File: geoseries.py

package info (click to toggle)
python-geopandas 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,464 kB
  • sloc: python: 21,174; makefile: 149; sh: 25
file content (1355 lines) | stat: -rw-r--r-- 46,870 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
import json
import warnings

import numpy as np
import pandas as pd
from pandas import Series, MultiIndex, DataFrame
from pandas.core.internals import SingleBlockManager

from pyproj import CRS
import shapely
from shapely.geometry.base import BaseGeometry
from shapely.geometry import GeometryCollection

from geopandas.base import GeoPandasBase, _delegate_property
from geopandas.plotting import plot_series
from geopandas.explore import _explore_geoseries
import geopandas

from . import _compat as compat
from ._decorator import doc
from .array import (
    GeometryDtype,
    from_shapely,
    from_wkb,
    from_wkt,
    points_from_xy,
    to_wkb,
    to_wkt,
)
from .base import is_geometry_type


def _geoseries_constructor_with_fallback(data=None, index=None, crs=None, **kwargs):
    """
    A flexible constructor for GeoSeries._constructor, which needs to be able
    to fall back to a Series (if a certain operation does not produce
    geometries)
    """
    try:
        return GeoSeries(data=data, index=index, crs=crs, **kwargs)
    except TypeError:
        return Series(data=data, index=index, **kwargs)


def _geoseries_expanddim(data=None, *args, **kwargs):
    from geopandas import GeoDataFrame

    # pd.Series._constructor_expanddim == pd.DataFrame
    df = pd.DataFrame(data, *args, **kwargs)
    geo_col_name = None
    if isinstance(data, GeoSeries):
        # pandas default column name is 0, keep convention
        geo_col_name = data.name if data.name is not None else 0

    if df.shape[1] == 1:
        geo_col_name = df.columns[0]

    if (df.dtypes == "geometry").sum() > 0:
        if geo_col_name is None or not is_geometry_type(df[geo_col_name]):
            df = GeoDataFrame(df)
            df._geometry_column_name = None
        else:
            df = df.set_geometry(geo_col_name)

    return df


# pd.concat (pandas/core/reshape/concat.py) requires this for the
# concatenation of series since pandas 1.1
# (https://github.com/pandas-dev/pandas/commit/f9e4c8c84bcef987973f2624cc2932394c171c8c)
_geoseries_expanddim._get_axis_number = DataFrame._get_axis_number


class GeoSeries(GeoPandasBase, Series):
    """
    A Series object designed to store shapely geometry objects.

    Parameters
    ----------
    data : array-like, dict, scalar value
        The geometries to store in the GeoSeries.
    index : array-like or Index
        The index for the GeoSeries.
    crs : value (optional)
        Coordinate Reference System of the geometry objects. Can be anything accepted by
        :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
        such as an authority string (eg "EPSG:4326") or a WKT string.

    kwargs
        Additional arguments passed to the Series constructor,
         e.g. ``name``.

    Examples
    --------

    >>> from shapely.geometry import Point
    >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
    >>> s
    0    POINT (1.00000 1.00000)
    1    POINT (2.00000 2.00000)
    2    POINT (3.00000 3.00000)
    dtype: geometry

    >>> s = geopandas.GeoSeries(
    ...     [Point(1, 1), Point(2, 2), Point(3, 3)], crs="EPSG:3857"
    ... )
    >>> s.crs  # doctest: +SKIP
    <Projected CRS: EPSG:3857>
    Name: WGS 84 / Pseudo-Mercator
    Axis Info [cartesian]:
    - X[east]: Easting (metre)
    - Y[north]: Northing (metre)
    Area of Use:
    - name: World - 85°S to 85°N
    - bounds: (-180.0, -85.06, 180.0, 85.06)
    Coordinate Operation:
    - name: Popular Visualisation Pseudo-Mercator
    - method: Popular Visualisation Pseudo Mercator
    Datum: World Geodetic System 1984
    - Ellipsoid: WGS 84
    - Prime Meridian: Greenwich

    >>> s = geopandas.GeoSeries(
    ...    [Point(1, 1), Point(2, 2), Point(3, 3)], index=["a", "b", "c"], crs=4326
    ... )
    >>> s
    a    POINT (1.00000 1.00000)
    b    POINT (2.00000 2.00000)
    c    POINT (3.00000 3.00000)
    dtype: geometry

    >>> s.crs
    <Geographic 2D CRS: EPSG:4326>
    Name: WGS 84
    Axis Info [ellipsoidal]:
    - Lat[north]: Geodetic latitude (degree)
    - Lon[east]: Geodetic longitude (degree)
    Area of Use:
    - name: World.
    - bounds: (-180.0, -90.0, 180.0, 90.0)
    Datum: World Geodetic System 1984 ensemble
    - Ellipsoid: WGS 84
    - Prime Meridian: Greenwich

    See Also
    --------
    GeoDataFrame
    pandas.Series

    """

