1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553
|
Sequences
=========
This functions are aimed at manipulating finite and infinite sequences of values. Some functions have two flavors: one returning list and other returning possibly infinite iterator, the latter ones follow convention of prepending ``i`` before list-returning function name.
When working with sequences, see also :mod:`py3:itertools` standard module. Funcy reexports and aliases some functions from it.
Generate
--------
.. function:: repeat(item, [n])
Makes an iterator yielding ``item`` for ``n`` times or indefinitely if ``n`` is omitted. ``repeat`` simply repeats given value, when you need to reevaluate something repeatedly use :func:`repeatedly` instead.
When you just need a length ``n`` list or tuple of ``item`` you can use::
[item] * n
# or
(item,) * n
.. Is a reexport of :func:`itertools.repeat`.
.. function:: count(start=0, step=1)
Makes infinite iterator of values: ``start, start + step, start + 2*step, ...``.
Could be used to generate sequence::
map(lambda x: x ** 2, count(1))
# -> 1, 4, 9, 16, ...
Or annotate sequence using :func:`py3:zip`::
zip(count(), 'abcd')
# -> (0, 'a'), (1, 'b'), (2, 'c'), (3, 'd')
# print code with BASIC-style numbered lines
for line in zip(count(10, 10), code.splitlines()):
print '%d %s' % line
See also :func:`py3:enumerate` and original :func:`py3:itertools.count` documentation.
.. function:: cycle(seq)
Cycles passed ``seq`` indefinitely returning its elements one by one.
Useful when you need to cyclically decorate some sequence::
for n, parity in zip(count(), cycle(['even', 'odd'])):
print '%d is %s' % (n, parity)
.. Is a reexport of :func:`itertools.cycle`.
.. function:: repeatedly(f, [n])
Takes a function of no args, presumably with side effects, and
returns an infinite (or length ``n`` if supplied) iterator of calls
to it.
For example, this call can be used to generate 10 random numbers::
repeatedly(random.random, 10)
Or one can create a length ``n`` list of freshly-created objects of same type::
repeatedly(list, n)
.. function:: iterate(f, x)
Returns an infinite iterator of ``x, f(x), f(f(x)), ...`` etc.
Most common use is to generate some recursive sequence::
iterate(inc, 5)
# -> 5, 6, 7, 8, 9, ...
iterate(lambda x: x * 2, 1)
# -> 1, 2, 4, 8, 16, ...
step = lambda p: (p[1], p[0] + p[1])
map(first, iterate(step, (0, 1)))
# -> 0, 1, 1, 2, 3, 5, 8, ... (Fibonacci sequence)
Manipulate
----------
This section provides some robust tools for sequence slicing. Consider :ref:`py3:slicings` or :func:`py3:itertools.islice` for more generic cases.
.. function:: take(n, seq)
Returns a list of the first ``n`` items in the sequence, or all items if there are fewer than ``n``.
::
take(3, [2, 3, 4, 5]) # [2, 3, 4]
take(3, count(5)) # [5, 6, 7]
take(3, 'ab') # ['a', 'b']
.. function:: drop(n, seq)
Skips first ``n`` items in the sequence, returning iterator yielding rest of its items.
::
drop(3, [2, 3, 4, 5]) # iter([5])
drop(3, count(5)) # count(8)
drop(3, 'ab') # empty iterator
.. function:: first(seq)
Returns the first item in the sequence. Returns ``None`` if the sequence is empty. Typical usage is choosing first of some generated variants::
# Get a text message of first failed validation rule
fail = first(rule.text for rule in rules if not rule.test(instance))
# Use simple pattern matching to construct form field widget
TYPE_TO_WIDGET = (
[lambda f: f.choices, lambda f: Select(choices=f.choices)],
[lambda f: f.type == 'int', lambda f: TextInput(coerce=int)],
[lambda f: f.type == 'string', lambda f: TextInput()],
[lambda f: f.type == 'text', lambda f: Textarea()],
[lambda f: f.type == 'boolean', lambda f: Checkbox(f.label)],
)
return first(do(field) for cond, do in TYPE_TO_WIDGET if cond(field))
Other common use case is passing to :func:`map` or :func:`lmap`. See last example in :func:`iterate` for such example.
.. function:: second(seq)
Returns the second item in given sequence. Returns ``None`` if there are less than two items in it.
