File: overlay.py

package info (click to toggle)
python-geopandas 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,464 kB
  • sloc: python: 21,174; makefile: 149; sh: 25
file content (395 lines) | stat: -rw-r--r-- 16,192 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
import warnings
from functools import reduce

import numpy as np
import pandas as pd

from geopandas import GeoDataFrame, GeoSeries
from geopandas.array import _check_crs, _crs_mismatch_warn


def _ensure_geometry_column(df):
    """
    Helper function to ensure the geometry column is called 'geometry'.
    If another column with that name exists, it will be dropped.
    """
    if not df._geometry_column_name == "geometry":
        if "geometry" in df.columns:
            df.drop("geometry", axis=1, inplace=True)
        df.rename(
            columns={df._geometry_column_name: "geometry"}, copy=False, inplace=True
        )
        df.set_geometry("geometry", inplace=True)


def _overlay_intersection(df1, df2):
    """
    Overlay Intersection operation used in overlay function
    """
    # Spatial Index to create intersections
    idx1, idx2 = df2.sindex.query_bulk(df1.geometry, predicate="intersects", sort=True)
    # Create pairs of geometries in both dataframes to be intersected
    if idx1.size > 0 and idx2.size > 0:
        left = df1.geometry.take(idx1)
        left.reset_index(drop=True, inplace=True)
        right = df2.geometry.take(idx2)
        right.reset_index(drop=True, inplace=True)
        intersections = left.intersection(right)
        poly_ix = intersections.geom_type.isin(["Polygon", "MultiPolygon"])
        intersections.loc[poly_ix] = intersections[poly_ix].buffer(0)

        # only keep actual intersecting geometries
        pairs_intersect = pd.DataFrame({"__idx1": idx1, "__idx2": idx2})
        geom_intersect = intersections

        # merge data for intersecting geometries
        df1 = df1.reset_index(drop=True)
        df2 = df2.reset_index(drop=True)
        dfinter = pairs_intersect.merge(
            df1.drop(df1._geometry_column_name, axis=1),
            left_on="__idx1",
            right_index=True,
        )
        dfinter = dfinter.merge(
            df2.drop(df2._geometry_column_name, axis=1),
            left_on="__idx2",
            right_index=True,
            suffixes=("_1", "_2"),
        )

        return GeoDataFrame(dfinter, geometry=geom_intersect, crs=df1.crs)
    else:
        result = df1.iloc[:0].merge(
            df2.iloc[:0].drop(df2.geometry.name, axis=1),
            left_index=True,
            right_index=True,
            suffixes=("_1", "_2"),
        )
        result["__idx1"] = None
        result["__idx2"] = None
        return result[
            result.columns.drop(df1.geometry.name).tolist() + [df1.geometry.name]
        ]


def _overlay_difference(df1, df2):
    """
    Overlay Difference operation used in overlay function
    """
    # spatial index query to find intersections
    idx1, idx2 = df2.sindex.query_bulk(df1.geometry, predicate="intersects", sort=True)
    idx1_unique, idx1_unique_indices = np.unique(idx1, return_index=True)
    idx2_split = np.split(idx2, idx1_unique_indices[1:])
    sidx = [
        idx2_split.pop(0) if idx in idx1_unique else []
        for idx in range(df1.geometry.size)
    ]
    # Create differences
    new_g = []
    for geom, neighbours in zip(df1.geometry, sidx):
        new = reduce(
            lambda x, y: x.difference(y), [geom] + list(df2.geometry.iloc[neighbours])
        )
        new_g.append(new)
    differences = GeoSeries(new_g, index=df1.index, crs=df1.crs)
    poly_ix = differences.geom_type.isin(["Polygon", "MultiPolygon"])
    differences.loc[poly_ix] = differences[poly_ix].buffer(0)
    geom_diff = differences[~differences.is_empty].copy()
    dfdiff = df1[~differences.is_empty].copy()
    dfdiff[dfdiff._geometry_column_name] = geom_diff
    return dfdiff


