1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850
|
from __future__ import absolute_import
from itertools import product
import json
from packaging.version import Version
import os
import pathlib
import pytest
from pandas import DataFrame, read_parquet as pd_read_parquet
from pandas.testing import assert_frame_equal
import numpy as np
import pyproj
from shapely.geometry import box, Point, MultiPolygon
import geopandas
from geopandas import GeoDataFrame, read_file, read_parquet, read_feather
from geopandas.array import to_wkb
from geopandas.datasets import get_path
from geopandas.io.arrow import (
SUPPORTED_VERSIONS,
_create_metadata,
_decode_metadata,
_encode_metadata,
_geopandas_to_arrow,
_get_filesystem_path,
_remove_id_from_member_of_ensembles,
_validate_dataframe,
_validate_metadata,
METADATA_VERSION,
)
from geopandas.testing import assert_geodataframe_equal, assert_geoseries_equal
from geopandas.tests.util import mock
DATA_PATH = pathlib.Path(os.path.dirname(__file__)) / "data"
# Skip all tests in this module if pyarrow is not available
pyarrow = pytest.importorskip("pyarrow")
@pytest.fixture(
params=[
"parquet",
pytest.param(
"feather",
marks=pytest.mark.skipif(
Version(pyarrow.__version__) < Version("0.17.0"),
reason="needs pyarrow >= 0.17",
),
),
]
)
def file_format(request):
if request.param == "parquet":
return read_parquet, GeoDataFrame.to_parquet
elif request.param == "feather":
return read_feather, GeoDataFrame.to_feather
def test_create_metadata():
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
metadata = _create_metadata(df)
assert isinstance(metadata, dict)
assert metadata["version"] == METADATA_VERSION
assert metadata["primary_column"] == "geometry"
assert "geometry" in metadata["columns"]
crs_expected = df.crs.to_json_dict()
_remove_id_from_member_of_ensembles(crs_expected)
assert metadata["columns"]["geometry"]["crs"] == crs_expected
assert metadata["columns"]["geometry"]["encoding"] == "WKB"
assert metadata["columns"]["geometry"]["geometry_type"] == [
"MultiPolygon",
"Polygon",
]
assert np.array_equal(
metadata["columns"]["geometry"]["bbox"], df.geometry.total_bounds
)
assert metadata["creator"]["library"] == "geopandas"
assert metadata["creator"]["version"] == geopandas.__version__
def test_crs_metadata_datum_ensemble():
# compatibility for older PROJ versions using PROJJSON with datum ensembles
# https://github.com/geopandas/geopandas/pull/2453
crs = pyproj.CRS("EPSG:4326")
crs_json = crs.to_json_dict()
check_ensemble = False
if "datum_ensemble" in crs_json:
# older version of PROJ don't yet have datum ensembles
check_ensemble = True
assert "id" in crs_json["datum_ensemble"]["members"][0]
_remove_id_from_member_of_ensembles(crs_json)
if check_ensemble:
assert "id" not in crs_json["datum_ensemble"]["members"][0]
# ensure roundtrip still results in an equivalent CRS
assert pyproj.CRS(crs_json) == crs
def test_write_metadata_invalid_spec_version():
gdf = geopandas.GeoDataFrame(geometry=[box(0, 0, 10, 10)], crs="EPSG:4326")
with pytest.raises(ValueError, match="schema_version must be one of"):
_create_metadata(gdf, schema_version="invalid")
def test_encode_metadata():
metadata = {"a": "b"}
expected = b'{"a": "b"}'
assert _encode_metadata(metadata) == expected
def test_decode_metadata():
metadata_str = b'{"a": "b"}'
expected = {"a": "b"}
assert _decode_metadata(metadata_str) == expected
assert _decode_metadata(None) is None
def test_validate_dataframe():
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
# valid: should not raise ValueError
_validate_dataframe(df)
_validate_dataframe(df.set_index("iso_a3"))
# add column with non-string type
df[0] = 1
# invalid: should raise ValueError
with pytest.raises(ValueError):
_validate_dataframe(df)
with pytest.raises(ValueError):
_validate_dataframe(df.set_index(0))
# not a DataFrame: should raise ValueError
with pytest.raises(ValueError):
_validate_dataframe("not a dataframe")
def test_validate_metadata_valid():
_validate_metadata(
{
"primary_column": "geometry",
"columns": {"geometry": {"crs": None, "encoding": "WKB"}},
"schema_version": "0.1.0",
}
)
_validate_metadata(
{
