1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
from __future__ import print_function
import sys
from functools import total_ordering
import re
import itertools as it
try:
izip = it.izip
except AttributeError:
izip = zip
basestring = str
old_snpeff_effect_so = {'CDS': 'coding_sequence_variant',
'CODON_CHANGE': 'coding_sequence_variant',
'CODON_CHANGE_PLUS_CODON_DELETION': 'disruptive_inframe_deletion',
'CODON_CHANGE_PLUS_CODON_INSERTION': 'disruptive_inframe_insertion',
'CODON_DELETION': 'inframe_deletion',
'CODON_INSERTION': 'inframe_insertion',
'DOWNSTREAM': 'downstream_gene_variant',
'EXON': 'exon_variant',
'EXON_DELETED': 'exon_loss_variant',
'FRAME_SHIFT': 'frameshift_variant',
'GENE': 'gene_variant',
'INTERGENIC': 'intergenic_variant',
'INTERGENIC_REGION': 'intergenic_region',
'INTERGENIC_CONSERVED': 'conserved_intergenic_variant',
'INTRAGENIC': 'intragenic_variant',
'INTRON': 'intron_variant',
'INTRON_CONSERVED': 'conserved_intron_variant',
'NON_SYNONYMOUS_CODING': 'missense_variant',
'RARE_AMINO_ACID': 'rare_amino_acid_variant',
'SPLICE_SITE_ACCEPTOR': 'splice_acceptor_variant',
'SPLICE_SITE_DONOR': 'splice_donor_variant',
'SPLICE_SITE_REGION': 'splice_region_variant',
#'START_GAINED': '5_prime_UTR_premature_start_codon_gain_variant',
'START_GAINED': '5_prime_UTR_premature_start_codon_variant',
'START_LOST': 'start_lost',
'STOP_GAINED': 'stop_gained',
'STOP_LOST': 'stop_lost',
'SYNONYMOUS_CODING': 'synonymous_variant',
'SYNONYMOUS_START': 'start_retained_variant',
'SYNONYMOUS_STOP': 'stop_retained_variant',
'TRANSCRIPT': 'transcript_variant',
'UPSTREAM': 'upstream_gene_variant',
'UTR_3_DELETED': '3_prime_UTR_truncation_+_exon_loss_variant',
'UTR_3_PRIME': '3_prime_UTR_variant',
'UTR_5_DELETED': '5_prime_UTR_truncation_+_exon_loss_variant',
'UTR_5_PRIME': '5_prime_UTR_variant',
'NON_SYNONYMOUS_START': 'initiator_codon_variant',
'NONE': 'None',
'CHROMOSOME_LARGE_DELETION': 'chromosomal_deletion'}
old_snpeff_lookup = {'CDS': 'LOW',
'CHROMOSOME_LARGE_DELETION': 'HIGH',
'CODON_CHANGE': 'MED',
'CODON_CHANGE_PLUS_CODON_DELETION': 'MED',
'CODON_CHANGE_PLUS_CODON_INSERTION': 'MED',
'CODON_DELETION': 'MED',
'CODON_INSERTION': 'MED',
'DOWNSTREAM': 'LOW',
'EXON': 'LOW',
'EXON_DELETED': 'HIGH',
'FRAME_SHIFT': 'HIGH',
'GENE': 'LOW',
'INTERGENIC': 'LOW',
'INTERGENIC_CONSERVED': 'LOW',
'INTRAGENIC': 'LOW',
'INTRON': 'LOW',
'INTRON_CONSERVED': 'LOW',
'NONE': 'LOW',
'NON_SYNONYMOUS_CODING': 'MED',
'NON_SYNONYMOUS_START': 'HIGH',
'RARE_AMINO_ACID': 'HIGH',
'SPLICE_SITE_ACCEPTOR': 'HIGH',
'SPLICE_SITE_DONOR': 'HIGH',
'SPLICE_SITE_REGION': 'MED',
'START_GAINED': 'LOW',
'START_LOST': 'HIGH',
'STOP_GAINED': 'HIGH',
'STOP_LOST': 'HIGH',
'SYNONYMOUS_CODING': 'LOW',
'SYNONYMOUS_START': 'LOW',
'SYNONYMOUS_STOP': 'LOW',
'TRANSCRIPT': 'LOW',
'UPSTREAM': 'LOW',
'UTR_3_DELETED': 'MED',
'UTR_3_PRIME': 'LOW',
'UTR_5_DELETED': 'MED',
'UTR_5_PRIME': 'LOW'}
# http://uswest.ensembl.org/info/genome/variation/predicted_data.html#consequences
IMPACT_SEVERITY = [
('chromosome_number_variation', 'HIGH'), # snpEff
('transcript_ablation', 'HIGH'), # VEP
('exon_loss_variant', 'HIGH'), # snpEff