    _metadata = ["name"]

    def __init__(self, data=None, index=None, crs=None, **kwargs):
        if hasattr(data, "crs") and crs:
            if not data.crs:
                # make a copy to avoid setting CRS to passed GeometryArray
                data = data.copy()
            else:
                if not data.crs == crs:
                    raise ValueError(
                        "CRS mismatch between CRS of the passed geometries "
                        "and 'crs'. Use 'GeoSeries.set_crs(crs, "
                        "allow_override=True)' to overwrite CRS or "
                        "'GeoSeries.to_crs(crs)' to reproject geometries. "
                    )

        if isinstance(data, SingleBlockManager):
            if isinstance(data.blocks[0].dtype, GeometryDtype):
                if data.blocks[0].ndim == 2:
                    # bug in pandas 0.23 where in certain indexing operations
                    # (such as .loc) a 2D ExtensionBlock (still with 1D values
                    # is created) which results in other failures
                    # bug in pandas <= 0.25.0 when len(values) == 1
                    #   (https://github.com/pandas-dev/pandas/issues/27785)
                    from pandas.core.internals import ExtensionBlock

                    values = data.blocks[0].values
                    block = ExtensionBlock(values, slice(0, len(values), 1), ndim=1)
                    data = SingleBlockManager([block], data.axes[0], fastpath=True)
            else:
                raise TypeError(
                    "Non geometry data passed to GeoSeries constructor, "
                    f"received data of dtype '{data.blocks[0].dtype}'"
                )

        if isinstance(data, BaseGeometry):
            # fix problem for scalar geometries passed, ensure the list of
            # scalars is of correct length if index is specified
            n = len(index) if index is not None else 1
            data = [data] * n

        name = kwargs.pop("name", None)

        if not is_geometry_type(data):
            # if data is None and dtype is specified (eg from empty overlay
            # test), specifying dtype raises an error:
            # https://github.com/pandas-dev/pandas/issues/26469
            kwargs.pop("dtype", None)
            # Use Series constructor to handle input data
            with compat.ignore_shapely2_warnings():
                # suppress additional warning from pandas for empty data
                # (will always give object dtype instead of float dtype in the future,
                # making the `if s.empty: s = s.astype(object)` below unnecessary)
                empty_msg = "The default dtype for empty Series"
                warnings.filterwarnings("ignore", empty_msg, DeprecationWarning)
                warnings.filterwarnings("ignore", empty_msg, FutureWarning)
                s = pd.Series(data, index=index, name=name, **kwargs)
            # prevent trying to convert non-geometry objects
            if s.dtype != object:
                if (s.empty and s.dtype == "float64") or data is None:
                    # pd.Series with empty data gives float64 for older pandas versions
                    s = s.astype(object)
                else:
                    raise TypeError(
                        "Non geometry data passed to GeoSeries constructor, "
                        f"received data of dtype '{s.dtype}'"
                    )
            # try to convert to GeometryArray, if fails return plain Series
            try:
                data = from_shapely(s.values, crs)
            except TypeError:
                raise TypeError(
                    "Non geometry data passed to GeoSeries constructor, "
                    f"received data of dtype '{s.dtype}'"
                )
            index = s.index
            name = s.name

        super().__init__(data, index=index, name=name, **kwargs)
        if not self.crs:
            self.crs = crs

    def append(self, *args, **kwargs):
        return self._wrapped_pandas_method("append", *args, **kwargs)

    @property
    def geometry(self):
        return self

    @property
    def x(self):
        """Return the x location of point geometries in a GeoSeries

        Returns
        -------
        pandas.Series

        Examples
        --------

        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
        >>> s.x
        0    1.0
        1    2.0
        2    3.0
        dtype: float64

        See Also
        --------

        GeoSeries.y
        GeoSeries.z

        """
        return _delegate_property("x", self)

    @property
    def y(self):
        """Return the y location of point geometries in a GeoSeries

        Returns
        -------
        pandas.Series

        Examples
        --------

        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
        >>> s.y
        0    1.0
        1    2.0
        2    3.0
        dtype: float64

        See Also
        --------

        GeoSeries.x
        GeoSeries.z

        """
        return _delegate_property("y", self)

    @property
    def z(self):
        """Return the z location of point geometries in a GeoSeries

        Returns
        -------
        pandas.Series

        Examples
        --------

        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1, 1), Point(2, 2, 2), Point(3, 3, 3)])
        >>> s.z
        0    1.0
        1    2.0
        2    3.0
        dtype: float64

        See Also
        --------

        GeoSeries.x
        GeoSeries.y

        """
        return _delegate_property("z", self)

    @classmethod
    def from_file(cls, filename, **kwargs):
        """Alternate constructor to create a ``GeoSeries`` from a file.

        Can load a ``GeoSeries`` from a file from any format recognized by
        `fiona`. See http://fiona.readthedocs.io/en/latest/manual.html for details.
        From a file with attributes loads only geometry column. Note that to do
        that, GeoPandas first loads the whole GeoDataFrame.

        Parameters
        ----------
        filename : str
            File path or file handle to read from. Depending on which kwargs
            are included, the content of filename may vary. See
            http://fiona.readthedocs.io/en/latest/README.html#usage for usage details.
        kwargs : key-word arguments
            These arguments are passed to fiona.open, and can be used to
            access multi-layer data, data stored within archives (zip files),
            etc.

