File: sjoin.py

package info (click to toggle)
python-geopandas 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,464 kB
  • sloc: python: 21,174; makefile: 149; sh: 25
file content (536 lines) | stat: -rw-r--r-- 19,698 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
from typing import Optional
import warnings

import numpy as np
import pandas as pd

from geopandas import GeoDataFrame
from geopandas import _compat as compat
from geopandas.array import _check_crs, _crs_mismatch_warn


def sjoin(
    left_df,
    right_df,
    how="inner",
    predicate="intersects",
    lsuffix="left",
    rsuffix="right",
    **kwargs,
):
    """Spatial join of two GeoDataFrames.

    See the User Guide page :doc:`../../user_guide/mergingdata` for details.


    Parameters
    ----------
    left_df, right_df : GeoDataFrames
    how : string, default 'inner'
        The type of join:

        * 'left': use keys from left_df; retain only left_df geometry column
        * 'right': use keys from right_df; retain only right_df geometry column
        * 'inner': use intersection of keys from both dfs; retain only
          left_df geometry column
    predicate : string, default 'intersects'
        Binary predicate. Valid values are determined by the spatial index used.
        You can check the valid values in left_df or right_df as
        ``left_df.sindex.valid_query_predicates`` or
        ``right_df.sindex.valid_query_predicates``
        Replaces deprecated ``op`` parameter.
    lsuffix : string, default 'left'
        Suffix to apply to overlapping column names (left GeoDataFrame).
    rsuffix : string, default 'right'
        Suffix to apply to overlapping column names (right GeoDataFrame).

    Examples
    --------
    >>> countries = geopandas.read_file(geopandas.datasets.get_\
path("naturalearth_lowres"))
    >>> cities = geopandas.read_file(geopandas.datasets.get_path("naturalearth_cities"))
    >>> countries.head()  # doctest: +SKIP
        pop_est      continent                      name \
iso_a3  gdp_md_est                                           geometry
    0     920938        Oceania                      Fiji    FJI      8374.0  MULTIPOLY\
GON (((180.00000 -16.06713, 180.00000...
    1   53950935         Africa                  Tanzania    TZA    150600.0  POLYGON (\
(33.90371 -0.95000, 34.07262 -1.05982...
    2     603253         Africa                 W. Sahara    ESH       906.5  POLYGON (\
(-8.66559 27.65643, -8.66512 27.58948...
    3   35623680  North America                    Canada    CAN   1674000.0  MULTIPOLY\
GON (((-122.84000 49.00000, -122.9742...
    4  326625791  North America  United States of America    USA  18560000.0  MULTIPOLY\
GON (((-122.84000 49.00000, -120.0000...
    >>> cities.head()
            name                    geometry
    0  Vatican City   POINT (12.45339 41.90328)
    1    San Marino   POINT (12.44177 43.93610)
    2         Vaduz    POINT (9.51667 47.13372)
    3       Lobamba  POINT (31.20000 -26.46667)
    4    Luxembourg    POINT (6.13000 49.61166)

    >>> cities_w_country_data = geopandas.sjoin(cities, countries)
    >>> cities_w_country_data.head()  # doctest: +SKIP
            name_left                   geometry  index_right   pop_est continent name_\
right iso_a3  gdp_md_est
    0    Vatican City  POINT (12.45339 41.90328)          141  62137802    Europe      \
Italy    ITA   2221000.0
    1      San Marino  POINT (12.44177 43.93610)          141  62137802    Europe      \
Italy    ITA   2221000.0
    192          Rome  POINT (12.48131 41.89790)          141  62137802    Europe      \
Italy    ITA   2221000.0
    2           Vaduz   POINT (9.51667 47.13372)          114   8754413    Europe    Au\
stria    AUT    416600.0
    184        Vienna  POINT (16.36469 48.20196)          114   8754413    Europe    Au\
stria    AUT    416600.0

    See also
    --------
    overlay : overlay operation resulting in a new geometry
    GeoDataFrame.sjoin : equivalent method