('exon_loss', 'HIGH'), # snpEff
('rare_amino_acid_variant', 'HIGH'),
('protein_protein_contact', 'HIGH'), # snpEff
('structural_interaction_variant', 'HIGH'), #snpEff
('feature_fusion', 'HIGH'), #snpEff
('bidirectional_gene_fusion', 'HIGH'), #snpEff
('gene_fusion', 'HIGH'), #snpEff
('feature_ablation', 'HIGH'), #snpEff, structural varint
('splice_acceptor_variant', 'HIGH'), # VEP
('splice_donor_variant', 'HIGH'), # VEP
('start_retained_variant', 'HIGH'), # new VEP
('stop_gained', 'HIGH'), # VEP
('frameshift_variant', 'HIGH'), # VEP
('stop_lost', 'HIGH'), # VEP
('start_lost', 'HIGH'), # VEP
('transcript_amplification', 'HIGH'), # VEP
('disruptive_inframe_deletion', 'MED'), #snpEff
('conservative_inframe_deletion', 'MED'), #snpEff
('disruptive_inframe_insertion', 'MED'), #snpEff
('conservative_inframe_insertion', 'MED'), #snpEff
('duplication', 'MED'), # snpEff, structural variant
('inversion', 'MED'), # snpEff, structural variant
('exon_region', 'MED'), # snpEff, structural variant
('inframe_insertion', 'MED'), # VEP
('inframe_deletion', 'MED'), # VEP
('missense_variant', 'MED'), # VEP
('protein_altering_variant', 'MED'), # VEP
('initiator_codon_variant', 'MED'), # snpEff
('regulatory_region_ablation', 'MED'), # VEP
('5_prime_UTR_truncation', 'MED'), # found in snpEff
('splice_region_variant', 'MED'), # VEP changed to have medium priority
('3_prime_UTR_truncation', 'LOW'), # found in snpEff
('non_canonical_start_codon', 'LOW'), # found in snpEff
('synonymous_variant', 'LOW'), # VEP
('coding_sequence_variant', 'LOW'), # VEP
('incomplete_terminal_codon_variant', 'LOW'), # VEP
('stop_retained_variant', 'LOW'), # VEP
('mature_miRNA_variant', 'LOW'), # VEP
('5_prime_UTR_premature_start_codon_variant', 'LOW'), # snpEff
('5_prime_UTR_premature_start_codon_gain_variant', 'LOW'), #snpEff
('5_prime_UTR_variant', 'LOW'), # VEP
('3_prime_UTR_variant', 'LOW'), # VEP
('non_coding_transcript_exon_variant', 'LOW'), # VEP
('conserved_intron_variant', 'LOW'), # snpEff
('intron_variant', 'LOW'), # VEP
('exon_variant', 'LOW'), # snpEff
('gene_variant', 'LOW'), # snpEff
('NMD_transcript_variant', 'LOW'), # VEP
('non_coding_transcript_variant', 'LOW'), # VEP
('upstream_gene_variant', 'LOW'), # VEP
('downstream_gene_variant', 'LOW'), # VEP
('TFBS_ablation', 'LOW'), # VEP
('TFBS_amplification', 'LOW'), # VEP
('TF_binding_site_variant', 'LOW'), # VEP
('regulatory_region_amplification', 'LOW'), # VEP
('feature_elongation', 'LOW'), # VEP
('miRNA', 'LOW'), # snpEff
('transcript_variant', 'LOW'), # snpEff
('start_retained', 'LOW'), # snpEff
('regulatory_region_variant', 'LOW'), # VEP
('feature_truncation', 'LOW'), # VEP
('non_coding_exon_variant', 'LOW'),
('nc_transcript_variant', 'LOW'),
('conserved_intergenic_variant', 'LOW'), # snpEff
('intergenic_variant', 'LOW'), # VEP
('intergenic_region', 'LOW'), # snpEff
('intragenic_variant', 'LOW'), # snpEff
('non_coding_transcript_exon_variant', 'LOW'), # snpEff
('non_coding_transcript_variant', 'LOW'), # snpEff
('transcript', 'LOW'), # ? snpEff older
('sequence_feature', 'LOW'), # snpEff older
('non_coding', 'LOW'), # BCSQ
('?', 'UNKNOWN'), # some VEP annotations have '?'