        Examples
        --------

        >>> path = geopandas.datasets.get_path('nybb')
        >>> s = geopandas.GeoSeries.from_file(path)
        >>> s
        0    MULTIPOLYGON (((970217.022 145643.332, 970227....
        1    MULTIPOLYGON (((1029606.077 156073.814, 102957...
        2    MULTIPOLYGON (((1021176.479 151374.797, 102100...
        3    MULTIPOLYGON (((981219.056 188655.316, 980940....
        4    MULTIPOLYGON (((1012821.806 229228.265, 101278...
        Name: geometry, dtype: geometry

        See Also
        --------
        read_file : read file to GeoDataFame
        """
        from geopandas import GeoDataFrame

        df = GeoDataFrame.from_file(filename, **kwargs)

        return GeoSeries(df.geometry, crs=df.crs)

    @classmethod
    def from_wkb(cls, data, index=None, crs=None, **kwargs):
        """
        Alternate constructor to create a ``GeoSeries``
        from a list or array of WKB objects

        Parameters
        ----------
        data : array-like or Series
            Series, list or array of WKB objects
        index : array-like or Index
            The index for the GeoSeries.
        crs : value, optional
            Coordinate Reference System of the geometry objects. Can be anything
            accepted by
            :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
            such as an authority string (eg "EPSG:4326") or a WKT string.
        kwargs
            Additional arguments passed to the Series constructor,
            e.g. ``name``.

        Returns
        -------
        GeoSeries

        See Also
        --------
        GeoSeries.from_wkt

        """
        return cls._from_wkb_or_wkb(from_wkb, data, index=index, crs=crs, **kwargs)

    @classmethod
    def from_wkt(cls, data, index=None, crs=None, **kwargs):
        """
        Alternate constructor to create a ``GeoSeries``
        from a list or array of WKT objects

        Parameters
        ----------
        data : array-like, Series
            Series, list, or array of WKT objects
        index : array-like or Index
            The index for the GeoSeries.
        crs : value, optional
            Coordinate Reference System of the geometry objects. Can be anything
            accepted by
            :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
            such as an authority string (eg "EPSG:4326") or a WKT string.
        kwargs
            Additional arguments passed to the Series constructor,
            e.g. ``name``.

        Returns
        -------
        GeoSeries

        See Also
        --------
        GeoSeries.from_wkb

        Examples
        --------

        >>> wkts = [
        ... 'POINT (1 1)',
        ... 'POINT (2 2)',
        ... 'POINT (3 3)',
        ... ]
        >>> s = geopandas.GeoSeries.from_wkt(wkts)
        >>> s
        0    POINT (1.00000 1.00000)
        1    POINT (2.00000 2.00000)
        2    POINT (3.00000 3.00000)
        dtype: geometry
        """
        return cls._from_wkb_or_wkb(from_wkt, data, index=index, crs=crs, **kwargs)

    @classmethod
    def from_xy(cls, x, y, z=None, index=None, crs=None, **kwargs):
        """
        Alternate constructor to create a :class:`~geopandas.GeoSeries` of Point
        geometries from lists or arrays of x, y(, z) coordinates

        In case of geographic coordinates, it is assumed that longitude is captured
        by ``x`` coordinates and latitude by ``y``.

        Parameters
        ----------
        x, y, z : iterable
        index : array-like or Index, optional
            The index for the GeoSeries. If not given and all coordinate inputs
            are Series with an equal index, that index is used.
        crs : value, optional
            Coordinate Reference System of the geometry objects. Can be anything
            accepted by
            :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
            such as an authority string (eg "EPSG:4326") or a WKT string.
        **kwargs
            Additional arguments passed to the Series constructor,
            e.g. ``name``.

        Returns
        -------
        GeoSeries

        See Also
        --------
        GeoSeries.from_wkt
        points_from_xy

        Examples
        --------

        >>> x = [2.5, 5, -3.0]
        >>> y = [0.5, 1, 1.5]
        >>> s = geopandas.GeoSeries.from_xy(x, y, crs="EPSG:4326")
        >>> s
        0    POINT (2.50000 0.50000)
        1    POINT (5.00000 1.00000)
        2    POINT (-3.00000 1.50000)
        dtype: geometry
        """
        if index is None:
            if (
                isinstance(x, Series)
                and isinstance(y, Series)
                and x.index.equals(y.index)
                and (z is None or (isinstance(z, Series) and x.index.equals(z.index)))
            ):  # check if we can reuse index
                index = x.index
        return cls(points_from_xy(x, y, z, crs=crs), index=index, crs=crs, **kwargs)

    @classmethod
    def _from_wkb_or_wkb(
        cls, from_wkb_or_wkt_function, data, index=None, crs=None, **kwargs
    ):
        """Create a GeoSeries from either WKT or WKB values"""
        if isinstance(data, Series):
            if index is not None:
                data = data.reindex(index)
            else:
                index = data.index
            data = data.values
        return cls(from_wkb_or_wkt_function(data, crs=crs), index=index, **kwargs)

    @property
    def __geo_interface__(self):
        """Returns a ``GeoSeries`` as a python feature collection.

        Implements the `geo_interface`. The returned python data structure
        represents the ``GeoSeries`` as a GeoJSON-like ``FeatureCollection``.
        Note that the features will have an empty ``properties`` dict as they
        don't have associated attributes (geometry only).