def _overlay_symmetric_diff(df1, df2):
    """
    Overlay Symmetric Difference operation used in overlay function
    """
    dfdiff1 = _overlay_difference(df1, df2)
    dfdiff2 = _overlay_difference(df2, df1)
    dfdiff1["__idx1"] = range(len(dfdiff1))
    dfdiff2["__idx2"] = range(len(dfdiff2))
    dfdiff1["__idx2"] = np.nan
    dfdiff2["__idx1"] = np.nan
    # ensure geometry name (otherwise merge goes wrong)
    _ensure_geometry_column(dfdiff1)
    _ensure_geometry_column(dfdiff2)
    # combine both 'difference' dataframes
    dfsym = dfdiff1.merge(
        dfdiff2, on=["__idx1", "__idx2"], how="outer", suffixes=("_1", "_2")
    )
    geometry = dfsym.geometry_1.copy()
    geometry.name = "geometry"
    # https://github.com/pandas-dev/pandas/issues/26468 use loc for now
    geometry.loc[dfsym.geometry_1.isnull()] = dfsym.loc[
        dfsym.geometry_1.isnull(), "geometry_2"
    ]
    dfsym.drop(["geometry_1", "geometry_2"], axis=1, inplace=True)
    dfsym.reset_index(drop=True, inplace=True)
    dfsym = GeoDataFrame(dfsym, geometry=geometry, crs=df1.crs)
    return dfsym


def _overlay_union(df1, df2):
    """
    Overlay Union operation used in overlay function
    """
    dfinter = _overlay_intersection(df1, df2)
    dfsym = _overlay_symmetric_diff(df1, df2)
    dfunion = pd.concat([dfinter, dfsym], ignore_index=True, sort=False)
    # keep geometry column last
    columns = list(dfunion.columns)
    columns.remove("geometry")
    columns.append("geometry")
    return dfunion.reindex(columns=columns)


def overlay(df1, df2, how="intersection", keep_geom_type=None, make_valid=True):
    """Perform spatial overlay between two GeoDataFrames.

    Currently only supports data GeoDataFrames with uniform geometry types,
    i.e. containing only (Multi)Polygons, or only (Multi)Points, or a
    combination of (Multi)LineString and LinearRing shapes.
    Implements several methods that are all effectively subsets of the union.

    See the User Guide page :doc:`../../user_guide/set_operations` for details.

    Parameters
    ----------
    df1 : GeoDataFrame
    df2 : GeoDataFrame
    how : string
        Method of spatial overlay: 'intersection', 'union',
        'identity', 'symmetric_difference' or 'difference'.
    keep_geom_type : bool
        If True, return only geometries of the same geometry type as df1 has,
        if False, return all resulting geometries. Default is None,
        which will set keep_geom_type to True but warn upon dropping
        geometries.
    make_valid : bool, default True
        If True, any invalid input geometries are corrected with a call to `buffer(0)`,
        if False, a `ValueError` is raised if any input geometries are invalid.

    Returns
    -------
    df : GeoDataFrame
        GeoDataFrame with new set of polygons and attributes
        resulting from the overlay

    Examples
    --------
    >>> from shapely.geometry import Polygon
    >>> polys1 = geopandas.GeoSeries([Polygon([(0,0), (2,0), (2,2), (0,2)]),
    ...                               Polygon([(2,2), (4,2), (4,4), (2,4)])])
    >>> polys2 = geopandas.GeoSeries([Polygon([(1,1), (3,1), (3,3), (1,3)]),
    ...                               Polygon([(3,3), (5,3), (5,5), (3,5)])])
    >>> df1 = geopandas.GeoDataFrame({'geometry': polys1, 'df1_data':[1,2]})
    >>> df2 = geopandas.GeoDataFrame({'geometry': polys2, 'df2_data':[1,2]})

    >>> geopandas.overlay(df1, df2, how='union')
       df1_data  df2_data                                           geometry
    0       1.0       1.0  POLYGON ((2.00000 2.00000, 2.00000 1.00000, 1....
    1       2.0       1.0  POLYGON ((2.00000 2.00000, 2.00000 3.00000, 3....
    2       2.0       2.0  POLYGON ((4.00000 4.00000, 4.00000 3.00000, 3....
    3       1.0       NaN  POLYGON ((2.00000 0.00000, 0.00000 0.00000, 0....
    4       2.0       NaN  MULTIPOLYGON (((3.00000 3.00000, 4.00000 3.000...
    5       NaN       1.0  MULTIPOLYGON (((2.00000 2.00000, 3.00000 2.000...
    6       NaN       2.0  POLYGON ((3.00000 5.00000, 5.00000 5.00000, 5....