('', 'UNKNOWN'), # some VEP annotations have ''
('UNKNOWN', 'UNKNOWN'), # some snpEFF annotations have 'unknown'
]
# bcftools doesn't add _variant on the end.
for (csq, imp) in list(IMPACT_SEVERITY[::-1]):
if csq.endswith('_variant'):
for i, (a, b) in enumerate(IMPACT_SEVERITY):
if (a, b) == (csq, imp):
IMPACT_SEVERITY.insert(i, (csq[:-8].lower(), imp))
break
IMPACT_SEVERITY_ORDER = dict((x[0], i) for i, x in enumerate(IMPACT_SEVERITY[::-1]))
IMPACT_SEVERITY = dict(IMPACT_SEVERITY)
EXONIC_IMPACTS = set(["stop_gained",
"exon_variant",
"stop_lost",
"frameshift_variant",
"initiator_codon_variant",
"inframe_deletion",
"inframe_insertion",
"missense_variant",
"protein_altering_variant",
"incomplete_terminal_codon_variant",
"stop_retained_variant",
"5_prime_UTR_premature_start_codon_variant",
"synonymous_variant",
"coding_sequence_variant",
"5_prime_UTR_variant",
"3_prime_UTR_variant",
"transcript_ablation",
"transcript_amplification",
"feature_elongation",
"feature_truncation"])
for im in list(EXONIC_IMPACTS):
if im.endswith("_variant"):
EXONIC_IMPACTS.add(im[:-8])
EXONIC_IMPACTS = frozenset(EXONIC_IMPACTS)
def snpeff_aa_length(self):
try:
v = self.effects['AA.pos / AA.length']
if v.strip():
return int(v.split("/")[1].strip())
except:
try:
return int(self.effects['Amino_Acid_length'])
except:
return None
def vep_aa_length(self):
if not 'Protein_position' in self.effects:
return None
try:
return int(self.effects['Protein_position'])
except ValueError:
try:
return self.effects['Protein_position']
except KeyError:
return None
def vep_polyphen_pred(self):
try:
return self.effects['PolyPhen'].split('(')[0]
except (KeyError, IndexError):
return None
def vep_polyphen_score(self):
try:
return float(self.effects['PolyPhen'].split('(')[1][:-1])
except (KeyError, IndexError):
return None
def vep_sift_score(self):
try:
return float(self.effects['SIFT'].split("(")[1][:-1])
except (IndexError, KeyError):
return None
def vep_sift_pred(self):
try:
return self.effects['SIFT'].split("(")[0]
except (IndexError, KeyError):