        Examples
        --------

        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
        >>> s.__geo_interface__
        {'type': 'FeatureCollection', 'features': [{'id': '0', 'type': 'Feature', \
'properties': {}, 'geometry': {'type': 'Point', 'coordinates': (1.0, 1.0)}, \
'bbox': (1.0, 1.0, 1.0, 1.0)}, {'id': '1', 'type': 'Feature', \
'properties': {}, 'geometry': {'type': 'Point', 'coordinates': (2.0, 2.0)}, \
'bbox': (2.0, 2.0, 2.0, 2.0)}, {'id': '2', 'type': 'Feature', 'properties': \
{}, 'geometry': {'type': 'Point', 'coordinates': (3.0, 3.0)}, 'bbox': (3.0, \
3.0, 3.0, 3.0)}], 'bbox': (1.0, 1.0, 3.0, 3.0)}
        """
        from geopandas import GeoDataFrame

        return GeoDataFrame({"geometry": self}).__geo_interface__

    def to_file(self, filename, driver=None, index=None, **kwargs):
        """Write the ``GeoSeries`` to a file.

        By default, an ESRI shapefile is written, but any OGR data source
        supported by Fiona can be written.

        Parameters
        ----------
        filename : string
            File path or file handle to write to. The path may specify a
            GDAL VSI scheme.
        driver : string, default None
            The OGR format driver used to write the vector file.
            If not specified, it attempts to infer it from the file extension.
            If no extension is specified, it saves ESRI Shapefile to a folder.
        index : bool, default None
            If True, write index into one or more columns (for MultiIndex).
            Default None writes the index into one or more columns only if
            the index is named, is a MultiIndex, or has a non-integer data
            type. If False, no index is written.

            .. versionadded:: 0.7
                Previously the index was not written.
        mode : string, default 'w'
            The write mode, 'w' to overwrite the existing file and 'a' to append.
            Not all drivers support appending. The drivers that support appending
            are listed in fiona.supported_drivers or
            https://github.com/Toblerity/Fiona/blob/master/fiona/drvsupport.py
        crs : pyproj.CRS, default None
            If specified, the CRS is passed to Fiona to
            better control how the file is written. If None, GeoPandas
            will determine the crs based on crs df attribute.
            The value can be anything accepted
            by :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
            such as an authority string (eg "EPSG:4326") or a WKT string.
        engine : str, "fiona" or "pyogrio"
            The underlying library that is used to write the file. Currently, the
            supported options are "fiona" and "pyogrio". Defaults to "fiona" if
            installed, otherwise tries "pyogrio".
        **kwargs :
            Keyword args to be passed to the engine, and can be used to write
            to multi-layer data, store data within archives (zip files), etc.
            In case of the "fiona" engine, the keyword arguments are passed to
            fiona.open`. For more information on possible keywords, type:
            ``import fiona; help(fiona.open)``. In case of the "pyogrio" engine,
            the keyword arguments are passed to `pyogrio.write_dataframe`.

        See Also
        --------
        GeoDataFrame.to_file : write GeoDataFrame to file
        read_file : read file to GeoDataFame

        Examples
        --------

        >>> s.to_file('series.shp')  # doctest: +SKIP

        >>> s.to_file('series.gpkg', driver='GPKG', layer='name1')  # doctest: +SKIP

        >>> s.to_file('series.geojson', driver='GeoJSON')  # doctest: +SKIP
        """
        from geopandas import GeoDataFrame

        data = GeoDataFrame({"geometry": self}, index=self.index)
        data.crs = self.crs
        data.to_file(filename, driver, index=index, **kwargs)

    #
    # Implement pandas methods
    #

    @property
    def _constructor(self):
        return _geoseries_constructor_with_fallback

    @property
    def _constructor_expanddim(self):
        return _geoseries_expanddim

    def _wrapped_pandas_method(self, mtd, *args, **kwargs):
        """Wrap a generic pandas method to ensure it returns a GeoSeries"""
        val = getattr(super(), mtd)(*args, **kwargs)
        if type(val) == Series:
            val.__class__ = GeoSeries
            val.crs = self.crs
        return val

    def __getitem__(self, key):
        return self._wrapped_pandas_method("__getitem__", key)

    @doc(pd.Series)
    def sort_index(self, *args, **kwargs):
        return self._wrapped_pandas_method("sort_index", *args, **kwargs)

    @doc(pd.Series)
    def take(self, *args, **kwargs):
        return self._wrapped_pandas_method("take", *args, **kwargs)

    @doc(pd.Series)
    def select(self, *args, **kwargs):
        return self._wrapped_pandas_method("select", *args, **kwargs)

    @doc(pd.Series)
    def apply(self, func, convert_dtype=True, args=(), **kwargs):
        result = super().apply(func, convert_dtype=convert_dtype, args=args, **kwargs)
        if isinstance(result, GeoSeries):
            if self.crs is not None:
                result.set_crs(self.crs, inplace=True)
        return result

    def isna(self):
        """
        Detect missing values.

        Historically, NA values in a GeoSeries could be represented by
        empty geometric objects, in addition to standard representations
        such as None and np.nan. This behaviour is changed in version 0.6.0,
        and now only actual missing values return True. To detect empty
        geometries, use ``GeoSeries.is_empty`` instead.

        Returns
        -------
        A boolean pandas Series of the same size as the GeoSeries,
        True where a value is NA.