    Notes
    ------
    Every operation in GeoPandas is planar, i.e. the potential third
    dimension is not taken into account.
    """
    if "op" in kwargs:
        op = kwargs.pop("op")
        deprecation_message = (
            "The `op` parameter is deprecated and will be removed"
            " in a future release. Please use the `predicate` parameter"
            " instead."
        )
        if predicate != "intersects" and op != predicate:
            override_message = (
                "A non-default value for `predicate` was passed"
                f' (got `predicate="{predicate}"`'
                f' in combination with `op="{op}"`).'
                " The value of `predicate` will be overridden by the value of `op`,"
                " , which may result in unexpected behavior."
                f"\n{deprecation_message}"
            )
            warnings.warn(override_message, UserWarning, stacklevel=4)
        else:
            warnings.warn(deprecation_message, FutureWarning, stacklevel=4)
        predicate = op
    if kwargs:
        first = next(iter(kwargs.keys()))
        raise TypeError(f"sjoin() got an unexpected keyword argument '{first}'")

    _basic_checks(left_df, right_df, how, lsuffix, rsuffix)

    indices = _geom_predicate_query(left_df, right_df, predicate)

    joined = _frame_join(indices, left_df, right_df, how, lsuffix, rsuffix)

    return joined


def _basic_checks(left_df, right_df, how, lsuffix, rsuffix):
    """Checks the validity of join input parameters.

    `how` must be one of the valid options.
    `'index_'` concatenated with `lsuffix` or `rsuffix` must not already
    exist as columns in the left or right data frames.

    Parameters
    ------------
    left_df : GeoDataFrame
    right_df : GeoData Frame
    how : str, one of 'left', 'right', 'inner'
        join type
    lsuffix : str
        left index suffix
    rsuffix : str
        right index suffix
    """
    if not isinstance(left_df, GeoDataFrame):
        raise ValueError(
            "'left_df' should be GeoDataFrame, got {}".format(type(left_df))
        )

    if not isinstance(right_df, GeoDataFrame):
        raise ValueError(
            "'right_df' should be GeoDataFrame, got {}".format(type(right_df))
        )

    allowed_hows = ["left", "right", "inner"]
    if how not in allowed_hows:
        raise ValueError(
            '`how` was "{}" but is expected to be in {}'.format(how, allowed_hows)
        )

    if not _check_crs(left_df, right_df):
        _crs_mismatch_warn(left_df, right_df, stacklevel=4)

    index_left = "index_{}".format(lsuffix)
    index_right = "index_{}".format(rsuffix)

    # due to GH 352
    if any(left_df.columns.isin([index_left, index_right])) or any(
        right_df.columns.isin([index_left, index_right])
    ):
        raise ValueError(
            "'{0}' and '{1}' cannot be names in the frames being"
            " joined".format(index_left, index_right)
        )


def _geom_predicate_query(left_df, right_df, predicate):
    """Compute geometric comparisons and get matching indices.

    Parameters
    ----------
    left_df : GeoDataFrame
    right_df : GeoDataFrame
    predicate : string
        Binary predicate to query.

    Returns
    -------
    DataFrame
        DataFrame with matching indices in
        columns named `_key_left` and `_key_right`.
    """
    with warnings.catch_warnings():
        # We don't need to show our own warning here
        # TODO remove this once the deprecation has been enforced
        warnings.filterwarnings(
            "ignore", "Generated spatial index is empty", FutureWarning
        )

        original_predicate = predicate

        if predicate == "within":
            # within is implemented as the inverse of contains
            # contains is a faster predicate
            # see discussion at https://github.com/geopandas/geopandas/pull/1421
            predicate = "contains"
            sindex = left_df.sindex
            input_geoms = right_df.geometry
        else:
            # all other predicates are symmetric
            # keep them the same
            sindex = right_df.sindex
            input_geoms = left_df.geometry

    if sindex:
        l_idx, r_idx = sindex.query_bulk(input_geoms, predicate=predicate, sort=False)
        indices = pd.DataFrame({"_key_left": l_idx, "_key_right": r_idx})
    else:
        # when sindex is empty / has no valid geometries
        indices = pd.DataFrame(columns=["_key_left", "_key_right"], dtype=float)

    if original_predicate == "within":
        # within is implemented as the inverse of contains
        # flip back the results
        indices = indices.rename(
            columns={"_key_left": "_key_right", "_key_right": "_key_left"}
        )

    return indices


def _frame_join(join_df, left_df, right_df, how, lsuffix, rsuffix):
    """Join the GeoDataFrames at the DataFrame level.

