File: geodesic.py

package info (click to toggle)
python-geographiclib 2.1-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 276 kB
  • sloc: python: 2,127; makefile: 5
file content (1292 lines) | stat: -rw-r--r-- 50,469 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
"""Define the :class:`~geographiclib.geodesic.Geodesic` class

The ellipsoid parameters are defined by the constructor.  The direct and
inverse geodesic problems are solved by

  * :meth:`~geographiclib.geodesic.Geodesic.Inverse` Solve the inverse
    geodesic problem
  * :meth:`~geographiclib.geodesic.Geodesic.Direct` Solve the direct
    geodesic problem
  * :meth:`~geographiclib.geodesic.Geodesic.ArcDirect` Solve the direct
    geodesic problem in terms of spherical arc length

:class:`~geographiclib.geodesicline.GeodesicLine` objects can be created
with

  * :meth:`~geographiclib.geodesic.Geodesic.Line`
  * :meth:`~geographiclib.geodesic.Geodesic.DirectLine`
  * :meth:`~geographiclib.geodesic.Geodesic.ArcDirectLine`
  * :meth:`~geographiclib.geodesic.Geodesic.InverseLine`

:class:`~geographiclib.polygonarea.PolygonArea` objects can be created
with

  * :meth:`~geographiclib.geodesic.Geodesic.Polygon`

The public attributes for this class are

  * :attr:`~geographiclib.geodesic.Geodesic.a`
    :attr:`~geographiclib.geodesic.Geodesic.f`

*outmask* and *caps* bit masks are

  * :const:`~geographiclib.geodesic.Geodesic.EMPTY`
  * :const:`~geographiclib.geodesic.Geodesic.LATITUDE`
  * :const:`~geographiclib.geodesic.Geodesic.LONGITUDE`
  * :const:`~geographiclib.geodesic.Geodesic.AZIMUTH`
  * :const:`~geographiclib.geodesic.Geodesic.DISTANCE`
  * :const:`~geographiclib.geodesic.Geodesic.STANDARD`
  * :const:`~geographiclib.geodesic.Geodesic.DISTANCE_IN`
  * :const:`~geographiclib.geodesic.Geodesic.REDUCEDLENGTH`
  * :const:`~geographiclib.geodesic.Geodesic.GEODESICSCALE`
  * :const:`~geographiclib.geodesic.Geodesic.AREA`
  * :const:`~geographiclib.geodesic.Geodesic.ALL`
  * :const:`~geographiclib.geodesic.Geodesic.LONG_UNROLL`

:Example:

    >>> from geographiclib.geodesic import Geodesic
    >>> # The geodesic inverse problem
    ... Geodesic.WGS84.Inverse(-41.32, 174.81, 40.96, -5.50)
    {'lat1': -41.32,
     'a12': 179.6197069334283,
     's12': 19959679.26735382,
     'lat2': 40.96,
     'azi2': 18.825195123248392,
     'azi1': 161.06766998615882,
     'lon1': 174.81,
     'lon2': -5.5}

"""
# geodesic.py
#
# This is a rather literal translation of the GeographicLib::Geodesic class to
# python.  See the documentation for the C++ class for more information at
#
#    https://geographiclib.sourceforge.io/C++/doc/annotated.html
#
# The algorithms are derived in
#
#    Charles F. F. Karney,
#    Algorithms for geodesics, J. Geodesy 87, 43-55 (2013),
#    https://doi.org/10.1007/s00190-012-0578-z
#    Addenda: https://geographiclib.sourceforge.io/geod-addenda.html
#
# Copyright (c) Charles Karney (2011-2022) <karney@alum.mit.edu> and licensed
# under the MIT/X11 License.  For more information, see
# https://geographiclib.sourceforge.io/
######################################################################

import math
import sys
from geographiclib.geomath import Math
from geographiclib.constants import Constants
from geographiclib.geodesiccapability import GeodesicCapability

class Geodesic:
  """Solve geodesic problems"""

  WGS84: "Geodesic"
  GEOGRAPHICLIB_GEODESIC_ORDER = 6
  nA1_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nC1_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nC1p_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nA2_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nC2_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nA3_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nA3x_ = nA3_
  nC3_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nC3x_ = (nC3_ * (nC3_ - 1)) // 2
  nC4_ = GEOGRAPHICLIB_GEODESIC_ORDER
  nC4x_ = (nC4_ * (nC4_ + 1)) // 2
  maxit1_ = 20
  maxit2_ = maxit1_ + sys.float_info.mant_dig + 10

  tiny_ = math.sqrt(sys.float_info.min)
  tol0_ = sys.float_info.epsilon
  tol1_ = 200 * tol0_
  tol2_ = math.sqrt(tol0_)
  tolb_ = tol0_
  xthresh_ = 1000 * tol2_

  CAP_NONE = GeodesicCapability.CAP_NONE
  CAP_C1   = GeodesicCapability.CAP_C1
  CAP_C1p  = GeodesicCapability.CAP_C1p
  CAP_C2   = GeodesicCapability.CAP_C2
  CAP_C3   = GeodesicCapability.CAP_C3
  CAP_C4   = GeodesicCapability.CAP_C4
  CAP_ALL  = GeodesicCapability.CAP_ALL
  CAP_MASK = GeodesicCapability.CAP_MASK
  OUT_ALL  = GeodesicCapability.OUT_ALL
  OUT_MASK = GeodesicCapability.OUT_MASK

  @staticmethod
  def _SinCosSeries(sinp, sinx, cosx, c):
    """Private: Evaluate a trig series using Clenshaw summation."""
    # Evaluate
    # y = sinp ? sum(c[i] * sin( 2*i    * x), i, 1, n) :
    #            sum(c[i] * cos((2*i+1) * x), i, 0, n-1)
    # using Clenshaw summation.  N.B. c[0] is unused for sin series
    # Approx operation count = (n + 5) mult and (2 * n + 2) add
    k = len(c)                  # Point to one beyond last element
    n = k - sinp
    ar = 2 * (cosx - sinx) * (cosx + sinx) # 2 * cos(2 * x)
    y1 = 0                                 # accumulators for sum
    if n & 1:
      k -= 1; y0 = c[k]
    else:
      y0 = 0
    # Now n is even
    n = n // 2
    while n:                    # while n--:
      n -= 1
      # Unroll loop x 2, so accumulators return to their original role
      k -= 1; y1 = ar * y0 - y1 + c[k]
      k -= 1; y0 = ar * y1 - y0 + c[k]
    return ( 2 * sinx * cosx * y0 if sinp # sin(2 * x) * y0
             else cosx * (y0 - y1) )      # cos(x) * (y0 - y1)