        Examples
        --------

        >>> from shapely.geometry import Polygon
        >>> s = geopandas.GeoSeries(
        ...     [Polygon([(0, 0), (1, 1), (0, 1)]), None, Polygon([])]
        ... )
        >>> s
        0    POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
        1                                                 None
        2                             GEOMETRYCOLLECTION EMPTY
        dtype: geometry
        >>> s.isna()
        0    False
        1     True
        2    False
        dtype: bool

        See Also
        --------
        GeoSeries.notna : inverse of isna
        GeoSeries.is_empty : detect empty geometries
        """
        return super().isna()

    def isnull(self):
        """Alias for `isna` method. See `isna` for more detail."""
        return self.isna()

    def notna(self):
        """
        Detect non-missing values.

        Historically, NA values in a GeoSeries could be represented by
        empty geometric objects, in addition to standard representations
        such as None and np.nan. This behaviour is changed in version 0.6.0,
        and now only actual missing values return False. To detect empty
        geometries, use ``~GeoSeries.is_empty`` instead.

        Returns
        -------
        A boolean pandas Series of the same size as the GeoSeries,
        False where a value is NA.

        Examples
        --------

        >>> from shapely.geometry import Polygon
        >>> s = geopandas.GeoSeries(
        ...     [Polygon([(0, 0), (1, 1), (0, 1)]), None, Polygon([])]
        ... )
        >>> s
        0    POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
        1                                                 None
        2                             GEOMETRYCOLLECTION EMPTY
        dtype: geometry
        >>> s.notna()
        0     True
        1    False
        2     True
        dtype: bool

        See Also
        --------
        GeoSeries.isna : inverse of notna
        GeoSeries.is_empty : detect empty geometries
        """
        if self.is_empty.any():
            warnings.warn(
                "GeoSeries.notna() previously returned False for both missing (None) "
                "and empty geometries. Now, it only returns False for missing values. "
                "Since the calling GeoSeries contains empty geometries, the result "
                "has changed compared to previous versions of GeoPandas.\n"
                "Given a GeoSeries 's', you can use '~s.is_empty & s.notna()' to get "
                "back the old behaviour.\n\n"
                "To further ignore this warning, you can do: \n"
                "import warnings; warnings.filterwarnings('ignore', "
                "'GeoSeries.notna', UserWarning)",
                UserWarning,
                stacklevel=2,
            )
        return super().notna()

    def notnull(self):
        """Alias for `notna` method. See `notna` for more detail."""
        return self.notna()

    def fillna(self, value=None, method=None, inplace=False, **kwargs):
        """Fill NA values with a geometry (empty polygon by default).

        "method" is currently not implemented for pandas <= 0.12.

        Examples
        --------

        >>> from shapely.geometry import Polygon
        >>> s = geopandas.GeoSeries(
        ...     [
        ...         Polygon([(0, 0), (1, 1), (0, 1)]),
        ...         None,
        ...         Polygon([(0, 0), (-1, 1), (0, -1)]),
        ...     ]
        ... )
        >>> s
        0    POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
        1                                                 None
        2    POLYGON ((0.00000 0.00000, -1.00000 1.00000, 0...
        dtype: geometry

        >>> s.fillna()
        0    POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
        1                             GEOMETRYCOLLECTION EMPTY
        2    POLYGON ((0.00000 0.00000, -1.00000 1.00000, 0...
        dtype: geometry

        >>> s.fillna(Polygon([(0, 1), (2, 1), (1, 2)]))
        0    POLYGON ((0.00000 0.00000, 1.00000 1.00000, 0....
        1    POLYGON ((0.00000 1.00000, 2.00000 1.00000, 1....
        2    POLYGON ((0.00000 0.00000, -1.00000 1.00000, 0...
        dtype: geometry

        See Also
        --------
        GeoSeries.isna : detect missing values
        """
        if value is None:
            value = GeometryCollection() if compat.SHAPELY_GE_20 else BaseGeometry()
        return super().fillna(value=value, method=method, inplace=inplace, **kwargs)

    def __contains__(self, other):
        """Allow tests of the form "geom in s"

        Tests whether a GeoSeries contains a geometry.

        Note: This is not the same as the geometric method "contains".
        """
        if isinstance(other, BaseGeometry):
            return np.any(self.geom_equals(other))
        else:
            return False

    @doc(plot_series)
    def plot(self, *args, **kwargs):
        return plot_series(self, *args, **kwargs)

    @doc(_explore_geoseries)
    def explore(self, *args, **kwargs):
        """Interactive map based on folium/leaflet.js"""
        return _explore_geoseries(self, *args, **kwargs)

    def explode(self, ignore_index=False, index_parts=None):
        """
        Explode multi-part geometries into multiple single geometries.

        Single rows can become multiple rows.
        This is analogous to PostGIS's ST_Dump(). The 'path' index is the
        second level of the returned MultiIndex

        Parameters
        ----------
        ignore_index : bool, default False
            If True, the resulting index will be labelled 0, 1, …, n - 1,
            ignoring `index_parts`.
        index_parts : boolean, default True
            If True, the resulting index will be a multi-index (original
            index with an additional level indicating the multiple
            geometries: a new zero-based index for each single part geometry
            per multi-part geometry).

        Returns
        -------
        A GeoSeries with a MultiIndex. The levels of the MultiIndex are the
        original index and a zero-based integer index that counts the
        number of single geometries within a multi-part geometry.