return None
snpeff_lookup = {
'transcript': ['Feature_ID', 'Transcript_ID', 'Transcript'],
'gene': 'Gene_Name',
'exon': ['Rank', 'Exon', 'Exon_Rank'],
'codon_change': ['HGVS.c', 'Codon_Change'],
'aa_change': ['HGVS.p', 'Amino_Acid_Change', 'Amino_Acid_change'],
'aa_length': snpeff_aa_length,
'biotype': ['Transcript_BioType', 'Gene_BioType'],
'alt': 'Allele',
}
bcft_lookup = {}
vep_lookup = {
'transcript': 'Feature',
'gene': ['SYMBOL', 'HGNC', 'Gene'],
'ensembl_gene_id': 'Gene',
'exon': 'EXON',
'codon_change': 'Codons',
'aa_change': 'Amino_acids',
'aa_length': vep_aa_length,
'biotype': 'BIOTYPE',
'polyphen_pred': vep_polyphen_pred,
'polyphen_score': vep_polyphen_score,
'sift_pred': vep_sift_pred,
'sift_score': vep_sift_score,
'alt': 'ALLELE',
}
# lookup here instead of returning ''.
defaults = {'gene': None}
@total_ordering
class Effect(object):
_top_consequence = None
lookup = None
def __init__(self, key, effect_dict, keys, prioritize_canonical):
raise NotImplemented
@classmethod
def new(self, key, effect_dict, keys):
lookup = {"CSQ": VEP, "ANN": SnpEff, "EFF": OldSnpEff, "BCSQ": BCFT}
assert key in lookup
return lookup[key](effect_dict, keys)
@property
def is_exonic(self):
return self.top_consequence in EXONIC_IMPACTS
def unused(self):
return []
@property
def top_consequence(self):
# sort by order and return the top
if self._top_consequence is None:
self._top_consequence = sorted([(IMPACT_SEVERITY_ORDER.get(c, 0), c) for c in
self.consequences], reverse=True)[0][1]
return self._top_consequence
@property
def so(self):
return self.top_consequence
@property
def is_coding(self):
return self.biotype == "protein_coding" and self.is_exonic and ("_UTR_" not in self.top_consequence)
@property
def is_splicing(self):
return "splice" in self.top_consequence
@property
def is_lof(self):
return self.biotype == "protein_coding" and self.impact_severity == "HIGH"
def __le__(self, other):
# we sort so that the effects with the highest impacts come last
# (highest) and so, we:
# + return true if self has lower impact than other.
# + return false if self has higher impact than other.
self_has_lower_impact = True
self_has_higher_impact = False
if self.prioritize_canonical:
scanon, ocanon = self.is_canonical, other.is_canonical
if scanon and not ocanon:
return self_has_higher_impact
elif ocanon and not scanon:
return self_has_lower_impact
spg = self.is_pseudogene
opg = other.is_pseudogene
if spg and not opg:
return self_has_lower_impact
elif opg and not spg:
return self_has_higher_impact
sc, oc = self.coding, other.coding
if sc and not oc:
# other is not coding. is is splicing?
# if other is splicing, we have lower impact.
if not (self.is_splicing or other.is_splicing):
return self_has_higher_impact
elif oc and not sc:
# self. is not coding. is it splicing?
# if self is splicing it has higher impact
if not (self.is_splicing or other.is_splicing):
return self_has_lower_impact
if self.severity != other.severity:
return self.severity <= other.severity
if self.biotype == "protein_coding" and not other.biotype == "protein_coding":
return False
elif other.biotype == "protein_coding" and not self.biotype == "protein_coding":
return True
if self.biotype == "processed_transcript" and not other.biotype == "processed_transcript":
return False
elif other.biotype == "processed_transcript" and not self.biotype == "processed_transcript":
return True
# sift higher == more damaing
if (self.sift_value or 10000) < (other.sift_value or 10000):
return True
# polyphen, lower == more damaging
if (self.polyphen_value or -10000) > (other.polyphen_value or -10000):
return True
return max(IMPACT_SEVERITY_ORDER.get(c, 0) for c in self.consequences) <= \
max(IMPACT_SEVERITY_ORDER.get(co, 0) for co in other.consequences)
@classmethod
def top_severity(cls, effects):
for i, e in enumerate(effects):
if isinstance(e, basestring):
effects[i] = cls(e)
if len(effects) == 0:
return None
if len(effects) == 1:
return effects[0]
effects = sorted(effects)
if effects[-1] > effects[-2]:
return effects[-1]
ret = [effects[-1], effects[-2]]
for i in range(-3, -(len(effects) - 1), -1):
if effects[-1] > effects[i]: break
ret.append(effects[i])
return ret
def __getitem__(self, key):
return self.effects[key]
def __eq__(self, other):
if not isinstance(other, Effect): return False
return self.effect_string == other.effect_string
def __str__(self):
return repr(self)
def __repr__(self):
return "%s(%s-%s, %s)" % (self.__class__.__name__, self.gene,
self.consequence, self.impact_severity)
@property
def effect_severity(self):
return self.impact_severity
@property
def lof(self):
return self.biotype == "protein_coding" and self.impact_severity == "HIGH"
@property
def severity(self, lookup={'HIGH': 3, 'MED': 2, 'LOW': 1, 'UNKNOWN': 0}, sev=IMPACT_SEVERITY):