"primary_column": "geometry",
"columns": {"geometry": {"crs": None, "encoding": "WKB"}},
"version": "<version>",
}
)
_validate_metadata(
{
"primary_column": "geometry",
"columns": {
"geometry": {
"crs": {
# truncated PROJJSON for testing, as PROJJSON contents
# not validated here
"id": {"authority": "EPSG", "code": 4326},
},
"encoding": "WKB",
}
},
"version": "0.4.0",
}
)
@pytest.mark.parametrize(
"metadata,error",
[
(None, "Missing or malformed geo metadata in Parquet/Feather file"),
({}, "Missing or malformed geo metadata in Parquet/Feather file"),
# missing "version" key:
(
{"primary_column": "foo", "columns": None},
"'geo' metadata in Parquet/Feather file is missing required key",
),
# missing "columns" key:
(
{"primary_column": "foo", "version": "<version>"},
"'geo' metadata in Parquet/Feather file is missing required key:",
),
# missing "primary_column"
(
{"columns": [], "version": "<version>"},
"'geo' metadata in Parquet/Feather file is missing required key:",
),
(
{"primary_column": "foo", "columns": [], "version": "<version>"},
"'columns' in 'geo' metadata must be a dict",
),
# missing "encoding" for column
(
{"primary_column": "foo", "columns": {"foo": {}}, "version": "<version>"},
(
"'geo' metadata in Parquet/Feather file is missing required key "
"'encoding' for column 'foo'"
),
),
# invalid column encoding
(
{
"primary_column": "foo",
"columns": {"foo": {"crs": None, "encoding": None}},
"version": "<version>",
},
"Only WKB geometry encoding is supported",
),
(
{
"primary_column": "foo",
"columns": {"foo": {"crs": None, "encoding": "BKW"}},
"version": "<version>",
},
"Only WKB geometry encoding is supported",
),
],
)
def test_validate_metadata_invalid(metadata, error):
with pytest.raises(ValueError, match=error):
_validate_metadata(metadata)
def test_to_parquet_fails_on_invalid_engine(tmpdir):
df = GeoDataFrame(data=[[1, 2, 3]], columns=["a", "b", "a"], geometry=[Point(1, 1)])
with pytest.raises(
ValueError,
match=(
"GeoPandas only supports using pyarrow as the engine for "
"to_parquet: 'fastparquet' passed instead."
),
):
df.to_parquet(tmpdir / "test.parquet", engine="fastparquet")
@mock.patch("geopandas.io.arrow._to_parquet")
def test_to_parquet_does_not_pass_engine_along(mock_to_parquet):
df = GeoDataFrame(data=[[1, 2, 3]], columns=["a", "b", "a"], geometry=[Point(1, 1)])
df.to_parquet("", engine="pyarrow")
# assert that engine keyword is not passed through to _to_parquet (and thus
# parquet.write_table)
mock_to_parquet.assert_called_with(
df, "", compression="snappy", index=None, schema_version=None
)
# TEMPORARY: used to determine if pyarrow fails for roundtripping pandas data
# without geometries
def test_pandas_parquet_roundtrip1(tmpdir):
df = DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})
filename = os.path.join(str(tmpdir), "test.pq")
df.to_parquet(filename)
pq_df = pd_read_parquet(filename)
assert_frame_equal(df, pq_df)
@pytest.mark.parametrize(
"test_dataset", ["naturalearth_lowres", "naturalearth_cities", "nybb"]
)
def test_pandas_parquet_roundtrip2(test_dataset, tmpdir):
test_dataset = "naturalearth_lowres"
df = DataFrame(read_file(get_path(test_dataset)).drop(columns=["geometry"]))
filename = os.path.join(str(tmpdir), "test.pq")
df.to_parquet(filename)
pq_df = pd_read_parquet(filename)
assert_frame_equal(df, pq_df)
@pytest.mark.parametrize(
"test_dataset", ["naturalearth_lowres", "naturalearth_cities", "nybb"]
)
def test_roundtrip(tmpdir, file_format, test_dataset):
"""Writing to parquet should not raise errors, and should not alter original
GeoDataFrame
"""
reader, writer = file_format
df = read_file(get_path(test_dataset))
orig = df.copy()
filename = os.path.join(str(tmpdir), "test.pq")
writer(df, filename)
assert os.path.exists(filename)
# make sure that the original data frame is unaltered
assert_geodataframe_equal(df, orig)
# make sure that we can roundtrip the data frame
pq_df = reader(filename)
assert isinstance(pq_df, GeoDataFrame)
assert_geodataframe_equal(df, pq_df)
def test_index(tmpdir, file_format):
"""Setting index=`True` should preserve index in output, and
setting index=`False` should drop index from output.