        Examples
        --------
        >>> from shapely.geometry import MultiPoint
        >>> s = geopandas.GeoSeries(
        ...     [MultiPoint([(0, 0), (1, 1)]), MultiPoint([(2, 2), (3, 3), (4, 4)])]
        ... )
        >>> s
        0        MULTIPOINT (0.00000 0.00000, 1.00000 1.00000)
        1    MULTIPOINT (2.00000 2.00000, 3.00000 3.00000, ...
        dtype: geometry

        >>> s.explode(index_parts=True)
        0  0    POINT (0.00000 0.00000)
           1    POINT (1.00000 1.00000)
        1  0    POINT (2.00000 2.00000)
           1    POINT (3.00000 3.00000)
           2    POINT (4.00000 4.00000)
        dtype: geometry

        See also
        --------
        GeoDataFrame.explode

        """
        if index_parts is None and not ignore_index:
            warnings.warn(
                "Currently, index_parts defaults to True, but in the future, "
                "it will default to False to be consistent with Pandas. "
                "Use `index_parts=True` to keep the current behavior and True/False "
                "to silence the warning.",
                FutureWarning,
                stacklevel=2,
            )
            index_parts = True

        if compat.USE_SHAPELY_20 or (compat.USE_PYGEOS and compat.PYGEOS_GE_09):
            if compat.USE_SHAPELY_20:
                geometries, outer_idx = shapely.get_parts(
                    self.values.data, return_index=True
                )
            else:
                import pygeos  # noqa

                geometries, outer_idx = pygeos.get_parts(
                    self.values.data, return_index=True
                )

            if len(outer_idx):
                # Generate inner index as a range per value of outer_idx
                # 1. identify the start of each run of values in outer_idx
                # 2. count number of values per run
                # 3. use cumulative sums to create an incremental range
                #    starting at 0 in each run
                run_start = np.r_[True, outer_idx[:-1] != outer_idx[1:]]
                counts = np.diff(np.r_[np.nonzero(run_start)[0], len(outer_idx)])
                inner_index = (~run_start).cumsum()
                inner_index -= np.repeat(inner_index[run_start], counts)

            else:
                inner_index = []

            # extract original index values based on integer index
            outer_index = self.index.take(outer_idx)
            if ignore_index:
                index = range(len(geometries))

            elif index_parts:
                nlevels = outer_index.nlevels
                index_arrays = [
                    outer_index.get_level_values(lvl) for lvl in range(nlevels)
                ]
                index_arrays.append(inner_index)

                index = MultiIndex.from_arrays(
                    index_arrays, names=self.index.names + [None]
                )

            else:
                index = outer_index

            return GeoSeries(geometries, index=index, crs=self.crs).__finalize__(self)

        # else PyGEOS is not available or version <= 0.8

        index = []
        geometries = []
        for idx, s in self.geometry.items():
            if s.geom_type.startswith("Multi") or s.geom_type == "GeometryCollection":
                geoms = s.geoms
                idxs = [(idx, i) for i in range(len(geoms))]
            else:
                geoms = [s]
                idxs = [(idx, 0)]
            index.extend(idxs)
            geometries.extend(geoms)

        if ignore_index:
            index = range(len(geometries))

        elif index_parts:
            # if self.index is a MultiIndex then index is a list of nested tuples
            if isinstance(self.index, MultiIndex):
                index = [tuple(outer) + (inner,) for outer, inner in index]
            index = MultiIndex.from_tuples(index, names=self.index.names + [None])

        else:
            index = [idx for idx, _ in index]

        return GeoSeries(geometries, index=index, crs=self.crs).__finalize__(self)

    #
    # Additional methods
    #

    def set_crs(self, crs=None, epsg=None, inplace=False, allow_override=False):
        """
        Set the Coordinate Reference System (CRS) of a ``GeoSeries``.

        NOTE: The underlying geometries are not transformed to this CRS. To
        transform the geometries to a new CRS, use the ``to_crs`` method.

        Parameters
        ----------
        crs : pyproj.CRS, optional if `epsg` is specified
            The value can be anything accepted
            by :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
            such as an authority string (eg "EPSG:4326") or a WKT string.
        epsg : int, optional if `crs` is specified
            EPSG code specifying the projection.
        inplace : bool, default False
            If True, the CRS of the GeoSeries will be changed in place
            (while still returning the result) instead of making a copy of
            the GeoSeries.
        allow_override : bool, default False
            If the the GeoSeries already has a CRS, allow to replace the
            existing CRS, even when both are not equal.

        Returns
        -------
        GeoSeries

        Examples
        --------
        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
        >>> s
        0    POINT (1.00000 1.00000)
        1    POINT (2.00000 2.00000)
        2    POINT (3.00000 3.00000)
        dtype: geometry

        Setting CRS to a GeoSeries without one:

        >>> s.crs is None
        True

        >>> s = s.set_crs('epsg:3857')
        >>> s.crs  # doctest: +SKIP
        <Projected CRS: EPSG:3857>
        Name: WGS 84 / Pseudo-Mercator
        Axis Info [cartesian]:
        - X[east]: Easting (metre)
        - Y[north]: Northing (metre)
        Area of Use:
        - name: World - 85°S to 85°N
        - bounds: (-180.0, -85.06, 180.0, 85.06)
        Coordinate Operation:
        - name: Popular Visualisation Pseudo-Mercator
        - method: Popular Visualisation Pseudo Mercator
        Datum: World Geodetic System 1984
        - Ellipsoid: WGS 84
        - Prime Meridian: Greenwich

        Overriding existing CRS:

        >>> s = s.set_crs(4326, allow_override=True)

        Without ``allow_override=True``, ``set_crs`` returns an error if you try to
        override CRS.