    >>> geopandas.overlay(df1, df2, how='intersection')
       df1_data  df2_data                                           geometry
    0         1         1  POLYGON ((2.00000 2.00000, 2.00000 1.00000, 1....
    1         2         1  POLYGON ((2.00000 2.00000, 2.00000 3.00000, 3....
    2         2         2  POLYGON ((4.00000 4.00000, 4.00000 3.00000, 3....

    >>> geopandas.overlay(df1, df2, how='symmetric_difference')
       df1_data  df2_data                                           geometry
    0       1.0       NaN  POLYGON ((2.00000 0.00000, 0.00000 0.00000, 0....
    1       2.0       NaN  MULTIPOLYGON (((3.00000 3.00000, 4.00000 3.000...
    2       NaN       1.0  MULTIPOLYGON (((2.00000 2.00000, 3.00000 2.000...
    3       NaN       2.0  POLYGON ((3.00000 5.00000, 5.00000 5.00000, 5....

    >>> geopandas.overlay(df1, df2, how='difference')
                                            geometry  df1_data
    0  POLYGON ((2.00000 0.00000, 0.00000 0.00000, 0....         1
    1  MULTIPOLYGON (((3.00000 3.00000, 4.00000 3.000...         2

    >>> geopandas.overlay(df1, df2, how='identity')
       df1_data  df2_data                                           geometry
    0       1.0       1.0  POLYGON ((2.00000 2.00000, 2.00000 1.00000, 1....
    1       2.0       1.0  POLYGON ((2.00000 2.00000, 2.00000 3.00000, 3....
    2       2.0       2.0  POLYGON ((4.00000 4.00000, 4.00000 3.00000, 3....
    3       1.0       NaN  POLYGON ((2.00000 0.00000, 0.00000 0.00000, 0....
    4       2.0       NaN  MULTIPOLYGON (((3.00000 3.00000, 4.00000 3.000...

    See also
    --------
    sjoin : spatial join
    GeoDataFrame.overlay : equivalent method

    Notes
    ------
    Every operation in GeoPandas is planar, i.e. the potential third
    dimension is not taken into account.
    """
    # Allowed operations
    allowed_hows = [
        "intersection",
        "union",
        "identity",
        "symmetric_difference",
        "difference",  # aka erase
    ]
    # Error Messages
    if how not in allowed_hows:
        raise ValueError(
            "`how` was '{0}' but is expected to be in {1}".format(how, allowed_hows)
        )

    if isinstance(df1, GeoSeries) or isinstance(df2, GeoSeries):
        raise NotImplementedError(
            "overlay currently only implemented for " "GeoDataFrames"
        )

    if not _check_crs(df1, df2):
        _crs_mismatch_warn(df1, df2, stacklevel=3)

    if keep_geom_type is None:
        keep_geom_type = True
        keep_geom_type_warning = True
    else:
        keep_geom_type_warning = False

    polys = ["Polygon", "MultiPolygon"]
    lines = ["LineString", "MultiLineString", "LinearRing"]
    points = ["Point", "MultiPoint"]
    for i, df in enumerate([df1, df2]):
        poly_check = df.geom_type.isin(polys).any()
        lines_check = df.geom_type.isin(lines).any()
        points_check = df.geom_type.isin(points).any()
        if sum([poly_check, lines_check, points_check]) > 1:
            raise NotImplementedError(
                "df{} contains mixed geometry types.".format(i + 1)
            )

    if how == "intersection":
        box_gdf1 = df1.total_bounds
        box_gdf2 = df2.total_bounds

        if not (
            ((box_gdf1[0] <= box_gdf2[2]) and (box_gdf2[0] <= box_gdf1[2]))
            and ((box_gdf1[1] <= box_gdf2[3]) and (box_gdf2[1] <= box_gdf1[3]))
        ):
            result = df1.iloc[:0].merge(
                df2.iloc[:0].drop(df2.geometry.name, axis=1),
                left_index=True,
                right_index=True,
                suffixes=("_1", "_2"),
            )
            return result[
                result.columns.drop(df1.geometry.name).tolist() + [df1.geometry.name]
            ]