Could come in handy with sequences of pairs, e.g. :meth:`py3:dict.items`. Following code extract values of a dict sorted by keys::
map(second, sorted(some_dict.items()))
And this line constructs an ordered by value dict from a plain one::
OrderedDict(sorted(plain_dict.items(), key=second))
.. function:: nth(n, seq)
Returns nth item in sequence or ``None`` if no one exists. Items are counted from 0, so it's like indexed access but works for iterators. E.g. here is how one can get 6th line of `some_file`::
nth(5, repeatedly(open('some_file').readline))
.. function:: last(seq)
Returns the last item in the sequence. Returns ``None`` if the sequence is empty. Tries to be efficient when sequence supports indexed or reversed access and fallbacks to iterating over it if not.
.. function:: rest(seq)
Skips first item in the sequence, returning iterator starting just after it. A shortcut for :func:`drop(1, seq) <drop>`.
.. function:: butlast(seq)
Returns an iterator of all elements of the sequence but last.
.. function:: ilen(seq)
Calculates length of iterator. Will consume it or hang up if it's infinite.
Especially useful in conjunction with filtering or slicing functions, for example, this way one can find common start length of two strings::
ilen(takewhile(lambda (x, y): x == y, zip(s1, s2)))
Unite
-----
.. function:: concat(*seqs)
lconcat(*seqs)
Concats several sequences into single iterator or list.
:func:`concat` is an alias for :func:`py3:itertools.chain`.
.. function:: cat(seqs)
lcat(seqs)
Concatenates passed sequences. Useful when dealing with sequence of sequences, see :func:`concat` or :func:`lconcat` to join just a few sequences.
Flattening of various nested sequences is most common use::
# Flatten two level deep list
lcat(list_of_lists)
# Get a flat html of errors of a form
errors = cat(inline.errors() for inline in form)
error_text = '<br>'.join(errors)
# Brace expansion on product of sums
# (a + b)(t + pq)x == atx + apqx + btx + bpqx
terms = [['a', 'b'], ['t', 'pq'], ['x']]
lmap(lcat, product(*terms))
# [list('atx'), list('apqx'), list('btx'), list('bpqx')]
:func:`cat` is an alias for :meth:`py3:itertools.chain.from_iterable`.
.. function:: flatten(seq, follow=is_seqcont)
lflatten(seq, follow=is_seqcont)
Flattens arbitrary nested sequence of values and other sequences. ``follow`` argument determines whether to unpack each item. By default it dives into lists, tuples and iterators, see :func:`is_seqcont` for further explanation.
See also :func:`cat` or :func:`lcat` if you need to flatten strictly two-level sequence of sequences.
.. function:: tree_leaves(root, follow=is_seqcont, children=iter)
ltree_leaves(root, follow=is_seqcont, children=iter)
A way to iterate or list over all the tree leaves. E.g. this is how you can list all descendants of a class::
ltree_leaves(Base, children=type.__subclasses__, follow=type.__subclasses__)
.. function:: tree_nodes(root, follow=is_seqcont, children=iter)
ltree_nodes(root, follow=is_seqcont, children=iter)
A way to iterate or list over all the tree nodes. E.g. this is how you can iterate over all classes in hierarchy::
tree_nodes(Base, children=type.__subclasses__, follow=type.__subclasses__)
.. function:: interleave(*seqs)
Returns an iterator yielding first item in each sequence, then second and so on until some sequence ends. Numbers of items taken from all sequences are always equal.
.. function:: interpose(sep, seq)
Returns an iterator yielding elements of ``seq`` separated by ``sep``.
This is like :meth:`py3:str.join` for lists. This code is a part of a translator working with operation node::
def visit_BoolOp(self, node):
# ... do generic visit
node.code = lmapcat(translate, interpose(node.op, node.values))
.. function:: lzip(*seqs, strict=False)
Joins given sequences into a list of tuples of corresponding first, second and later values. Essentially a list version of :func:`py3:zip` for Python 3.
Transform and filter
--------------------
Most of functions in this section support :ref:`extended_fns`. Among other things it allows to rewrite examples using :func:`re_tester` and :func:`re_finder` tighter.
.. function:: map(f, seq)
lmap(f, seq)
Extended versions of :func:`py3:map` and its list version.
.. function:: filter(pred, seq)
lfilter(pred, seq)
Extended versions of :func:`py3:filter` and its list version.
.. function:: remove(pred, seq)
lremove(pred, seq)
Returns an iterator or a list of items of ``seq`` that result in false when passed to ``pred``. The results of this functions complement results of :func:`filter` and :func:`lfilter`.