        See Also
        --------
        GeoSeries.to_crs : re-project to another CRS

        """
        if crs is not None:
            crs = CRS.from_user_input(crs)
        elif epsg is not None:
            crs = CRS.from_epsg(epsg)
        else:
            raise ValueError("Must pass either crs or epsg.")

        if not allow_override and self.crs is not None and not self.crs == crs:
            raise ValueError(
                "The GeoSeries already has a CRS which is not equal to the passed "
                "CRS. Specify 'allow_override=True' to allow replacing the existing "
                "CRS without doing any transformation. If you actually want to "
                "transform the geometries, use 'GeoSeries.to_crs' instead."
            )
        if not inplace:
            result = self.copy()
        else:
            result = self
        result.crs = crs
        return result

    def to_crs(self, crs=None, epsg=None):
        """Returns a ``GeoSeries`` with all geometries transformed to a new
        coordinate reference system.

        Transform all geometries in a GeoSeries to a different coordinate
        reference system.  The ``crs`` attribute on the current GeoSeries must
        be set.  Either ``crs`` or ``epsg`` may be specified for output.

        This method will transform all points in all objects.  It has no notion
        or projecting entire geometries.  All segments joining points are
        assumed to be lines in the current projection, not geodesics.  Objects
        crossing the dateline (or other projection boundary) will have
        undesirable behavior.

        Parameters
        ----------
        crs : pyproj.CRS, optional if `epsg` is specified
            The value can be anything accepted
            by :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
            such as an authority string (eg "EPSG:4326") or a WKT string.
        epsg : int, optional if `crs` is specified
            EPSG code specifying output projection.

        Returns
        -------
        GeoSeries

        Examples
        --------
        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)], crs=4326)
        >>> s
        0    POINT (1.00000 1.00000)
        1    POINT (2.00000 2.00000)
        2    POINT (3.00000 3.00000)
        dtype: geometry
        >>> s.crs  # doctest: +SKIP
        <Geographic 2D CRS: EPSG:4326>
        Name: WGS 84
        Axis Info [ellipsoidal]:
        - Lat[north]: Geodetic latitude (degree)
        - Lon[east]: Geodetic longitude (degree)
        Area of Use:
        - name: World
        - bounds: (-180.0, -90.0, 180.0, 90.0)
        Datum: World Geodetic System 1984
        - Ellipsoid: WGS 84
        - Prime Meridian: Greenwich

        >>> s = s.to_crs(3857)
        >>> s
        0    POINT (111319.491 111325.143)
        1    POINT (222638.982 222684.209)
        2    POINT (333958.472 334111.171)
        dtype: geometry
        >>> s.crs  # doctest: +SKIP
        <Projected CRS: EPSG:3857>
        Name: WGS 84 / Pseudo-Mercator
        Axis Info [cartesian]:
        - X[east]: Easting (metre)
        - Y[north]: Northing (metre)
        Area of Use:
        - name: World - 85°S to 85°N
        - bounds: (-180.0, -85.06, 180.0, 85.06)
        Coordinate Operation:
        - name: Popular Visualisation Pseudo-Mercator
        - method: Popular Visualisation Pseudo Mercator
        Datum: World Geodetic System 1984
        - Ellipsoid: WGS 84
        - Prime Meridian: Greenwich

        See Also
        --------
        GeoSeries.set_crs : assign CRS

        """
        return GeoSeries(
            self.values.to_crs(crs=crs, epsg=epsg), index=self.index, name=self.name
        )

    def estimate_utm_crs(self, datum_name="WGS 84"):
        """Returns the estimated UTM CRS based on the bounds of the dataset.

        .. versionadded:: 0.9

        .. note:: Requires pyproj 3+

        Parameters
        ----------
        datum_name : str, optional
            The name of the datum to use in the query. Default is WGS 84.

        Returns
        -------
        pyproj.CRS

        Examples
        --------
        >>> world = geopandas.read_file(
        ...     geopandas.datasets.get_path("naturalearth_lowres")
        ... )
        >>> germany = world.loc[world.name == "Germany"]
        >>> germany.geometry.estimate_utm_crs()  # doctest: +SKIP
        <Projected CRS: EPSG:32632>
        Name: WGS 84 / UTM zone 32N
        Axis Info [cartesian]:
        - E[east]: Easting (metre)
        - N[north]: Northing (metre)
        Area of Use:
        - name: World - N hemisphere - 6°E to 12°E - by country
        - bounds: (6.0, 0.0, 12.0, 84.0)
        Coordinate Operation:
        - name: UTM zone 32N
        - method: Transverse Mercator
        Datum: World Geodetic System 1984
        - Ellipsoid: WGS 84
        - Prime Meridian: Greenwich
        """
        return self.values.estimate_utm_crs(datum_name)

    def to_json(self, **kwargs):
        """
        Returns a GeoJSON string representation of the GeoSeries.

        Parameters
        ----------
        *kwargs* that will be passed to json.dumps().