    Parameters
    ----------
    join_df : DataFrame
        Indices and join data returned by the geometric join.
        Must have columns `_key_left` and `_key_right`
        with integer indices representing the matches
        from `left_df` and `right_df` respectively.
        Additional columns may be included and will be copied to
        the resultant GeoDataFrame.
    left_df : GeoDataFrame
    right_df : GeoDataFrame
    lsuffix : string
        Suffix to apply to overlapping column names (left GeoDataFrame).
    rsuffix : string
        Suffix to apply to overlapping column names (right GeoDataFrame).
    how : string
        The type of join to use on the DataFrame level.

    Returns
    -------
    GeoDataFrame
        Joined GeoDataFrame.
    """
    # the spatial index only allows limited (numeric) index types, but an
    # index in geopandas may be any arbitrary dtype. so reset both indices now
    # and store references to the original indices, to be reaffixed later.
    # GH 352
    index_left = "index_{}".format(lsuffix)
    left_df = left_df.copy(deep=True)
    try:
        left_index_name = left_df.index.name
        left_df.index = left_df.index.rename(index_left)
    except TypeError:
        index_left = [
            "index_{}".format(lsuffix + str(pos))
            for pos, ix in enumerate(left_df.index.names)
        ]
        left_index_name = left_df.index.names
        left_df.index = left_df.index.rename(index_left)
    left_df = left_df.reset_index()

    index_right = "index_{}".format(rsuffix)
    right_df = right_df.copy(deep=True)
    try:
        right_index_name = right_df.index.name
        right_df.index = right_df.index.rename(index_right)
    except TypeError:
        index_right = [
            "index_{}".format(rsuffix + str(pos))
            for pos, ix in enumerate(right_df.index.names)
        ]
        right_index_name = right_df.index.names
        right_df.index = right_df.index.rename(index_right)
    right_df = right_df.reset_index()

    # perform join on the dataframes
    if how == "inner":
        join_df = join_df.set_index("_key_left")
        joined = (
            left_df.merge(join_df, left_index=True, right_index=True)
            .merge(
                right_df.drop(right_df.geometry.name, axis=1),
                left_on="_key_right",
                right_index=True,
                suffixes=("_{}".format(lsuffix), "_{}".format(rsuffix)),
            )
            .set_index(index_left)
            .drop(["_key_right"], axis=1)
        )
        if isinstance(index_left, list):
            joined.index.names = left_index_name
        else:
            joined.index.name = left_index_name

    elif how == "left":
        join_df = join_df.set_index("_key_left")
        joined = (
            left_df.merge(join_df, left_index=True, right_index=True, how="left")
            .merge(
                right_df.drop(right_df.geometry.name, axis=1),
                how="left",
                left_on="_key_right",
                right_index=True,
                suffixes=("_{}".format(lsuffix), "_{}".format(rsuffix)),
            )
            .set_index(index_left)
            .drop(["_key_right"], axis=1)
        )
        if isinstance(index_left, list):
            joined.index.names = left_index_name
        else:
            joined.index.name = left_index_name

    else:  # how == 'right':
        joined = (
            left_df.drop(left_df.geometry.name, axis=1)
            .merge(
                join_df.merge(
                    right_df, left_on="_key_right", right_index=True, how="right"
                ),
                left_index=True,
                right_on="_key_left",
                how="right",
                suffixes=("_{}".format(lsuffix), "_{}".format(rsuffix)),
            )
            .set_index(index_right)
            .drop(["_key_left", "_key_right"], axis=1)
            .set_geometry(right_df.geometry.name)
        )
        if isinstance(index_right, list):
            joined.index.names = right_index_name
        else:
            joined.index.name = right_index_name