"""
reader, writer = file_format
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset)).set_index("iso_a3")
filename = os.path.join(str(tmpdir), "test_with_index.pq")
writer(df, filename, index=True)
pq_df = reader(filename)
assert_geodataframe_equal(df, pq_df)
filename = os.path.join(str(tmpdir), "drop_index.pq")
writer(df, filename, index=False)
pq_df = reader(filename)
assert_geodataframe_equal(df.reset_index(drop=True), pq_df)
@pytest.mark.parametrize("compression", ["snappy", "gzip", "brotli", None])
def test_parquet_compression(compression, tmpdir):
"""Using compression options should not raise errors, and should
return identical GeoDataFrame.
"""
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
filename = os.path.join(str(tmpdir), "test.pq")
df.to_parquet(filename, compression=compression)
pq_df = read_parquet(filename)
assert isinstance(pq_df, GeoDataFrame)
assert_geodataframe_equal(df, pq_df)
@pytest.mark.skipif(
Version(pyarrow.__version__) < Version("0.17.0"),
reason="Feather only supported for pyarrow >= 0.17",
)
@pytest.mark.parametrize("compression", ["uncompressed", "lz4", "zstd"])
def test_feather_compression(compression, tmpdir):
"""Using compression options should not raise errors, and should
return identical GeoDataFrame.
"""
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
filename = os.path.join(str(tmpdir), "test.feather")
df.to_feather(filename, compression=compression)
pq_df = read_feather(filename)
assert isinstance(pq_df, GeoDataFrame)
assert_geodataframe_equal(df, pq_df)
def test_parquet_multiple_geom_cols(tmpdir, file_format):
"""If multiple geometry columns are present when written to parquet,
they should all be returned as such when read from parquet.
"""
reader, writer = file_format
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
df["geom2"] = df.geometry.copy()
filename = os.path.join(str(tmpdir), "test.pq")
writer(df, filename)
assert os.path.exists(filename)
pq_df = reader(filename)
assert isinstance(pq_df, GeoDataFrame)
assert_geodataframe_equal(df, pq_df)
assert_geoseries_equal(df.geom2, pq_df.geom2, check_geom_type=True)
def test_parquet_missing_metadata(tmpdir):
"""Missing geo metadata, such as from a parquet file created
from a pandas DataFrame, will raise a ValueError.
"""
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
# convert to DataFrame
df = DataFrame(df)
# convert the geometry column so we can extract later
df["geometry"] = to_wkb(df["geometry"].values)
filename = os.path.join(str(tmpdir), "test.pq")
# use pandas to_parquet (no geo metadata)
df.to_parquet(filename)
# missing metadata will raise ValueError
with pytest.raises(
ValueError, match="Missing geo metadata in Parquet/Feather file."
):
read_parquet(filename)
def test_parquet_missing_metadata2(tmpdir):
"""Missing geo metadata, such as from a parquet file created
from a pyarrow Table (which will also not contain pandas metadata),
will raise a ValueError.
"""
import pyarrow.parquet as pq
table = pyarrow.table({"a": [1, 2, 3]})
filename = os.path.join(str(tmpdir), "test.pq")
# use pyarrow.parquet write_table (no geo metadata, but also no pandas metadata)
pq.write_table(table, filename)
# missing metadata will raise ValueError
with pytest.raises(
ValueError, match="Missing geo metadata in Parquet/Feather file."
):
read_parquet(filename)
@pytest.mark.parametrize(
"geo_meta,error",
[
({"geo": b""}, "Missing or malformed geo metadata in Parquet/Feather file"),
(
{"geo": _encode_metadata({})},
"Missing or malformed geo metadata in Parquet/Feather file",
),
(
{"geo": _encode_metadata({"foo": "bar"})},
"'geo' metadata in Parquet/Feather file is missing required key",
),
],
)
def test_parquet_invalid_metadata(tmpdir, geo_meta, error):
"""Has geo metadata with missing required fields will raise a ValueError.
This requires writing the parquet file directly below, so that we can
control the metadata that is written for this test.