  @staticmethod
  def _Astroid(x, y):
    """Private: solve astroid equation."""
    # Solve k^4+2*k^3-(x^2+y^2-1)*k^2-2*y^2*k-y^2 = 0 for positive root k.
    # This solution is adapted from Geocentric::Reverse.
    p = Math.sq(x)
    q = Math.sq(y)
    r = (p + q - 1) / 6
    if not(q == 0 and r <= 0):
      # Avoid possible division by zero when r = 0 by multiplying equations
      # for s and t by r^3 and r, resp.
      S = p * q / 4            # S = r^3 * s
      r2 = Math.sq(r)
      r3 = r * r2
      # The discriminant of the quadratic equation for T3.  This is zero on
      # the evolute curve p^(1/3)+q^(1/3) = 1
      disc = S * (S + 2 * r3)
      u = r
      if disc >= 0:
        T3 = S + r3
        # Pick the sign on the sqrt to maximize abs(T3).  This minimizes loss
        # of precision due to cancellation.  The result is unchanged because
        # of the way the T is used in definition of u.
        T3 += -math.sqrt(disc) if T3 < 0 else math.sqrt(disc) # T3 = (r * t)^3
        # N.B. cbrt always returns the real root.  cbrt(-8) = -2.
        T = Math.cbrt(T3)       # T = r * t
        # T can be zero; but then r2 / T -> 0.
        u += T + (r2 / T if T != 0 else 0)
      else:
        # T is complex, but the way u is defined the result is real.
        ang = math.atan2(math.sqrt(-disc), -(S + r3))
        # There are three possible cube roots.  We choose the root which
        # avoids cancellation.  Note that disc < 0 implies that r < 0.
        u += 2 * r * math.cos(ang / 3)
      v = math.sqrt(Math.sq(u) + q) # guaranteed positive
      # Avoid loss of accuracy when u < 0.
      uv = q / (v - u) if u < 0 else u + v # u+v, guaranteed positive
      w = (uv - q) / (2 * v)               # positive?
      # Rearrange expression for k to avoid loss of accuracy due to
      # subtraction.  Division by 0 not possible because uv > 0, w >= 0.
      k = uv / (math.sqrt(uv + Math.sq(w)) + w) # guaranteed positive
    else:                                       # q == 0 && r <= 0
      # y = 0 with |x| <= 1.  Handle this case directly.
      # for y small, positive root is k = abs(y)/sqrt(1-x^2)
      k = 0
    return k

  @staticmethod
  def _A1m1f(eps):
    """Private: return A1-1."""
    coeff = [
      1, 4, 64, 0, 256,
    ]
    m = Geodesic.nA1_//2
    t = Math.polyval(m, coeff, 0, Math.sq(eps)) / coeff[m + 1]
    return (t + eps) / (1 - eps)

  @staticmethod
  def _C1f(eps, c):
    """Private: return C1."""
    coeff = [
      -1, 6, -16, 32,
      -9, 64, -128, 2048,
      9, -16, 768,
      3, -5, 512,
      -7, 1280,
      -7, 2048,
    ]
    eps2 = Math.sq(eps)
    d = eps
    o = 0
    for l in range(1, Geodesic.nC1_ + 1): # l is index of C1p[l]
      m = (Geodesic.nC1_ - l) // 2        # order of polynomial in eps^2
      c[l] = d * Math.polyval(m, coeff, o, eps2) / coeff[o + m + 1]
      o += m + 2
      d *= eps

  @staticmethod
  def _C1pf(eps, c):
    """Private: return C1'"""
    coeff = [
      205, -432, 768, 1536,
      4005, -4736, 3840, 12288,
      -225, 116, 384,
      -7173, 2695, 7680,
      3467, 7680,
      38081, 61440,
    ]
    eps2 = Math.sq(eps)
    d = eps
    o = 0
    for l in range(1, Geodesic.nC1p_ + 1): # l is index of C1p[l]
      m = (Geodesic.nC1p_ - l) // 2 # order of polynomial in eps^2
      c[l] = d * Math.polyval(m, coeff, o, eps2) / coeff[o + m + 1]
      o += m + 2
      d *= eps

  @staticmethod
  def _A2m1f(eps):
    """Private: return A2-1"""
    coeff = [
      -11, -28, -192, 0, 256,
    ]
    m = Geodesic.nA2_//2
    t = Math.polyval(m, coeff, 0, Math.sq(eps)) / coeff[m + 1]
    return (t - eps) / (1 + eps)

  @staticmethod
  def _C2f(eps, c):
    """Private: return C2"""
    coeff = [
      1, 2, 16, 32,
      35, 64, 384, 2048,
      15, 80, 768,
      7, 35, 512,
      63, 1280,
      77, 2048,
    ]
    eps2 = Math.sq(eps)
    d = eps
    o = 0
    for l in range(1, Geodesic.nC2_ + 1): # l is index of C2[l]
      m = (Geodesic.nC2_ - l) // 2        # order of polynomial in eps^2
      c[l] = d * Math.polyval(m, coeff, o, eps2) / coeff[o + m + 1]
      o += m + 2
      d *= eps

  def __init__(self, a, f):
    """Construct a Geodesic object

    :param a: the equatorial radius of the ellipsoid in meters
    :param f: the flattening of the ellipsoid

    An exception is thrown if *a* or the polar semi-axis *b* = *a* (1 -
    *f*) is not a finite positive quantity.

    """

    self.a = float(a)
    """The equatorial radius in meters (readonly)"""
    self.f = float(f)
    """The flattening (readonly)"""
    self._f1 = 1 - self.f
    self._e2 = self.f * (2 - self.f)
    self._ep2 = self._e2 / Math.sq(self._f1) # e2 / (1 - e2)
    self._n = self.f / ( 2 - self.f)
    self._b = self.a * self._f1
    # authalic radius squared
    self._c2 = (Math.sq(self.a) + Math.sq(self._b) *
                (1 if self._e2 == 0 else
                 (math.atanh(math.sqrt(self._e2)) if self._e2 > 0 else
                  math.atan(math.sqrt(-self._e2))) /
                 math.sqrt(abs(self._e2))))/2
    # The sig12 threshold for "really short".  Using the auxiliary sphere
    # solution with dnm computed at (bet1 + bet2) / 2, the relative error in
    # the azimuth consistency check is sig12^2 * abs(f) * min(1, 1-f/2) / 2.
    # (Error measured for 1/100 < b/a < 100 and abs(f) >= 1/1000.  For a given
    # f and sig12, the max error occurs for lines near the pole.  If the old
    # rule for computing dnm = (dn1 + dn2)/2 is used, then the error increases
    # by a factor of 2.)  Setting this equal to epsilon gives sig12 = etol2.
    # Here 0.1 is a safety factor (error decreased by 100) and max(0.001,
    # abs(f)) stops etol2 getting too large in the nearly spherical case.
    self._etol2 = 0.1 * Geodesic.tol2_ / math.sqrt( max(0.001, abs(self.f)) *
                                                    min(1.0, 1-self.f/2) / 2 )
    if not(math.isfinite(self.a) and self.a > 0):
      raise ValueError("Equatorial radius is not positive")
    if not(math.isfinite(self._b) and self._b > 0):
      raise ValueError("Polar semi-axis is not positive")
    self._A3x = list(range(Geodesic.nA3x_))
    self._C3x = list(range(Geodesic.nC3x_))
    self._C4x = list(range(Geodesic.nC4x_))
    self._A3coeff()
    self._C3coeff()
    self._C4coeff()

  def _A3coeff(self):
    """Private: return coefficients for A3"""
    coeff = [
      -3, 128,
      -2, -3, 64,
      -1, -3, -1, 16,
      3, -1, -2, 8,
      1, -1, 2,
      1, 1,
    ]
    o = 0; k = 0
    for j in range(Geodesic.nA3_ - 1, -1, -1): # coeff of eps^j
      m = min(Geodesic.nA3_ - j - 1, j) # order of polynomial in n
      self._A3x[k] = Math.polyval(m, coeff, o, self._n) / coeff[o + m + 1]
      k += 1
      o += m + 2