        Returns
        -------
        JSON string

        Examples
        --------
        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
        >>> s
        0    POINT (1.00000 1.00000)
        1    POINT (2.00000 2.00000)
        2    POINT (3.00000 3.00000)
        dtype: geometry

        >>> s.to_json()
        '{"type": "FeatureCollection", "features": [{"id": "0", "type": "Feature", "pr\
operties": {}, "geometry": {"type": "Point", "coordinates": [1.0, 1.0]}, "bbox": [1.0,\
 1.0, 1.0, 1.0]}, {"id": "1", "type": "Feature", "properties": {}, "geometry": {"type"\
: "Point", "coordinates": [2.0, 2.0]}, "bbox": [2.0, 2.0, 2.0, 2.0]}, {"id": "2", "typ\
e": "Feature", "properties": {}, "geometry": {"type": "Point", "coordinates": [3.0, 3.\
0]}, "bbox": [3.0, 3.0, 3.0, 3.0]}], "bbox": [1.0, 1.0, 3.0, 3.0]}'

        See Also
        --------
        GeoSeries.to_file : write GeoSeries to file
        """
        return json.dumps(self.__geo_interface__, **kwargs)

    def to_wkb(self, hex=False, **kwargs):
        """
        Convert GeoSeries geometries to WKB

        Parameters
        ----------
        hex : bool
            If true, export the WKB as a hexadecimal string.
            The default is to return a binary bytes object.
        kwargs
            Additional keyword args will be passed to
            :func:`pygeos.to_wkb` if pygeos is installed.

        Returns
        -------
        Series
            WKB representations of the geometries

        See also
        --------
        GeoSeries.to_wkt
        """
        return Series(to_wkb(self.array, hex=hex, **kwargs), index=self.index)

    def to_wkt(self, **kwargs):
        """
        Convert GeoSeries geometries to WKT

        Parameters
        ----------
        kwargs
            Keyword args will be passed to :func:`pygeos.to_wkt`
            if pygeos is installed.

        Returns
        -------
        Series
            WKT representations of the geometries

        Examples
        --------
        >>> from shapely.geometry import Point
        >>> s = geopandas.GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
        >>> s
        0    POINT (1.00000 1.00000)
        1    POINT (2.00000 2.00000)
        2    POINT (3.00000 3.00000)
        dtype: geometry

        >>> s.to_wkt()
        0    POINT (1 1)
        1    POINT (2 2)
        2    POINT (3 3)
        dtype: object

        See also
        --------
        GeoSeries.to_wkb
        """
        return Series(to_wkt(self.array, **kwargs), index=self.index)

    #
    # Implement standard operators for GeoSeries
    #

    def __xor__(self, other):
        """Implement ^ operator as for builtin set type"""
        warnings.warn(
            "'^' operator will be deprecated. Use the 'symmetric_difference' "
            "method instead.",
            FutureWarning,
            stacklevel=2,
        )
        return self.symmetric_difference(other)

    def __or__(self, other):
        """Implement | operator as for builtin set type"""
        warnings.warn(
            "'|' operator will be deprecated. Use the 'union' method instead.",
            FutureWarning,
            stacklevel=2,
        )
        return self.union(other)

    def __and__(self, other):
        """Implement & operator as for builtin set type"""
        warnings.warn(
            "'&' operator will be deprecated. Use the 'intersection' method instead.",
            FutureWarning,
            stacklevel=2,
        )
        return self.intersection(other)

    def __sub__(self, other):
        """Implement - operator as for builtin set type"""
        warnings.warn(
            "'-' operator will be deprecated. Use the 'difference' method instead.",
            FutureWarning,
            stacklevel=2,
        )
        return self.difference(other)

    def clip(self, mask, keep_geom_type=False):
        """Clip points, lines, or polygon geometries to the mask extent.

        Both layers must be in the same Coordinate Reference System (CRS).
        The GeoSeries will be clipped to the full extent of the `mask` object.

        If there are multiple polygons in mask, data from the GeoSeries will be
        clipped to the total boundary of all polygons in mask.

        Parameters
        ----------
        mask : GeoDataFrame, GeoSeries, (Multi)Polygon, list-like
            Polygon vector layer used to clip `gdf`.
            The mask's geometry is dissolved into one geometric feature
            and intersected with GeoSeries.
            If the mask is list-like with four elements ``(minx, miny, maxx, maxy)``,
            ``clip`` will use a faster rectangle clipping
            (:meth:`~GeoSeries.clip_by_rect`), possibly leading to slightly different
            results.
        keep_geom_type : boolean, default False
            If True, return only geometries of original type in case of intersection
            resulting in multiple geometry types or GeometryCollections.
            If False, return all resulting geometries (potentially mixed-types).

        Returns
        -------
        GeoSeries
            Vector data (points, lines, polygons) from `gdf` clipped to
            polygon boundary from mask.

        See also
        --------
        clip : top-level function for clip

        Examples
        --------
        Clip points (global cities) with a polygon (the South American continent):

        >>> world = geopandas.read_file(
        ...     geopandas.datasets.get_path('naturalearth_lowres'))
        >>> south_america = world[world['continent'] == "South America"]
        >>> capitals = geopandas.read_file(
        ...     geopandas.datasets.get_path('naturalearth_cities'))
        >>> capitals.shape
        (243, 2)

        >>> sa_capitals = capitals.geometry.clip(south_america)
        >>> sa_capitals.shape
        (15,)
        """
        return geopandas.clip(self, mask=mask, keep_geom_type=keep_geom_type)