"""
from pyarrow import parquet, Table
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
# convert to DataFrame and encode geometry to WKB
df = DataFrame(df)
df["geometry"] = to_wkb(df["geometry"].values)
table = Table.from_pandas(df)
metadata = table.schema.metadata
metadata.update(geo_meta)
table = table.replace_schema_metadata(metadata)
filename = os.path.join(str(tmpdir), "test.pq")
parquet.write_table(table, filename)
with pytest.raises(ValueError, match=error):
read_parquet(filename)
def test_subset_columns(tmpdir, file_format):
"""Reading a subset of columns should correctly decode selected geometry
columns.
"""
reader, writer = file_format
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
filename = os.path.join(str(tmpdir), "test.pq")
writer(df, filename)
pq_df = reader(filename, columns=["name", "geometry"])
assert_geodataframe_equal(df[["name", "geometry"]], pq_df)
with pytest.raises(
ValueError, match="No geometry columns are included in the columns read"
):
reader(filename, columns=["name"])
def test_promote_secondary_geometry(tmpdir, file_format):
"""Reading a subset of columns that does not include the primary geometry
column should promote the first geometry column present.
"""
reader, writer = file_format
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
df["geom2"] = df.geometry.copy()
filename = os.path.join(str(tmpdir), "test.pq")
writer(df, filename)
pq_df = reader(filename, columns=["name", "geom2"])
assert_geodataframe_equal(df.set_geometry("geom2")[["name", "geom2"]], pq_df)
df["geom3"] = df.geometry.copy()
writer(df, filename)
with pytest.warns(
UserWarning,
match="Multiple non-primary geometry columns read from Parquet/Feather file.",
):
pq_df = reader(filename, columns=["name", "geom2", "geom3"])
assert_geodataframe_equal(
df.set_geometry("geom2")[["name", "geom2", "geom3"]], pq_df
)
def test_columns_no_geometry(tmpdir, file_format):
"""Reading a parquet file that is missing all of the geometry columns
should raise a ValueError"""
reader, writer = file_format
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
filename = os.path.join(str(tmpdir), "test.pq")
writer(df, filename)
with pytest.raises(ValueError):
reader(filename, columns=["name"])
def test_missing_crs(tmpdir, file_format):
"""If CRS is `None`, it should be properly handled
and remain `None` when read from parquet`.
"""
reader, writer = file_format
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
df.crs = None
filename = os.path.join(str(tmpdir), "test.pq")
writer(df, filename)
pq_df = reader(filename)
assert pq_df.crs is None
assert_geodataframe_equal(df, pq_df, check_crs=True)
@pytest.mark.skipif(
Version(pyarrow.__version__) >= Version("0.17.0"),
reason="Feather only supported for pyarrow >= 0.17",
)
def test_feather_arrow_version(tmpdir):
df = read_file(get_path("naturalearth_lowres"))
filename = os.path.join(str(tmpdir), "test.feather")
with pytest.raises(
ImportError, match="pyarrow >= 0.17 required for Feather support"
):
df.to_feather(filename)
def test_fsspec_url():
fsspec = pytest.importorskip("fsspec")
import fsspec.implementations.memory
class MyMemoryFileSystem(fsspec.implementations.memory.MemoryFileSystem):
