is constructing a dict of used variables::
merge(project(__builtins__, names), project(globals(), names))
.. function:: omit(mapping, keys)
Returns a copy of ``mapping`` with ``keys`` omitted. Preserves collection type::
omit({'a': 1, 'b': 2, 'c': 3}, 'ac')
# -> {'b': 2}
.. function:: zip_values(*dicts)
Yields tuples of corresponding values of given dicts. Skips any keys not present in all of the dicts. Comes in handy when comparing two or more dicts::
error = sum((x - y) ** 2 for x, y in zip_values(result, reference))
.. function:: zip_dicts(*dicts)
Yields tuples like ``key, (value1, value2, ...)`` for each common key of all given dicts. A neat way to process several dicts at once::
changed_items = [id for id, (new, old) in zip_dicts(items, old_items)
if abs(new - old) >= PRECISION]
lines = {id: cnt * price for id, (cnt, price) in zip_dicts(amounts, prices)}
See also :func:`zip_values`.
.. function:: get_in(coll, path, default=None)
Returns a value corresponding to ``path`` in nested collection::
get_in({"a": {"b": 42}}, ["a", "b"]) # -> 42
get_in({"a": {"b": 42}}, ["c"], "foo") # -> "foo"
Note that missing key or index, i.e. `KeyError` and `IndexError` result into `default` being return, while trying to use non-int index for a list will result into `TypeError`. This way funcy stays strict on types.
.. function:: get_lax(coll, path, default=None)
A version of :func:`get_in` that tolerates type along the path not working with an index::
get_lax([1, 2, 3], ["a"], "foo") # -> "foo"
get_lax({"a": None}, ["a", "b"]) # -> None
.. function:: set_in(coll, path, value)
Creates a nested collection with the ``value`` set at specified ``path``. Original collection is not changed::
set_in({"a": {"b": 42}}, ["a", "b"], 10)
# -> {"a": {"b": 10}}
set_in({"a": {"b": 42}}, ["a", "c"], 10)
# -> {"a": {"b": 42, "c": 10}}
.. function:: update_in(coll, path, update, default=None)
Creates a nested collection with a value at specified ``path`` updated::
update_in({"a": {}}, ["a", "cnt"], inc, default=0)
# -> {"a": {"cnt": 1}}
.. function:: del_in(coll, path)
Creates a nested collection with ``path`` removed::
del_in({"a": [1, 2, 3]}, ["a", 1])
# -> {"a": [1, 3]}
Returns the collection as is if the path is missing.
.. function:: has_path(coll, path)
Checks if path exists in the given nested collection::
has_path({"a": {"b": 42}}, ["a", "b"]) # -> True
has_path({"a": {"b": 42}}, ["c"]) # -> False
has_path({"a": [1, 2]}, ["a", 0]) # -> True
Data manipulation
-----------------
.. function:: where(mappings, **cond)
lwhere(mappings, **cond)
Looks through each value in given sequence of dicts and returns an iterator or a list of all the dicts that contain all key-value pairs in ``cond``::
lwhere(plays, author="Shakespeare", year=1611)
# => [{"title": "Cymbeline", "author": "Shakespeare", "year": 1611},
# {"title": "The Tempest", "author": "Shakespeare", "year": 1611}]
Iterator version could be used for efficiency or when you don't need the whole list.
E.g. you are looking for the first match::
first(where(plays, author="Shakespeare"))
# => {"title": "The Two Gentlemen of Verona", ...}
.. function:: pluck(key, mappings)
lpluck(key, mappings)
Returns an iterator or a list of values for ``key`` in each mapping in the given sequence. Essentially a shortcut for::
map(operator.itemgetter(key), mappings)
.. function:: pluck_attr(attr, objects)
lpluck_attr(attr, objects)
Returns an iterator or a list of values for ``attr`` in each object in the given sequence. Essentially a shortcut for::
map(operator.attrgetter(attr), objects)
Useful when dealing with collections of ORM objects::
users = User.query.all()
ids = lpluck_attr('id', users)
.. function:: invoke(objects, name, *args, **kwargs)
linvoke(objects, name, *args, **kwargs)
Calls named method with given arguments for each object in ``objects`` and returns an iterator or a list of results.
Content tests
-------------
.. function:: is_distinct(coll, key=identity)
Checks if all elements in the collection are different::
assert is_distinct(field_names), "All fields should be named differently"
Uses ``key`` to differentiate values. This way one can check if all first letters of ``words`` are different::
is_distinct(words, key=0)
.. function:: all([pred], seq)
Checks if ``pred`` holds for every element in a ``seq``. If ``pred`` is omitted checks if all elements of ``seq`` are truthy -- same as in built-in :func:`py3:all`::
they_are_ints = all(is_instance(n, int) for n in seq)
they_are_even = all(even, seq)
Note that, first example could be rewritten using :func:`isa` like this::
they_are_ints = all(isa(int), seq)
.. function:: any([pred], seq)
Returns ``True`` if ``pred`` holds for any item in given sequence. If ``pred`` is omitted checks if any element of ``seq`` is truthy.
Check if there is a needle in haystack, using :ref:`extended predicate semantics <extended_fns>`::
any(r'needle', haystack_strings)
.. function:: none([pred], seq)
Checks if none of items in given sequence pass ``pred`` or is truthy if ``pred`` is omitted.
Just a stylish way to write ``not any(...)``::
assert none(' ' in name for name in names), "Spaces in names not allowed"
# Or same using extended predicate semantics
assert none(' ', names), "..."
.. function:: one([pred], seq)
Returns true if exactly one of items in ``seq`` passes ``pred``. Cheks for truthiness if ``pred`` is omitted.
.. function:: some([pred], seq)
Finds first item in ``seq`` passing ``pred`` or first that is true if ``pred`` is omitted.
Low-level helpers
-----------------
.. function:: empty(coll)
Returns an empty collection of the same type as ``coll``.
.. function:: iteritems(coll)
Returns an iterator of items of a ``coll``. This means ``key, value`` pairs for any dictionaries::
list(iteritems({1, 2, 42}))
# -> [1, 42, 2]
list(iteritems({'a': 1}))
# -> [('a', 1)]
.. function:: itervalues(coll)
Returns an iterator of values of a ``coll``. This means values for any dictionaries and just elements for other collections::
list(itervalues({1, 2, 42}))
# -> [1, 42, 2]
list(itervalues({'a': 1}))
# -> [1]
.. raw:: html
:file: descriptions.html
|