  def _C3coeff(self):
    """Private: return coefficients for C3"""
    coeff = [
      3, 128,
      2, 5, 128,
      -1, 3, 3, 64,
      -1, 0, 1, 8,
      -1, 1, 4,
      5, 256,
      1, 3, 128,
      -3, -2, 3, 64,
      1, -3, 2, 32,
      7, 512,
      -10, 9, 384,
      5, -9, 5, 192,
      7, 512,
      -14, 7, 512,
      21, 2560,
    ]
    o = 0; k = 0
    for l in range(1, Geodesic.nC3_): # l is index of C3[l]
      for j in range(Geodesic.nC3_ - 1, l - 1, -1): # coeff of eps^j
        m = min(Geodesic.nC3_ - j - 1, j) # order of polynomial in n
        self._C3x[k] = Math.polyval(m, coeff, o, self._n) / coeff[o + m + 1]
        k += 1
        o += m + 2

  def _C4coeff(self):
    """Private: return coefficients for C4"""
    coeff = [
      97, 15015,
      1088, 156, 45045,
      -224, -4784, 1573, 45045,
      -10656, 14144, -4576, -858, 45045,
      64, 624, -4576, 6864, -3003, 15015,
      100, 208, 572, 3432, -12012, 30030, 45045,
      1, 9009,
      -2944, 468, 135135,
      5792, 1040, -1287, 135135,
      5952, -11648, 9152, -2574, 135135,
      -64, -624, 4576, -6864, 3003, 135135,
      8, 10725,
      1856, -936, 225225,
      -8448, 4992, -1144, 225225,
      -1440, 4160, -4576, 1716, 225225,
      -136, 63063,
      1024, -208, 105105,
      3584, -3328, 1144, 315315,
      -128, 135135,
      -2560, 832, 405405,
      128, 99099,
    ]
    o = 0; k = 0
    for l in range(Geodesic.nC4_): # l is index of C4[l]
      for j in range(Geodesic.nC4_ - 1, l - 1, -1): # coeff of eps^j
        m = Geodesic.nC4_ - j - 1 # order of polynomial in n
        self._C4x[k] = Math.polyval(m, coeff, o, self._n) / coeff[o + m + 1]
        k += 1
        o += m + 2

  def _A3f(self, eps):
    """Private: return A3"""
    # Evaluate A3
    return Math.polyval(Geodesic.nA3_ - 1, self._A3x, 0, eps)

  def _C3f(self, eps, c):
    """Private: return C3"""
    # Evaluate C3
    # Elements c[1] thru c[nC3_ - 1] are set
    mult = 1
    o = 0
    for l in range(1, Geodesic.nC3_): # l is index of C3[l]
      m = Geodesic.nC3_ - l - 1       # order of polynomial in eps
      mult *= eps
      c[l] = mult * Math.polyval(m, self._C3x, o, eps)
      o += m + 1

  def _C4f(self, eps, c):
    """Private: return C4"""
    # Evaluate C4 coeffs by Horner's method
    # Elements c[0] thru c[nC4_ - 1] are set
    mult = 1
    o = 0
    for l in range(Geodesic.nC4_): # l is index of C4[l]
      m = Geodesic.nC4_ - l - 1    # order of polynomial in eps
      c[l] = mult * Math.polyval(m, self._C4x, o, eps)
      o += m + 1
      mult *= eps

  # return s12b, m12b, m0, M12, M21
  def _Lengths(self, eps, sig12,
               ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2, outmask,
               # Scratch areas of the right size
               C1a, C2a):
    """Private: return a bunch of lengths"""
    # Return s12b, m12b, m0, M12, M21, where
    # m12b = (reduced length)/_b; s12b = distance/_b,
    # m0 = coefficient of secular term in expression for reduced length.
    outmask &= Geodesic.OUT_MASK
    # outmask & DISTANCE: set s12b
    # outmask & REDUCEDLENGTH: set m12b & m0
    # outmask & GEODESICSCALE: set M12 & M21

    s12b = m12b = m0 = m0x = J12 = M12 = M21 = math.nan
    if outmask & (Geodesic.DISTANCE | Geodesic.REDUCEDLENGTH |
                  Geodesic.GEODESICSCALE):
      A1 = Geodesic._A1m1f(eps)
      Geodesic._C1f(eps, C1a)
      if outmask & (Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
        A2 = Geodesic._A2m1f(eps)
        Geodesic._C2f(eps, C2a)
        m0x = A1 - A2
        A2 = 1 + A2
      A1 = 1 + A1
    if outmask & Geodesic.DISTANCE:
      B1 = (Geodesic._SinCosSeries(True, ssig2, csig2, C1a) -
            Geodesic._SinCosSeries(True, ssig1, csig1, C1a))
      # Missing a factor of _b
      s12b = A1 * (sig12 + B1)
      if outmask & (Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
        B2 = (Geodesic._SinCosSeries(True, ssig2, csig2, C2a) -
              Geodesic._SinCosSeries(True, ssig1, csig1, C2a))
        J12 = m0x * sig12 + (A1 * B1 - A2 * B2)
    elif outmask & (Geodesic.REDUCEDLENGTH | Geodesic.GEODESICSCALE):
      # Assume here that nC1_ >= nC2_
      for l in range(1, Geodesic.nC2_):
        C2a[l] = A1 * C1a[l] - A2 * C2a[l]
      J12 = m0x * sig12 + (Geodesic._SinCosSeries(True, ssig2, csig2, C2a) -
                           Geodesic._SinCosSeries(True, ssig1, csig1, C2a))
    if outmask & Geodesic.REDUCEDLENGTH:
      m0 = m0x
      # Missing a factor of _b.
      # Add parens around (csig1 * ssig2) and (ssig1 * csig2) to ensure
      # accurate cancellation in the case of coincident points.
      m12b = (dn2 * (csig1 * ssig2) - dn1 * (ssig1 * csig2) -
              csig1 * csig2 * J12)
    if outmask & Geodesic.GEODESICSCALE:
      csig12 = csig1 * csig2 + ssig1 * ssig2
      t = self._ep2 * (cbet1 - cbet2) * (cbet1 + cbet2) / (dn1 + dn2)
      M12 = csig12 + (t * ssig2 - csig2 * J12) * ssig1 / dn1
      M21 = csig12 - (t * ssig1 - csig1 * J12) * ssig2 / dn2
    return s12b, m12b, m0, M12, M21

  # return sig12, salp1, calp1, salp2, calp2, dnm
  def _InverseStart(self, sbet1, cbet1, dn1, sbet2, cbet2, dn2,
                    lam12, slam12, clam12,
                    # Scratch areas of the right size
                    C1a, C2a):
    """Private: Find a starting value for Newton's method."""
    # Return a starting point for Newton's method in salp1 and calp1 (function
    # value is -1).  If Newton's method doesn't need to be used, return also
    # salp2 and calp2 and function value is sig12.
    sig12 = -1; salp2 = calp2 = dnm = math.nan # Return values
    # bet12 = bet2 - bet1 in [0, pi); bet12a = bet2 + bet1 in (-pi, 0]
    sbet12 = sbet2 * cbet1 - cbet2 * sbet1
    cbet12 = cbet2 * cbet1 + sbet2 * sbet1
    # Volatile declaration needed to fix inverse cases
    # 88.202499451857 0 -88.202499451857 179.981022032992859592
    # 89.262080389218 0 -89.262080389218 179.992207982775375662
    # 89.333123580033 0 -89.333123580032997687 179.99295812360148422
    # which otherwise fail with g++ 4.4.4 x86 -O3
    sbet12a = sbet2 * cbet1
    sbet12a += cbet2 * sbet1