    # Computations
    def _make_valid(df):
        df = df.copy()
        if df.geom_type.isin(polys).all():
            mask = ~df.geometry.is_valid
            col = df._geometry_column_name
            if make_valid:
                df.loc[mask, col] = df.loc[mask, col].buffer(0)
            elif mask.any():
                raise ValueError(
                    "You have passed make_valid=False along with "
                    f"{mask.sum()} invalid input geometries. "
                    "Use make_valid=True or make sure that all geometries "
                    "are valid before using overlay."
                )
        return df

    df1 = _make_valid(df1)
    df2 = _make_valid(df2)

    with warnings.catch_warnings():  # CRS checked above, suppress array-level warning
        warnings.filterwarnings("ignore", message="CRS mismatch between the CRS")
        if how == "difference":
            result = _overlay_difference(df1, df2)
        elif how == "intersection":
            result = _overlay_intersection(df1, df2)
        elif how == "symmetric_difference":
            result = _overlay_symmetric_diff(df1, df2)
        elif how == "union":
            result = _overlay_union(df1, df2)
        elif how == "identity":
            dfunion = _overlay_union(df1, df2)
            result = dfunion[dfunion["__idx1"].notnull()].copy()

        if how in ["intersection", "symmetric_difference", "union", "identity"]:
            result.drop(["__idx1", "__idx2"], axis=1, inplace=True)

    if keep_geom_type:
        geom_type = df1.geom_type.iloc[0]

        # First we filter the geometry types inside GeometryCollections objects
        # (e.g. GeometryCollection([polygon, point]) -> polygon)
        # we do this separately on only the relevant rows, as this is an expensive
        # operation (an expensive no-op for geometry types other than collections)
        is_collection = result.geom_type == "GeometryCollection"
        if is_collection.any():
            geom_col = result._geometry_column_name
            collections = result[[geom_col]][is_collection]

            exploded = collections.reset_index(drop=True).explode(index_parts=True)
            exploded = exploded.reset_index(level=0)

            orig_num_geoms_exploded = exploded.shape[0]
            if geom_type in polys:
                exploded.loc[~exploded.geom_type.isin(polys), geom_col] = None
            elif geom_type in lines:
                exploded.loc[~exploded.geom_type.isin(lines), geom_col] = None
            elif geom_type in points:
                exploded.loc[~exploded.geom_type.isin(points), geom_col] = None
            else:
                raise TypeError(
                    "`keep_geom_type` does not support {}.".format(geom_type)
                )
            num_dropped_collection = (
                orig_num_geoms_exploded - exploded.geometry.isna().sum()
            )

            # level_0 created with above reset_index operation
            # and represents the original geometry collections
            # TODO avoiding dissolve to call unary_union in this case could further
            # improve performance (we only need to collect geometries in their
            # respective Multi version)
            dissolved = exploded.dissolve(by="level_0")
            result.loc[is_collection, geom_col] = dissolved[geom_col].values
        else:
            num_dropped_collection = 0

        # Now we filter all geometries (in theory we don't need to do this
        # again for the rows handled above for GeometryCollections, but filtering
        # them out is probably more expensive as simply including them when this
        # is typically about only a few rows)
        orig_num_geoms = result.shape[0]
        if geom_type in polys:
            result = result.loc[result.geom_type.isin(polys)]
        elif geom_type in lines:
            result = result.loc[result.geom_type.isin(lines)]
        elif geom_type in points:
            result = result.loc[result.geom_type.isin(points)]
        else:
            raise TypeError("`keep_geom_type` does not support {}.".format(geom_type))
        num_dropped = orig_num_geoms - result.shape[0]

        if (num_dropped > 0 or num_dropped_collection > 0) and keep_geom_type_warning:
            warnings.warn(
                "`keep_geom_type=True` in overlay resulted in {} dropped "
                "geometries of different geometry types than df1 has. "
                "Set `keep_geom_type=False` to retain all "
                "geometries".format(num_dropped + num_dropped_collection),
                UserWarning,
                stacklevel=2,
            )

    result.reset_index(drop=True, inplace=True)
    return result