# higher is more severe. used for ordering.
try:
v = max(lookup[sev[csq]] for csq in self.consequences)
except KeyError:
v = 0
if v == 0:
excl = []
for i, c in [(i, c) for i, c in enumerate(self.consequences) if not c in sev]:
sys.stderr.write("WARNING: unknown severity for '%s' with effect '%s'\n" % (self.effect_string, c))
sys.stderr.write("Please report this on github with the effect-string above\n")
excl.append(i)
if len(excl) == len(self.consequences):
v = 1
else:
v = max(lookup[sev[csq]] for i, csq in enumerate(self.consequences) if not i in excl)
return max(v, 1)
@property
def impact_severity(self):
return ['xxx', 'LOW', 'MED', 'HIGH'][self.severity]
@property
def consequence(self):
return self.top_consequence
@property
def is_pseudogene(self): #bool
return self.biotype is not None and 'pseudogene' in self.biotype
def __getattr__(self, k):
v = self.lookup.get(k)
if v is None: return v
if isinstance(v, basestring):
ret = self.effects.get(v)
# if we didnt get value, there may be a column
# specific value stored in defaults so we look import
# up.
if not ret and ret is not False:
return defaults.get(k, '')
return ret
elif isinstance(v, list):
for key in v:
try:
return self.effects[key]
except KeyError:
continue
return defaults.get(k, '')
return v(self)
class BCFT(Effect):
__slots__ = ('effect_string', 'effects', 'biotype', 'gene', 'transcript', 'aa_change', 'dna_change')
keys = "consequence,gene,transcript,biotype,strand,amino_acid_change,dna_change".split(",")
lookup = bcft_lookup
def __init__(self, effect_string, keys=None, prioritize_canonical=False):
if keys is not None: self.keys = keys
self.effect_string = effect_string
self.effects = dict(izip(self.keys, (x.strip().replace(' ', '_') for x in effect_string.split("|"))))
self.biotype = self.effects.get('biotype', None)
self.transcript = self.effects.get('transcript', None)
self.gene = self.effects.get('gene', None)
self.aa_change = self.effects.get('amino_acid_change', None)
self.consequences = self.effects[self.keys[0]].split('&')
def unused(self, used=frozenset("csq|gene|transcript|biotype|strand|aa_change|dna_change".lower().split("|"))):
"""Return fields that were in the VCF but weren't utilized as part of the standard fields supported here."""
return [k for k in self.keys if not k.lower() in used]
@property
def exonic(self):
return self.biotype == "protein_coding" and any(csq in EXONIC_IMPACTS for csq in self.consequences)
@property
def coding(self):
# what about start/stop_gained?
return self.exonic and any(csq[1:] != "_prime_utr" for csq in self.consequences)
class VEP(Effect):
__slots__ = ('effect_string', 'effects', 'biotype')
keys = "Consequence|Codons|Amino_acids|Gene|SYMBOL|Feature|EXON|PolyPhen|SIFT|Protein_position|BIOTYPE|CANONICAL".split("|")
lookup = vep_lookup
def __init__(self, effect_string, keys=None, checks=True, prioritize_canonical=False):
if checks:
assert not "," in effect_string
assert not "=" in effect_string
self.effect_string = effect_string
if keys is not None: self.keys = keys
self.effect_string = effect_string
self.effects = dict(izip(self.keys, (x.strip() for x in effect_string.split("|"))))
self.biotype = self.effects.get('BIOTYPE', None)
self.prioritize_canonical = prioritize_canonical
@property
def consequences(self, _cache={}):
try:
# this is a bottleneck so we keep a cache
return _cache[self.effects['Consequence']]
except KeyError:
res = _cache[self.effects['Consequence']] = list(it.chain.from_iterable(x.split("+") for x in self.effects['Consequence'].split('&')))
return res
def unused(self, used=frozenset("Consequence|Codons|Amino_acids|Gene|SYMBOL|Feature|EXON|PolyPhen|SIFT|Protein_position|BIOTYPE|CANONICAL".lower().split("|"))):
"""Return fields that were in the VCF but weren't utilized as part of the standard fields supported here."""