# Simple fsspec filesystem that adds a required keyword.
# Attempting to use this filesystem without the keyword will raise an exception.
def __init__(self, is_set, *args, **kwargs):
self.is_set = is_set
super().__init__(*args, **kwargs)
fsspec.register_implementation("memory", MyMemoryFileSystem, clobber=True)
memfs = MyMemoryFileSystem(is_set=True)
test_dataset = "naturalearth_lowres"
df = read_file(get_path(test_dataset))
with memfs.open("data.parquet", "wb") as f:
df.to_parquet(f)
result = read_parquet("memory://data.parquet", storage_options=dict(is_set=True))
assert_geodataframe_equal(result, df)
result = read_parquet("memory://data.parquet", filesystem=memfs)
assert_geodataframe_equal(result, df)
# reset fsspec registry
fsspec.register_implementation(
"memory", fsspec.implementations.memory.MemoryFileSystem, clobber=True
)
def test_non_fsspec_url_with_storage_options_raises():
with pytest.raises(ValueError, match="storage_options"):
test_dataset = "naturalearth_lowres"
read_parquet(get_path(test_dataset), storage_options={"foo": "bar"})
@pytest.mark.skipif(
Version(pyarrow.__version__) < Version("5.0.0"),
reason="pyarrow.fs requires pyarrow>=5.0.0",
)
def test_prefers_pyarrow_fs():
filesystem, _ = _get_filesystem_path("file:///data.parquet")
assert isinstance(filesystem, pyarrow.fs.LocalFileSystem)
def test_write_read_parquet_expand_user():
gdf = geopandas.GeoDataFrame(geometry=[box(0, 0, 10, 10)], crs="epsg:4326")
test_file = "~/test_file.parquet"
gdf.to_parquet(test_file)
pq_df = geopandas.read_parquet(test_file)
assert_geodataframe_equal(gdf, pq_df, check_crs=True)
os.remove(os.path.expanduser(test_file))
def test_write_read_feather_expand_user():
gdf = geopandas.GeoDataFrame(geometry=[box(0, 0, 10, 10)], crs="epsg:4326")
test_file = "~/test_file.feather"
gdf.to_feather(test_file)
f_df = geopandas.read_feather(test_file)
assert_geodataframe_equal(gdf, f_df, check_crs=True)
os.remove(os.path.expanduser(test_file))
@pytest.mark.parametrize("format", ["feather", "parquet"])
def test_write_read_default_crs(tmpdir, format):
if format == "feather":
from pyarrow.feather import write_feather as write
else:
from pyarrow.parquet import write_table as write
filename = os.path.join(str(tmpdir), f"test.{format}")
gdf = geopandas.GeoDataFrame(geometry=[box(0, 0, 10, 10)])
table = _geopandas_to_arrow(gdf)
# update the geo metadata to strip 'crs' entry
metadata = table.schema.metadata
geo_metadata = _decode_metadata(metadata[b"geo"])
del geo_metadata["columns"]["geometry"]["crs"]
metadata.update({b"geo": _encode_metadata(geo_metadata)})
table = table.replace_schema_metadata(metadata)
write(table, filename)
read = getattr(geopandas, f"read_{format}")
df = read(filename)
assert df.crs.equals(pyproj.CRS("OGC:CRS84"))
@pytest.mark.parametrize(
"format,schema_version",
product(["feather", "parquet"], [None] + SUPPORTED_VERSIONS),
)
def test_write_spec_version(tmpdir, format, schema_version):
if format == "feather":
from pyarrow.feather import read_table
else:
from pyarrow.parquet import read_table
filename = os.path.join(str(tmpdir), f"test.{format}")
gdf = geopandas.GeoDataFrame(geometry=[box(0, 0, 10, 10)], crs="EPSG:4326")
write = getattr(gdf, f"to_{format}")
write(filename, schema_version=schema_version)
# ensure that we can roundtrip data regardless of version
read = getattr(geopandas, f"read_{format}")
df = read(filename)
assert_geodataframe_equal(df, gdf)
table = read_table(filename)
metadata = json.loads(table.schema.metadata[b"geo"])
assert metadata["version"] == schema_version or METADATA_VERSION
# verify that CRS is correctly handled between versions
if schema_version == "0.1.0":
assert metadata["columns"]["geometry"]["crs"] == gdf.crs.to_wkt()
else:
crs_expected = gdf.crs.to_json_dict()
_remove_id_from_member_of_ensembles(crs_expected)
assert metadata["columns"]["geometry"]["crs"] == crs_expected
@pytest.mark.parametrize(
"format,version", product(["feather", "parquet"], [None] + SUPPORTED_VERSIONS)
)
def test_write_deprecated_version_parameter(tmpdir, format, version):
if format == "feather":
from pyarrow.feather import read_table
version = version or 2
else:
from pyarrow.parquet import read_table
version = version or "2.6"
filename = os.path.join(str(tmpdir), f"test.{format}")
gdf = geopandas.GeoDataFrame(geometry=[box(0, 0, 10, 10)], crs="EPSG:4326")