    shortline = cbet12 >= 0 and sbet12 < 0.5 and cbet2 * lam12 < 0.5
    if shortline:
      sbetm2 = Math.sq(sbet1 + sbet2)
      # sin((bet1+bet2)/2)^2
      # =  (sbet1 + sbet2)^2 / ((sbet1 + sbet2)^2 + (cbet1 + cbet2)^2)
      sbetm2 /= sbetm2 + Math.sq(cbet1 + cbet2)
      dnm = math.sqrt(1 + self._ep2 * sbetm2)
      omg12 = lam12 / (self._f1 * dnm)
      somg12 = math.sin(omg12); comg12 = math.cos(omg12)
    else:
      somg12 = slam12; comg12 = clam12

    salp1 = cbet2 * somg12
    calp1 = (
      sbet12 + cbet2 * sbet1 * Math.sq(somg12) / (1 + comg12) if comg12 >= 0
      else sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12))

    ssig12 = math.hypot(salp1, calp1)
    csig12 = sbet1 * sbet2 + cbet1 * cbet2 * comg12

    if shortline and ssig12 < self._etol2:
      # really short lines
      salp2 = cbet1 * somg12
      calp2 = sbet12 - cbet1 * sbet2 * (Math.sq(somg12) / (1 + comg12)
                                        if comg12 >= 0 else 1 - comg12)
      salp2, calp2 = Math.norm(salp2, calp2)
      # Set return value
      sig12 = math.atan2(ssig12, csig12)
    elif (abs(self._n) >= 0.1 or # Skip astroid calc if too eccentric
          csig12 >= 0 or
          ssig12 >= 6 * abs(self._n) * math.pi * Math.sq(cbet1)):
      # Nothing to do, zeroth order spherical approximation is OK
      pass
    else:
      # Scale lam12 and bet2 to x, y coordinate system where antipodal point
      # is at origin and singular point is at y = 0, x = -1.
      # real y, lamscale, betscale
      lam12x = math.atan2(-slam12, -clam12)
      if self.f >= 0:            # In fact f == 0 does not get here
        # x = dlong, y = dlat
        k2 = Math.sq(sbet1) * self._ep2
        eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
        lamscale = self.f * cbet1 * self._A3f(eps) * math.pi
        betscale = lamscale * cbet1
        x = lam12x / lamscale
        y = sbet12a / betscale
      else:                     # _f < 0
        # x = dlat, y = dlong
        cbet12a = cbet2 * cbet1 - sbet2 * sbet1
        bet12a = math.atan2(sbet12a, cbet12a)
        # real m12b, m0, dummy
        # In the case of lon12 = 180, this repeats a calculation made in
        # Inverse.
        dummy, m12b, m0, dummy, dummy = self._Lengths(
          self._n, math.pi + bet12a, sbet1, -cbet1, dn1, sbet2, cbet2, dn2,
          cbet1, cbet2, Geodesic.REDUCEDLENGTH, C1a, C2a)
        x = -1 + m12b / (cbet1 * cbet2 * m0 * math.pi)
        betscale = (sbet12a / x if x < -0.01
                    else -self.f * Math.sq(cbet1) * math.pi)
        lamscale = betscale / cbet1
        y = lam12x / lamscale

      if y > -Geodesic.tol1_ and x > -1 - Geodesic.xthresh_:
        # strip near cut
        if self.f >= 0:
          salp1 = min(1.0, -x); calp1 = - math.sqrt(1 - Math.sq(salp1))
        else:
          calp1 = max((0.0 if x > -Geodesic.tol1_ else -1.0), x)
          salp1 = math.sqrt(1 - Math.sq(calp1))
      else:
        # Estimate alp1, by solving the astroid problem.
        #
        # Could estimate alpha1 = theta + pi/2, directly, i.e.,
        #   calp1 = y/k; salp1 = -x/(1+k);  for _f >= 0
        #   calp1 = x/(1+k); salp1 = -y/k;  for _f < 0 (need to check)
        #
        # However, it's better to estimate omg12 from astroid and use
        # spherical formula to compute alp1.  This reduces the mean number of
        # Newton iterations for astroid cases from 2.24 (min 0, max 6) to 2.12
        # (min 0 max 5).  The changes in the number of iterations are as
        # follows:
        #
        # change percent
        #    1       5
        #    0      78
        #   -1      16
        #   -2       0.6
        #   -3       0.04
        #   -4       0.002
        #
        # The histogram of iterations is (m = number of iterations estimating
        # alp1 directly, n = number of iterations estimating via omg12, total
        # number of trials = 148605):
        #
        #  iter    m      n
        #    0   148    186
        #    1 13046  13845
        #    2 93315 102225
        #    3 36189  32341
        #    4  5396      7
        #    5   455      1
        #    6    56      0
        #
        # Because omg12 is near pi, estimate work with omg12a = pi - omg12
        k = Geodesic._Astroid(x, y)
        omg12a = lamscale * ( -x * k/(1 + k) if self.f >= 0
                              else -y * (1 + k)/k )
        somg12 = math.sin(omg12a); comg12 = -math.cos(omg12a)
        # Update spherical estimate of alp1 using omg12 instead of lam12
        salp1 = cbet2 * somg12
        calp1 = sbet12a - cbet2 * sbet1 * Math.sq(somg12) / (1 - comg12)
    # Sanity check on starting guess.  Backwards check allows NaN through.
    if not (salp1 <= 0):
      salp1, calp1 = Math.norm(salp1, calp1)
    else:
      salp1 = 1; calp1 = 0
    return sig12, salp1, calp1, salp2, calp2, dnm

  # return lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
  # domg12, dlam12
  def _Lambda12(self, sbet1, cbet1, dn1, sbet2, cbet2, dn2, salp1, calp1,
                slam120, clam120, diffp,
                # Scratch areas of the right size
                C1a, C2a, C3a):
    """Private: Solve hybrid problem"""
    if sbet1 == 0 and calp1 == 0:
      # Break degeneracy of equatorial line.  This case has already been
      # handled.
      calp1 = -Geodesic.tiny_

    # sin(alp1) * cos(bet1) = sin(alp0)
    salp0 = salp1 * cbet1
    calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0

    # real somg1, comg1, somg2, comg2, lam12
    # tan(bet1) = tan(sig1) * cos(alp1)
    # tan(omg1) = sin(alp0) * tan(sig1) = tan(omg1)=tan(alp1)*sin(bet1)
    ssig1 = sbet1; somg1 = salp0 * sbet1
    csig1 = comg1 = calp1 * cbet1
    ssig1, csig1 = Math.norm(ssig1, csig1)
    # Math.norm(somg1, comg1); -- don't need to normalize!

    # Enforce symmetries in the case abs(bet2) = -bet1.  Need to be careful
    # about this case, since this can yield singularities in the Newton
    # iteration.
    # sin(alp2) * cos(bet2) = sin(alp0)
    salp2 = salp0 / cbet2 if cbet2 != cbet1 else salp1
    # calp2 = sqrt(1 - sq(salp2))
    #       = sqrt(sq(calp0) - sq(sbet2)) / cbet2
    # and subst for calp0 and rearrange to give (choose positive sqrt
    # to give alp2 in [0, pi/2]).
    calp2 = (math.sqrt(Math.sq(calp1 * cbet1) +
                       ((cbet2 - cbet1) * (cbet1 + cbet2) if cbet1 < -sbet1
                        else (sbet1 - sbet2) * (sbet1 + sbet2))) / cbet2
             if cbet2 != cbet1 or abs(sbet2) != -sbet1 else abs(calp1))
    # tan(bet2) = tan(sig2) * cos(alp2)
    # tan(omg2) = sin(alp0) * tan(sig2).
    ssig2 = sbet2; somg2 = salp0 * sbet2
    csig2 = comg2 = calp2 * cbet2
    ssig2, csig2 = Math.norm(ssig2, csig2)
    # Math.norm(somg2, comg2); -- don't need to normalize!