return [k for k in self.keys if not k.lower() in used]
@property
def coding(self):
# what about start/stop_gained?
return self.exonic and any(csq[1:] != "_prime_UTR_variant" for csq in self.consequences)
@property
def exonic(self):
return self.biotype == "protein_coding" and any(csq in EXONIC_IMPACTS for csq in self.consequences)
@property
def is_canonical(self):
return self.effects.get("CANONICAL", "") != ""
class SnpEff(Effect):
lookup = snpeff_lookup
__slots__ = ('effects', 'effect_string', 'biotype')
keys = [x.strip() for x in 'Allele | Annotation | Annotation_Impact | Gene_Name | Gene_ID | Feature_Type | Feature_ID | Transcript_BioType | Rank | HGVS.c | HGVS.p | cDNA.pos / cDNA.length | CDS.pos / CDS.length | AA.pos / AA.length | Distance | ERRORS / WARNINGS / INFO'.split("|")]
def __init__(self, effect_string, keys=None, prioritize_canonical=False):
assert not "," in effect_string
assert not "=" == effect_string[3]
self.effect_string = effect_string
if keys is not None:
self.keys = keys
self.effects = dict(izip(self.keys, (x.strip() for x in effect_string.split("|", len(self.keys)))))
self.biotype = self.effects['Transcript_BioType']
@property
def consequences(self):
return list(it.chain.from_iterable(x.split("+") for x in self.effects['Annotation'].split('&')))
@property
def coding(self):
# TODO: check start_gained and utr
return self.exonic and not "utr" in self.consequence and not "start_gained" in self.consequence
@property
def exonic(self):
csqs = self.consequence
if isinstance(csqs, basestring):
csqs = [csqs]
return any(csq in EXONIC_IMPACTS for csq in csqs) and self.effects['Transcript_BioType'] == 'protein_coding'
class OldSnpEff(SnpEff):
keys = [x.strip() for x in "Effect | Effect_Impact | Functional_Class | Codon_Change | Amino_Acid_change| Amino_Acid_length | Gene_Name | Gene_BioType | Coding | Transcript | Exon | ERRORS | WARNINGS".split("|")]
def __init__(self, effect_string, keys=None, _patt=re.compile(r"\||\("),
prioritize_canonical=False):
assert not "," in effect_string
assert not "=" in effect_string
effect_string = effect_string.rstrip(")")
self.effect_string = effect_string
if keys is not None:
self.keys = keys
self.effects = dict(izip(self.keys, (x.strip() for x in _patt.split(effect_string))))
@property
def consequence(self):
if '&' in self.effects['Effect']:
return self.effects['Effect'].split('&')
return self.effects['Effect']
@property
def consequences(self):
try:
return [old_snpeff_effect_so.get(c, old_snpeff_effect_so[c.upper()]) for c in it.chain.from_iterable(x.split("+") for x in
self.effects['Effect'].split('&'))]
except KeyError:
return list(it.chain.from_iterable(x.split("+") for x in self.effects['Effect'].split('&')))
@property
def severity(self, lookup={'HIGH': 3, 'MED': 2, 'LOW': 1}):
# higher is more severe. used for ordering.
try:
return max(lookup[old_snpeff_lookup[csq]] for csq in self.consequences)
except KeyError:
try:
#in between
sevs = [IMPACT_SEVERITY.get(csq, "LOW") for csq in self.consequences]
return max(lookup[s] for s in sevs)
except KeyError:
return Effect.severity.fget(self)
@property
def is_lof(self):
return self.biotype == "protein_coding" and self.impact_severity == "HIGH"
|