write = getattr(gdf, f"to_{format}")
if version in SUPPORTED_VERSIONS:
with pytest.warns(
FutureWarning,
match="the `version` parameter has been replaced with `schema_version`",
):
write(filename, version=version)
else:
# no warning raised if not one of the captured versions
write(filename, version=version)
table = read_table(filename)
metadata = json.loads(table.schema.metadata[b"geo"])
if version in SUPPORTED_VERSIONS:
# version is captured as a parameter
assert metadata["version"] == version
else:
# version is passed to underlying writer
assert metadata["version"] == METADATA_VERSION
@pytest.mark.parametrize("version", ["0.1.0", "0.4.0"])
def test_read_versioned_file(version):
"""
Verify that files for different metadata spec versions can be read
created for each supported version:
# small dummy test dataset (not naturalearth_lowres, as this can change over time)
from shapely.geometry import box, MultiPolygon
df = geopandas.GeoDataFrame(
{"col_str": ["a", "b"], "col_int": [1, 2], "col_float": [0.1, 0.2]},
geometry=[MultiPolygon([box(0, 0, 1, 1), box(2, 2, 3, 3)]), box(4, 4, 5,5)],
crs="EPSG:4326",
)
df.to_feather(DATA_PATH / 'arrow' / f'test_data_v{METADATA_VERSION}.feather') # noqa: E501
df.to_parquet(DATA_PATH / 'arrow' / f'test_data_v{METADATA_VERSION}.parquet') # noqa: E501
"""
check_crs = Version(pyproj.__version__) >= Version("3.0.0")
expected = geopandas.GeoDataFrame(
{"col_str": ["a", "b"], "col_int": [1, 2], "col_float": [0.1, 0.2]},
geometry=[MultiPolygon([box(0, 0, 1, 1), box(2, 2, 3, 3)]), box(4, 4, 5, 5)],
crs="EPSG:4326",
)
df = geopandas.read_feather(DATA_PATH / "arrow" / f"test_data_v{version}.feather")
assert_geodataframe_equal(df, expected, check_crs=check_crs)
df = geopandas.read_parquet(DATA_PATH / "arrow" / f"test_data_v{version}.parquet")
assert_geodataframe_equal(df, expected, check_crs=check_crs)
def test_read_gdal_files():
"""
Verify that files written by GDAL can be read by geopandas.
Since it is currently not yet straightforward to install GDAL with
Parquet/Arrow enabled in our conda setup, we are testing with some
generated files included in the repo (using GDAL 3.5.0):
# small dummy test dataset (not naturalearth_lowres, as this can change over time)
from shapely.geometry import box, MultiPolygon
df = geopandas.GeoDataFrame(
{"col_str": ["a", "b"], "col_int": [1, 2], "col_float": [0.1, 0.2]},
geometry=[MultiPolygon([box(0, 0, 1, 1), box(2, 2, 3, 3)]), box(4, 4, 5,5)],
crs="EPSG:4326",
)
df.to_file("test_data.gpkg", GEOMETRY_NAME="geometry")
and then the gpkg file is converted to Parquet/Arrow with:
$ ogr2ogr -f Parquet -lco FID= test_data_gdal350.parquet test_data.gpkg
$ ogr2ogr -f Arrow -lco FID= -lco GEOMETRY_ENCODING=WKB test_data_gdal350.arrow test_data.gpkg # noqa: E501
"""
check_crs = Version(pyproj.__version__) >= Version("3.0.0")
expected = geopandas.GeoDataFrame(
{"col_str": ["a", "b"], "col_int": [1, 2], "col_float": [0.1, 0.2]},
geometry=[MultiPolygon([box(0, 0, 1, 1), box(2, 2, 3, 3)]), box(4, 4, 5, 5)],
crs="EPSG:4326",
)
df = geopandas.read_parquet(DATA_PATH / "arrow" / "test_data_gdal350.parquet")
assert_geodataframe_equal(df, expected, check_crs=check_crs)
df = geopandas.read_feather(DATA_PATH / "arrow" / "test_data_gdal350.arrow")
assert_geodataframe_equal(df, expected, check_crs=check_crs)
def test_parquet_read_partitioned_dataset(tmpdir):
# we don't yet explicitly support this (in writing), but for Parquet it
# works for reading (by relying on pyarrow.read_table)
df = read_file(get_path("naturalearth_lowres"))
# manually create partitioned dataset
basedir = tmpdir / "partitioned_dataset"
basedir.mkdir()
df[:100].to_parquet(basedir / "data1.parquet")
df[100:].to_parquet(basedir / "data2.parquet")
result = read_parquet(basedir)
assert_geodataframe_equal(result, df)
def test_parquet_read_partitioned_dataset_fsspec(tmpdir):
fsspec = pytest.importorskip("fsspec")
df = read_file(get_path("naturalearth_lowres"))
# manually create partitioned dataset
memfs = fsspec.filesystem("memory")
memfs.mkdir("partitioned_dataset")
with memfs.open("partitioned_dataset/data1.parquet", "wb") as f:
df[:100].to_parquet(f)
with memfs.open("partitioned_dataset/data2.parquet", "wb") as f:
df[100:].to_parquet(f)
result = read_parquet("memory://partitioned_dataset")
assert_geodataframe_equal(result, df)
|