A handy use is passing :func:`re_tester` result as ``pred``. For example, this code removes any whitespace-only lines from list::
remove(re_tester('^\s+$'), lines)
Note, you can rewrite it shorter using :ref:`extended_fns`::
remove('^\s+$', lines)
.. function:: keep([f], seq)
lkeep([f], seq)
Maps ``seq`` with given function and then filters out falsy elements. Simply removes falsy items when ``f`` is absent. In fact these functions are just handy shortcuts::
keep(f, seq) == filter(bool, map(f, seq))
keep(seq) == filter(bool, seq)
lkeep(f, seq) == lfilter(bool, map(f, seq))
lkeep(seq) == lfilter(bool, seq)
Natural use case for :func:`keep` is data extraction or recognition that could eventually fail::
# Extract numbers from words
lkeep(re_finder(r'\d+'), words)
# Recognize as many colors by name as possible
lkeep(COLOR_BY_NAME.get, color_names)
An iterator version can be useful when you don't need or not sure you need the whole sequence. For example, you can use :func:`first` - :func:`keep` combo to find out first match::
first(keep(COLOR_BY_NAME.get, color_name_candidates))
Alternatively, you can do the same with :func:`some` and :func:`map`.
One argument variant is a simple tool to keep your data free of falsy junk. This one returns non-empty description lines::
keep(description.splitlines())
Other common case is using generator expression instead of mapping function. Consider these two lines::
keep(f.name for f in fields) # sugar generator expression
keep(attrgetter('name'), fields) # pure functions
.. function:: mapcat(f, *seqs)
lmapcat(f, *seqs)
Maps given sequence(s) and then concatenates results, essentially a shortcut for ``cat(map(f, *seqs))``. Come in handy when extracting multiple values from every sequence item or transforming nested sequences::
# Get all the lines of all the texts in single flat list
mapcat(str.splitlines, bunch_of_texts)
# Extract all numbers from strings
mapcat(partial(re_all, r'\d+'), bunch_of_strings)
.. function:: without(seq, *items)
lwithout(seq, *items)
Returns sequence with ``items`` removed, preserves order.
Designed to work with a few ``items``, this allows removing unhashable objects::
non_empty_lists = without(lists, [])
In case of large amount of unwanted elements one can use :func:`remove`::
remove(set(unwanted_elements), seq)
Or simple set difference if order of sequence is irrelevant.
Split and chunk
---------------
.. function:: split(pred, seq)
lsplit(pred, seq)
Splits sequence items which pass predicate from the ones that don't, essentially returning a tuple ``filter(pred, seq), remove(pred, seq)``.
For example, this way one can separate private attributes of an instance from public ones::
private, public = lsplit(re_tester('^_'), dir(instance))
Split absolute and relative urls using extended predicate semantics::
absolute, relative = lsplit(r'^http://', urls)
.. function:: split_at(n, seq)
lsplit_at(n, seq)
Splits sequence at given position, returning a tuple of its start and tail.
.. function:: split_by(pred, seq)
lsplit_by(pred, seq)
Splits start of sequence, consisting of items passing predicate, from the rest of it. Works similar to ``takewhile(pred, seq), dropwhile(pred, seq)``, but works with iterator ``seq`` correctly::
lsplit_by(bool, iter([-2, -1, 0, 1, 2]))
# [-2, -1], [0, 1, 2]
.. function:: takewhile([pred], seq)
Yeilds elements of ``seq`` as long as they pass ``pred``. Stops on first one which makes predicate falsy::
# Extract first paragraph of text
takewhile(re_tester(r'\S'), text.splitlines())
# Build path from node to tree root
takewhile(bool, iterate(attrgetter('parent'), node))
.. function:: dropwhile([pred], seq)
This is a mirror of :func:`takewhile`. Skips elements of given sequence while ``pred`` is true and yields the rest of it::
# Skip leading whitespace-only lines
dropwhile(re_tester('^\s*$'), text_lines)
.. function:: group_by(f, seq)
Groups elements of ``seq`` keyed by the result of ``f``. The value at each key will be a list of the corresponding elements, in the order they appear in ``seq``. Returns :class:`defaultdict(list) <py3:collections.defaultdict>`.
::
stats = group_by(len, ['a', 'ab', 'b'])
stats[1] # -> ['a', 'b']
stats[2] # -> ['ab']
stats[3] # -> [], since stats is defaultdict
One can use :func:`split` when grouping by boolean predicate. See also :func:`py3:itertools.groupby`.