    # sig12 = sig2 - sig1, limit to [0, pi]
    sig12 = math.atan2(max(0.0, csig1 * ssig2 - ssig1 * csig2) + 0.0,
                                csig1 * csig2 + ssig1 * ssig2)

    # omg12 = omg2 - omg1, limit to [0, pi]
    somg12 = max(0.0, comg1 * somg2 - somg1 * comg2) + 0.0
    comg12 =          comg1 * comg2 + somg1 * somg2
    # eta = omg12 - lam120
    eta = math.atan2(somg12 * clam120 - comg12 * slam120,
                     comg12 * clam120 + somg12 * slam120)

    # real B312
    k2 = Math.sq(calp0) * self._ep2
    eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
    self._C3f(eps, C3a)
    B312 = (Geodesic._SinCosSeries(True, ssig2, csig2, C3a) -
            Geodesic._SinCosSeries(True, ssig1, csig1, C3a))
    domg12 =  -self.f * self._A3f(eps) * salp0 * (sig12 + B312)
    lam12 = eta + domg12

    if diffp:
      if calp2 == 0:
        dlam12 = - 2 * self._f1 * dn1 / sbet1
      else:
        dummy, dlam12, dummy, dummy, dummy = self._Lengths(
          eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
          Geodesic.REDUCEDLENGTH, C1a, C2a)
        dlam12 *= self._f1 / (calp2 * cbet2)
    else:
      dlam12 = math.nan

    return (lam12, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2, eps,
            domg12, dlam12)

  # return a12, s12, salp1, calp1, salp2, calp2, m12, M12, M21, S12
  def _GenInverse(self, lat1, lon1, lat2, lon2, outmask):
    """Private: General version of the inverse problem"""
    a12 = s12 = m12 = M12 = M21 = S12 = math.nan # return vals

    outmask &= Geodesic.OUT_MASK
    # Compute longitude difference (AngDiff does this carefully).  Result is
    # in [-180, 180] but -180 is only for west-going geodesics.  180 is for
    # east-going and meridional geodesics.
    lon12, lon12s = Math.AngDiff(lon1, lon2)
    # Make longitude difference positive.
    lonsign = math.copysign(1, lon12)
    lon12 = lonsign * lon12; lon12s = lonsign * lon12s
    lam12 = math.radians(lon12)
    # Calculate sincos of lon12 + error (this applies AngRound internally).
    slam12, clam12 = Math.sincosde(lon12, lon12s)
    lon12s = (180 - lon12) - lon12s # the supplementary longitude difference

    # If really close to the equator, treat as on equator.
    lat1 = Math.AngRound(Math.LatFix(lat1))
    lat2 = Math.AngRound(Math.LatFix(lat2))
    # Swap points so that point with higher (abs) latitude is point 1
    # If one latitude is a nan, then it becomes lat1.
    swapp = -1 if abs(lat1) < abs(lat2) or math.isnan(lat2) else 1
    if swapp < 0:
      lonsign *= -1
      lat2, lat1 = lat1, lat2
    # Make lat1 <= 0
    latsign = math.copysign(1, -lat1)
    lat1 *= latsign
    lat2 *= latsign
    # Now we have
    #
    #     0 <= lon12 <= 180
    #     -90 <= lat1 <= 0
    #     lat1 <= lat2 <= -lat1
    #
    # longsign, swapp, latsign register the transformation to bring the
    # coordinates to this canonical form.  In all cases, 1 means no change was
    # made.  We make these transformations so that there are few cases to
    # check, e.g., on verifying quadrants in atan2.  In addition, this
    # enforces some symmetries in the results returned.

    # real phi, sbet1, cbet1, sbet2, cbet2, s12x, m12x

    sbet1, cbet1 = Math.sincosd(lat1); sbet1 *= self._f1
    # Ensure cbet1 = +epsilon at poles
    sbet1, cbet1 = Math.norm(sbet1, cbet1); cbet1 = max(Geodesic.tiny_, cbet1)

    sbet2, cbet2 = Math.sincosd(lat2); sbet2 *= self._f1
    # Ensure cbet2 = +epsilon at poles
    sbet2, cbet2 = Math.norm(sbet2, cbet2); cbet2 = max(Geodesic.tiny_, cbet2)

    # If cbet1 < -sbet1, then cbet2 - cbet1 is a sensitive measure of the
    # |bet1| - |bet2|.  Alternatively (cbet1 >= -sbet1), abs(sbet2) + sbet1 is
    # a better measure.  This logic is used in assigning calp2 in Lambda12.
    # Sometimes these quantities vanish and in that case we force bet2 = +/-
    # bet1 exactly.  An example where is is necessary is the inverse problem
    # 48.522876735459 0 -48.52287673545898293 179.599720456223079643
    # which failed with Visual Studio 10 (Release and Debug)

    if cbet1 < -sbet1:
      if cbet2 == cbet1:
        sbet2 = math.copysign(sbet1, sbet2)
    else:
      if abs(sbet2) == -sbet1:
        cbet2 = cbet1

    dn1 = math.sqrt(1 + self._ep2 * Math.sq(sbet1))
    dn2 = math.sqrt(1 + self._ep2 * Math.sq(sbet2))

    # real a12, sig12, calp1, salp1, calp2, salp2
    # index zero elements of these arrays are unused
    C1a = list(range(Geodesic.nC1_ + 1))
    C2a = list(range(Geodesic.nC2_ + 1))
    C3a = list(range(Geodesic.nC3_))

    meridian = lat1 == -90 or slam12 == 0

    if meridian:

      # Endpoints are on a single full meridian, so the geodesic might lie on
      # a meridian.

      calp1 = clam12; salp1 = slam12 # Head to the target longitude
      calp2 = 1.0; salp2 = 0.0       # At the target we're heading north

      # tan(bet) = tan(sig) * cos(alp)
      ssig1 = sbet1; csig1 = calp1 * cbet1
      ssig2 = sbet2; csig2 = calp2 * cbet2

      # sig12 = sig2 - sig1
      sig12 = math.atan2(max(0.0, csig1 * ssig2 - ssig1 * csig2) + 0.0,
                                  csig1 * csig2 + ssig1 * ssig2)

      s12x, m12x, dummy, M12, M21 = self._Lengths(
        self._n, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
        outmask | Geodesic.DISTANCE | Geodesic.REDUCEDLENGTH, C1a, C2a)

      # Add the check for sig12 since zero length geodesics might yield m12 <
      # 0.  Test case was
      #
      #    echo 20.001 0 20.001 0 | GeodSolve -i
      #
      # In fact, we will have sig12 > pi/2 for meridional geodesic which is
      # not a shortest path.
      if sig12 < Geodesic.tol2_ or m12x >= 0:
        if (sig12 < 3 * Geodesic.tiny_ or
            # Prevent negative s12 or m12 for short lines
            (sig12 < Geodesic.tol0_ and (s12x < 0 or m12x < 0))):
          sig12 = m12x = s12x = 0.0
        m12x *= self._b
        s12x *= self._b
        a12 = math.degrees(sig12)
      else:
        # m12 < 0, i.e., prolate and too close to anti-podal
        meridian = False
    # end if meridian:

    # somg12 == 2 marks that it needs to be calculated
    somg12 = 2.0; comg12 = 0.0; omg12 = 0.0
    if (not meridian and
        sbet1 == 0 and   # and sbet2 == 0
        # Mimic the way Lambda12 works with calp1 = 0
        (self.f <= 0 or lon12s >= self.f * 180)):

      # Geodesic runs along equator
      calp1 = calp2 = 0.0; salp1 = salp2 = 1.0
      s12x = self.a * lam12
      sig12 = omg12 = lam12 / self._f1
      m12x = self._b * math.sin(sig12)
      if outmask & Geodesic.GEODESICSCALE:
        M12 = M21 = math.cos(sig12)
      a12 = lon12 / self._f1

    elif not meridian:

      # Now point1 and point2 belong within a hemisphere bounded by a
      # meridian and geodesic is neither meridional or equatorial.

      # Figure a starting point for Newton's method
      sig12, salp1, calp1, salp2, calp2, dnm = self._InverseStart(
        sbet1, cbet1, dn1, sbet2, cbet2, dn2, lam12, slam12, clam12, C1a, C2a)

      if sig12 >= 0:
        # Short lines (InverseStart sets salp2, calp2, dnm)
        s12x = sig12 * self._b * dnm
        m12x = (Math.sq(dnm) * self._b * math.sin(sig12 / dnm))
        if outmask & Geodesic.GEODESICSCALE:
          M12 = M21 = math.cos(sig12 / dnm)
        a12 = math.degrees(sig12)
        omg12 = lam12 / (self._f1 * dnm)
      else:

        # Newton's method.  This is a straightforward solution of f(alp1) =
        # lambda12(alp1) - lam12 = 0 with one wrinkle.  f(alp) has exactly one
        # root in the interval (0, pi) and its derivative is positive at the
        # root.  Thus f(alp) is positive for alp > alp1 and negative for alp <
        # alp1.  During the course of the iteration, a range (alp1a, alp1b) is
        # maintained which brackets the root and with each evaluation of f(alp)
        # the range is shrunk if possible.  Newton's method is restarted
        # whenever the derivative of f is negative (because the new value of
        # alp1 is then further from the solution) or if the new estimate of
        # alp1 lies outside (0,pi); in this case, the new starting guess is
        # taken to be (alp1a + alp1b) / 2.
        # real ssig1, csig1, ssig2, csig2, eps
        numit = 0
        tripn = tripb = False
        # Bracketing range
        salp1a = Geodesic.tiny_; calp1a = 1.0
        salp1b = Geodesic.tiny_; calp1b = -1.0

        while True:
          # the WGS84 test set: mean = 1.47, sd = 1.25, max = 16
          # WGS84 and random input: mean = 2.85, sd = 0.60
          (v, salp2, calp2, sig12, ssig1, csig1, ssig2, csig2,
           eps, domg12, dv) = self._Lambda12(
             sbet1, cbet1, dn1, sbet2, cbet2, dn2,
             salp1, calp1, slam12, clam12, numit < Geodesic.maxit1_,
             C1a, C2a, C3a)
          # Reversed test to allow escape with NaNs
          if (tripb or not (abs(v) >= (8 if tripn else 1) * Geodesic.tol0_) or
              numit == Geodesic.maxit2_):
            break
          # Update bracketing values
          if v > 0 and (numit > Geodesic.maxit1_ or
                        calp1/salp1 > calp1b/salp1b):
            salp1b = salp1; calp1b = calp1
          elif v < 0 and (numit > Geodesic.maxit1_ or
                          calp1/salp1 < calp1a/salp1a):
            salp1a = salp1; calp1a = calp1

          numit += 1
          if numit < Geodesic.maxit1_ and dv > 0:
            dalp1 = -v/dv
            if abs(dalp1) < math.pi:
              sdalp1 = math.sin(dalp1); cdalp1 = math.cos(dalp1)
              nsalp1 = salp1 * cdalp1 + calp1 * sdalp1
              if nsalp1 > 0:
                calp1 = calp1 * cdalp1 - salp1 * sdalp1
                salp1 = nsalp1
                salp1, calp1 = Math.norm(salp1, calp1)
                # In some regimes we don't get quadratic convergence because
                # slope -> 0.  So use convergence conditions based on epsilon
                # instead of sqrt(epsilon).
                tripn = abs(v) <= 16 * Geodesic.tol0_
                continue
          # Either dv was not positive or updated value was outside
          # legal range.  Use the midpoint of the bracket as the next
          # estimate.  This mechanism is not needed for the WGS84
          # ellipsoid, but it does catch problems with more eccentric
          # ellipsoids.  Its efficacy is such for
          # the WGS84 test set with the starting guess set to alp1 = 90deg:
          # the WGS84 test set: mean = 5.21, sd = 3.93, max = 24
          # WGS84 and random input: mean = 4.74, sd = 0.99
          salp1 = (salp1a + salp1b)/2
          calp1 = (calp1a + calp1b)/2
          salp1, calp1 = Math.norm(salp1, calp1)
          tripn = False
          tripb = (abs(salp1a - salp1) + (calp1a - calp1) < Geodesic.tolb_ or
                   abs(salp1 - salp1b) + (calp1 - calp1b) < Geodesic.tolb_)

        lengthmask = (outmask |
                      (Geodesic.DISTANCE
                       if (outmask & (Geodesic.REDUCEDLENGTH |
                                      Geodesic.GEODESICSCALE))
                       else Geodesic.EMPTY))
        s12x, m12x, dummy, M12, M21 = self._Lengths(
          eps, sig12, ssig1, csig1, dn1, ssig2, csig2, dn2, cbet1, cbet2,
          lengthmask, C1a, C2a)

        m12x *= self._b
        s12x *= self._b
        a12 = math.degrees(sig12)
        if outmask & Geodesic.AREA:
          # omg12 = lam12 - domg12
          sdomg12 = math.sin(domg12); cdomg12 = math.cos(domg12)
          somg12 = slam12 * cdomg12 - clam12 * sdomg12
          comg12 = clam12 * cdomg12 + slam12 * sdomg12