.. function:: group_by_keys(get_keys, seq)
Groups elements of ``seq`` having multiple keys each into :class:`defaultdict(list) <py3:collections.defaultdict>`. Can be used to reverse grouping::
posts_by_tag = group_by_keys(attrgetter('tags'), posts)
sentences_with_word = group_by_keys(str.split, sentences)
.. function:: group_values(seq)
Groups values of ``(key, value)`` pairs. May think of it like ``dict()`` but collecting collisions:
::
group_values(keep(r'^--(\w+)=(.+)', sys.argv))
.. function:: partition(n, [step], seq)
lpartition(n, [step], seq)
Iterates or lists over partitions of ``n`` items, at offsets ``step`` apart. If ``step`` is not supplied, defaults to ``n``, i.e. the partitions do not overlap. Returns only full length-``n`` partitions, in case there are not enough elements for last partition they are ignored.
Most common use is deflattening data::
# Make a dict from flat list of pairs
dict(partition(2, flat_list_of_pairs))
# Structure user credentials
{id: (name, password) for id, name, password in partition(3, users)}
A three argument variant of :func:`partition` can be used to process sequence items in context of their neighbors::
# Smooth data by averaging out with a sliding window
[sum(window) / n for window in partition(n, 1, data_points)]
Also look at :func:`pairwise` for similar use. Other use of :func:`partition` is processing sequence of data elements or jobs in chunks, but take a look at :func:`chunks` for that.
.. function:: chunks(n, [step], seq)
lchunks(n, [step], seq)
Like :func:`partition`, but may include partitions with fewer than ``n`` items at the end::
chunks(2, 'abcde')
# -> 'ab', 'cd', 'e'
chunks(2, 4, 'abcde')
# -> 'ab', 'e'
Handy for batch processing.
.. function:: partition_by(f, seq)
lpartition_by(f, seq)
Partition ``seq`` into list of lists or iterator of iterators splitting at ``f(item)`` change.
Data handling
-------------
.. function:: distinct(seq, key=identity)
ldistinct(seq, key=identity)
Returns unique items of the sequence with order preserved. If ``key`` is supplied then distinguishes values by comparing their keys.
.. note:: Elements of a sequence or their keys should be hashable.
.. function:: with_prev(seq, fill=None)
Returns an iterator of a pair of each item with one preceding it. Yields `fill` or `None` as preceding element for first item.
Great for getting rid of clunky ``prev`` housekeeping in for loops. This way one can indent first line of each paragraph while printing text::
for line, prev in with_prev(text.splitlines()):
if not prev:
print ' ',
print line
Use :func:`pairwise` to iterate only on full pairs.
.. function:: with_next(seq, fill=None)
Returns an iterator of a pair of each item with one next to it. Yields `fill` or `None` as next element for last item. See also :func:`with_prev` and :func:`pairwise`.
.. function:: pairwise(seq)
Yields pairs of items in ``seq`` like ``(item0, item1), (item1, item2), ...``. A great way to process sequence items in a context of each neighbor::
# Check if seq is non-descending
all(left <= right for left, right in pairwise(seq))
.. function:: count_by(f, seq)
Counts numbers of occurrences of values of ``f`` on elements of ``seq``. Returns :class:`defaultdict(int) <py3:collections.defaultdict>` of counts.
Calculating a histogram is one common use::
# Get a length histogram of given words
count_by(len, words)
.. function:: count_reps(seq)
Counts number of repetitions of each value in ``seq``. Returns :class:`defaultdict(int) <py3:collections.defaultdict>` of counts. This is faster and shorter alternative to ``count_by(identity, ...)``
.. function:: reductions(f, seq, [acc])
lreductions(f, seq, [acc])
Returns a sequence of the intermediate values of the reduction of ``seq`` by ``f``. In other words it yields a sequence like::
reduce(f, seq[:1], [acc]), reduce(f, seq[:2], [acc]), ...
You can use :func:`sums` or :func:`lsums` for a common use of getting list of partial sums.
.. function:: sums(seq, [acc])
lsums(seq, [acc])
Same as :func:`reductions` or :func:`lreductions` with reduce function fixed to addition.
Find out which straw will break camels back::
first(i for i, total in enumerate(sums(straw_weights))
if total > camel_toughness)
.. raw:: html
:file: descriptions.html
|