    # end elif not meridian

    if outmask & Geodesic.DISTANCE:
      s12 = 0.0 + s12x          # Convert -0 to 0

    if outmask & Geodesic.REDUCEDLENGTH:
      m12 = 0.0 + m12x          # Convert -0 to 0

    if outmask & Geodesic.AREA:
      # From Lambda12: sin(alp1) * cos(bet1) = sin(alp0)
      salp0 = salp1 * cbet1
      calp0 = math.hypot(calp1, salp1 * sbet1) # calp0 > 0
      # real alp12
      if calp0 != 0 and salp0 != 0:
        # From Lambda12: tan(bet) = tan(sig) * cos(alp)
        ssig1 = sbet1; csig1 = calp1 * cbet1
        ssig2 = sbet2; csig2 = calp2 * cbet2
        k2 = Math.sq(calp0) * self._ep2
        eps = k2 / (2 * (1 + math.sqrt(1 + k2)) + k2)
        # Multiplier = a^2 * e^2 * cos(alpha0) * sin(alpha0).
        A4 = Math.sq(self.a) * calp0 * salp0 * self._e2
        ssig1, csig1 = Math.norm(ssig1, csig1)
        ssig2, csig2 = Math.norm(ssig2, csig2)
        C4a = list(range(Geodesic.nC4_))
        self._C4f(eps, C4a)
        B41 = Geodesic._SinCosSeries(False, ssig1, csig1, C4a)
        B42 = Geodesic._SinCosSeries(False, ssig2, csig2, C4a)
        S12 = A4 * (B42 - B41)
      else:
        # Avoid problems with indeterminate sig1, sig2 on equator
        S12 = 0.0

      if not meridian and somg12 == 2.0:
        somg12 = math.sin(omg12); comg12 = math.cos(omg12)

      if (not meridian and
          # omg12 < 3/4 * pi
          comg12 > -0.7071 and   # Long difference not too big
          sbet2 - sbet1 < 1.75): # Lat difference not too big
        # Use tan(Gamma/2) = tan(omg12/2)
        # * (tan(bet1/2)+tan(bet2/2))/(1+tan(bet1/2)*tan(bet2/2))
        # with tan(x/2) = sin(x)/(1+cos(x))
        domg12 = 1 + comg12; dbet1 = 1 + cbet1; dbet2 = 1 + cbet2
        alp12 = 2 * math.atan2( somg12 * ( sbet1 * dbet2 + sbet2 * dbet1 ),
                                domg12 * ( sbet1 * sbet2 + dbet1 * dbet2 ) )
      else:
        # alp12 = alp2 - alp1, used in atan2 so no need to normalize
        salp12 = salp2 * calp1 - calp2 * salp1
        calp12 = calp2 * calp1 + salp2 * salp1
        # The right thing appears to happen if alp1 = +/-180 and alp2 = 0, viz
        # salp12 = -0 and alp12 = -180.  However this depends on the sign
        # being attached to 0 correctly.  The following ensures the correct
        # behavior.
        if salp12 == 0 and calp12 < 0:
          salp12 = Geodesic.tiny_ * calp1
          calp12 = -1.0
        alp12 = math.atan2(salp12, calp12)
      S12 += self._c2 * alp12
      S12 *= swapp * lonsign * latsign
      # Convert -0 to 0
      S12 += 0.0

    # Convert calp, salp to azimuth accounting for lonsign, swapp, latsign.
    if swapp < 0:
      salp2, salp1 = salp1, salp2
      calp2, calp1 = calp1, calp2
      if outmask & Geodesic.GEODESICSCALE:
        M21, M12 = M12, M21

    salp1 *= swapp * lonsign; calp1 *= swapp * latsign
    salp2 *= swapp * lonsign; calp2 *= swapp * latsign

    return a12, s12, salp1, calp1, salp2, calp2, m12, M12, M21, S12

  def Inverse(self, lat1, lon1, lat2, lon2,
              outmask = GeodesicCapability.STANDARD):
    """Solve the inverse geodesic problem

    :param lat1: latitude of the first point in degrees
    :param lon1: longitude of the first point in degrees
    :param lat2: latitude of the second point in degrees
    :param lon2: longitude of the second point in degrees
    :param outmask: the :ref:`output mask <outmask>`
    :return: a :ref:`dict`

    Compute geodesic between (*lat1*, *lon1*) and (*lat2*, *lon2*).
    The default value of *outmask* is STANDARD, i.e., the *lat1*,
    *lon1*, *azi1*, *lat2*, *lon2*, *azi2*, *s12*, *a12* entries are
    returned.

    """

    a12, s12, salp1,calp1, salp2,calp2, m12, M12, M21, S12 = self._GenInverse(
      lat1, lon1, lat2, lon2, outmask)
    outmask &= Geodesic.OUT_MASK
    if outmask & Geodesic.LONG_UNROLL:
      lon12, e = Math.AngDiff(lon1, lon2)
      lon2 = (lon1 + lon12) + e
    else:
      lon2 = Math.AngNormalize(lon2)
    result = {'lat1': Math.LatFix(lat1),
              'lon1': lon1 if outmask & Geodesic.LONG_UNROLL else
              Math.AngNormalize(lon1),
              'lat2': Math.LatFix(lat2),
              'lon2': lon2}
    result['a12'] = a12
    if outmask & Geodesic.DISTANCE: result['s12'] = s12
    if outmask & Geodesic.AZIMUTH:
      result['azi1'] = Math.atan2d(salp1, calp1)
      result['azi2'] = Math.atan2d(salp2, calp2)
    if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
    if outmask & Geodesic.GEODESICSCALE:
      result['M12'] = M12; result['M21'] = M21
    if outmask & Geodesic.AREA: result['S12'] = S12
    return result

  # return a12, lat2, lon2, azi2, s12, m12, M12, M21, S12
  def _GenDirect(self, lat1, lon1, azi1, arcmode, s12_a12, outmask):
    """Private: General version of direct problem"""
    from geographiclib.geodesicline import GeodesicLine
    # Automatically supply DISTANCE_IN if necessary
    if not arcmode: outmask |= Geodesic.DISTANCE_IN
    line = GeodesicLine(self, lat1, lon1, azi1, outmask)
    return line._GenPosition(arcmode, s12_a12, outmask)

  def Direct(self, lat1, lon1, azi1, s12,
             outmask = GeodesicCapability.STANDARD):
    """Solve the direct geodesic problem

    :param lat1: latitude of the first point in degrees
    :param lon1: longitude of the first point in degrees
    :param azi1: azimuth at the first point in degrees
    :param s12: the distance from the first point to the second in
      meters
    :param outmask: the :ref:`output mask <outmask>`
    :return: a :ref:`dict`

    Compute geodesic starting at (*lat1*, *lon1*) with azimuth *azi1*
    and length *s12*.  The default value of *outmask* is STANDARD, i.e.,
    the *lat1*, *lon1*, *azi1*, *lat2*, *lon2*, *azi2*, *s12*, *a12*
    entries are returned.

    """

    a12, lat2, lon2, azi2, s12, m12, M12, M21, S12 = self._GenDirect(
      lat1, lon1, azi1, False, s12, outmask)
    outmask &= Geodesic.OUT_MASK
    result = {'lat1': Math.LatFix(lat1),
              'lon1': lon1 if outmask & Geodesic.LONG_UNROLL else
              Math.AngNormalize(lon1),
              'azi1': Math.AngNormalize(azi1),
              's12': s12}
    result['a12'] = a12
    if outmask & Geodesic.LATITUDE: result['lat2'] = lat2
    if outmask & Geodesic.LONGITUDE: result['lon2'] = lon2
    if outmask & Geodesic.AZIMUTH: result['azi2'] = azi2
    if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
    if outmask & Geodesic.GEODESICSCALE:
      result['M12'] = M12; result['M21'] = M21
    if outmask & Geodesic.AREA: result['S12'] = S12
    return result

  def ArcDirect(self, lat1, lon1, azi1, a12,
                outmask = GeodesicCapability.STANDARD):
    """Solve the direct geodesic problem in terms of spherical arc length

    :param lat1: latitude of the first point in degrees
    :param lon1: longitude of the first point in degrees
    :param azi1: azimuth at the first point in degrees
    :param a12: spherical arc length from the first point to the second
      in degrees
    :param outmask: the :ref:`output mask <outmask>`
    :return: a :ref:`dict`

    Compute geodesic starting at (*lat1*, *lon1*) with azimuth *azi1*
    and arc length *a12*.  The default value of *outmask* is STANDARD,
    i.e., the *lat1*, *lon1*, *azi1*, *lat2*, *lon2*, *azi2*, *s12*,
    *a12* entries are returned.

    """

    a12, lat2, lon2, azi2, s12, m12, M12, M21, S12 = self._GenDirect(
      lat1, lon1, azi1, True, a12, outmask)
    outmask &= Geodesic.OUT_MASK
    result = {'lat1': Math.LatFix(lat1),
              'lon1': lon1 if outmask & Geodesic.LONG_UNROLL else
              Math.AngNormalize(lon1),
              'azi1': Math.AngNormalize(azi1),
              'a12': a12}
    if outmask & Geodesic.DISTANCE: result['s12'] = s12
    if outmask & Geodesic.LATITUDE: result['lat2'] = lat2
    if outmask & Geodesic.LONGITUDE: result['lon2'] = lon2
    if outmask & Geodesic.AZIMUTH: result['azi2'] = azi2
    if outmask & Geodesic.REDUCEDLENGTH: result['m12'] = m12
    if outmask & Geodesic.GEODESICSCALE:
      result['M12'] = M12; result['M21'] = M21
    if outmask & Geodesic.AREA: result['S12'] = S12
    return result

  def Line(self, lat1, lon1, azi1,
           caps = GeodesicCapability.STANDARD |
           GeodesicCapability.DISTANCE_IN):
    """Return a GeodesicLine object

    :param lat1: latitude of the first point in degrees
    :param lon1: longitude of the first point in degrees
    :param azi1: azimuth at the first point in degrees
    :param caps: the :ref:`capabilities <outmask>`
    :return: a :class:`~geographiclib.geodesicline.GeodesicLine`

    This allows points along a geodesic starting at (*lat1*, *lon1*),
    with azimuth *azi1* to be found.  The default value of *caps* is
    STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
    solved.

    """

    from geographiclib.geodesicline import GeodesicLine
    return GeodesicLine(self, lat1, lon1, azi1, caps)

  def _GenDirectLine(self, lat1, lon1, azi1, arcmode, s12_a12,
                     caps = GeodesicCapability.STANDARD |
                     GeodesicCapability.DISTANCE_IN):
    """Private: general form of DirectLine"""
    from geographiclib.geodesicline import GeodesicLine
    # Automatically supply DISTANCE_IN if necessary
    if not arcmode: caps |= Geodesic.DISTANCE_IN
    line = GeodesicLine(self, lat1, lon1, azi1, caps)
    if arcmode:
      line.SetArc(s12_a12)
    else:
      line.SetDistance(s12_a12)
    return line

  def DirectLine(self, lat1, lon1, azi1, s12,
                 caps = GeodesicCapability.STANDARD |
                 GeodesicCapability.DISTANCE_IN):
    """Define a GeodesicLine object in terms of the direct geodesic
    problem specified in terms of spherical arc length

    :param lat1: latitude of the first point in degrees
    :param lon1: longitude of the first point in degrees
    :param azi1: azimuth at the first point in degrees
    :param s12: the distance from the first point to the second in
      meters
    :param caps: the :ref:`capabilities <outmask>`
    :return: a :class:`~geographiclib.geodesicline.GeodesicLine`

    This function sets point 3 of the GeodesicLine to correspond to
    point 2 of the direct geodesic problem.  The default value of *caps*
    is STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
    solved.

    """

    return self._GenDirectLine(lat1, lon1, azi1, False, s12, caps)

  def ArcDirectLine(self, lat1, lon1, azi1, a12,
                 caps = GeodesicCapability.STANDARD |
                 GeodesicCapability.DISTANCE_IN):
    """Define a GeodesicLine object in terms of the direct geodesic
    problem specified in terms of spherical arc length

    :param lat1: latitude of the first point in degrees
    :param lon1: longitude of the first point in degrees
    :param azi1: azimuth at the first point in degrees
    :param a12: spherical arc length from the first point to the second
      in degrees
    :param caps: the :ref:`capabilities <outmask>`
    :return: a :class:`~geographiclib.geodesicline.GeodesicLine`

    This function sets point 3 of the GeodesicLine to correspond to
    point 2 of the direct geodesic problem.  The default value of *caps*
    is STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
    solved.

    """

    return self._GenDirectLine(lat1, lon1, azi1, True, a12, caps)

  def InverseLine(self, lat1, lon1, lat2, lon2,
                  caps = GeodesicCapability.STANDARD |
                  GeodesicCapability.DISTANCE_IN):
    """Define a GeodesicLine object in terms of the invese geodesic problem

    :param lat1: latitude of the first point in degrees
    :param lon1: longitude of the first point in degrees
    :param lat2: latitude of the second point in degrees
    :param lon2: longitude of the second point in degrees
    :param caps: the :ref:`capabilities <outmask>`
    :return: a :class:`~geographiclib.geodesicline.GeodesicLine`

    This function sets point 3 of the GeodesicLine to correspond to
    point 2 of the inverse geodesic problem.  The default value of *caps*
    is STANDARD | DISTANCE_IN, allowing direct geodesic problem to be
    solved.

    """

    from geographiclib.geodesicline import GeodesicLine
    a12, _, salp1, calp1, _, _, _, _, _, _ = self._GenInverse(
      lat1, lon1, lat2, lon2, 0)
    azi1 = Math.atan2d(salp1, calp1)
    if caps & (Geodesic.OUT_MASK & Geodesic.DISTANCE_IN):
      caps |= Geodesic.DISTANCE
    line = GeodesicLine(self, lat1, lon1, azi1, caps, salp1, calp1)
    line.SetArc(a12)
    return line

  def Polygon(self, polyline = False):
    """Return a PolygonArea object

    :param polyline: if True then the object describes a polyline
      instead of a polygon
    :return: a :class:`~geographiclib.polygonarea.PolygonArea`

    """

    from geographiclib.polygonarea import PolygonArea
    return PolygonArea(self, polyline)

  EMPTY         = GeodesicCapability.EMPTY
  """No capabilities, no output."""
  LATITUDE      = GeodesicCapability.LATITUDE
  """Calculate latitude *lat2*."""
  LONGITUDE     = GeodesicCapability.LONGITUDE
  """Calculate longitude *lon2*."""
  AZIMUTH       = GeodesicCapability.AZIMUTH
  """Calculate azimuths *azi1* and *azi2*."""
  DISTANCE      = GeodesicCapability.DISTANCE
  """Calculate distance *s12*."""
  STANDARD      = GeodesicCapability.STANDARD
  """All of the above."""
  DISTANCE_IN   = GeodesicCapability.DISTANCE_IN
  """Allow distance *s12* to be used as input in the direct geodesic
  problem."""
  REDUCEDLENGTH = GeodesicCapability.REDUCEDLENGTH
  """Calculate reduced length *m12*."""
  GEODESICSCALE = GeodesicCapability.GEODESICSCALE
  """Calculate geodesic scales *M12* and *M21*."""
  AREA          = GeodesicCapability.AREA
  """Calculate area *S12*."""
  ALL           = GeodesicCapability.ALL
  """All of the above."""
  LONG_UNROLL   = GeodesicCapability.LONG_UNROLL
  """Unroll longitudes, rather than reducing them to the range
  [-180d,180d].

  """

Geodesic.WGS84 = Geodesic(Constants.WGS84_a, Constants.WGS84_f)
"""Instantiation for the WGS84 ellipsoid"""