    return joined


def _nearest_query(
    left_df: GeoDataFrame,
    right_df: GeoDataFrame,
    max_distance: float,
    how: str,
    return_distance: bool,
):
    if not (compat.USE_SHAPELY_20 or (compat.USE_PYGEOS and compat.PYGEOS_GE_010)):
        raise NotImplementedError(
            "Currently, only PyGEOS >= 0.10.0 or Shapely >= 2.0 supports "
            "`nearest_all`. " + compat.INSTALL_PYGEOS_ERROR
        )
    # use the opposite of the join direction for the index
    use_left_as_sindex = how == "right"
    if use_left_as_sindex:
        sindex = left_df.sindex
        query = right_df.geometry
    else:
        sindex = right_df.sindex
        query = left_df.geometry
    if sindex:
        res = sindex.nearest(
            query,
            return_all=True,
            max_distance=max_distance,
            return_distance=return_distance,
        )
        if return_distance:
            (input_idx, tree_idx), distances = res
        else:
            (input_idx, tree_idx) = res
            distances = None
        if use_left_as_sindex:
            l_idx, r_idx = tree_idx, input_idx
            sort_order = np.argsort(l_idx, kind="stable")
            l_idx, r_idx = l_idx[sort_order], r_idx[sort_order]
            if distances is not None:
                distances = distances[sort_order]
        else:
            l_idx, r_idx = input_idx, tree_idx
        join_df = pd.DataFrame(
            {"_key_left": l_idx, "_key_right": r_idx, "distances": distances}
        )
    else:
        # when sindex is empty / has no valid geometries
        join_df = pd.DataFrame(
            columns=["_key_left", "_key_right", "distances"], dtype=float
        )
    return join_df


def sjoin_nearest(
    left_df: GeoDataFrame,
    right_df: GeoDataFrame,
    how: str = "inner",
    max_distance: Optional[float] = None,
    lsuffix: str = "left",
    rsuffix: str = "right",
    distance_col: Optional[str] = None,
) -> GeoDataFrame:
    """Spatial join of two GeoDataFrames based on the distance between their geometries.

    Results will include multiple output records for a single input record
    where there are multiple equidistant nearest or intersected neighbors.

    Distance is calculated in CRS units and can be returned using the
    `distance_col` parameter.

    See the User Guide page
    https://geopandas.readthedocs.io/en/latest/docs/user_guide/mergingdata.html
    for more details.


    Parameters
    ----------
    left_df, right_df : GeoDataFrames
    how : string, default 'inner'
        The type of join:

        * 'left': use keys from left_df; retain only left_df geometry column
        * 'right': use keys from right_df; retain only right_df geometry column
        * 'inner': use intersection of keys from both dfs; retain only
          left_df geometry column
    max_distance : float, default None
        Maximum distance within which to query for nearest geometry.
        Must be greater than 0.
        The max_distance used to search for nearest items in the tree may have a
        significant impact on performance by reducing the number of input
        geometries that are evaluated for nearest items in the tree.
    lsuffix : string, default 'left'
        Suffix to apply to overlapping column names (left GeoDataFrame).
    rsuffix : string, default 'right'
        Suffix to apply to overlapping column names (right GeoDataFrame).
    distance_col : string, default None
        If set, save the distances computed between matching geometries under a
        column of this name in the joined GeoDataFrame.

    Examples
    --------
    >>> countries = geopandas.read_file(geopandas.datasets.get_\
path("naturalearth_lowres"))
    >>> cities = geopandas.read_file(geopandas.datasets.get_path("naturalearth_cities"))
    >>> countries.head(2).name  # doctest: +SKIP
        pop_est      continent                      name \
iso_a3  gdp_md_est                                           geometry
    0     920938        Oceania                      Fiji    FJI      8374.0  MULTIPOLY\
GON (((180.00000 -16.06713, 180.00000...
    1   53950935         Africa                  Tanzania    TZA    150600.0  POLYGON (\
(33.90371 -0.95000, 34.07262 -1.05982...
    >>> cities.head(2).name  # doctest: +SKIP
            name                   geometry
    0  Vatican City  POINT (12.45339 41.90328)
    1    San Marino  POINT (12.44177 43.93610)

    >>> cities_w_country_data = geopandas.sjoin_nearest(cities, countries)
    >>> cities_w_country_data[['name_left', 'name_right']].head(2)  # doctest: +SKIP
            name_left                   geometry  index_right   pop_est continent name_\
right iso_a3  gdp_md_est
    0    Vatican City  POINT (12.45339 41.90328)          141  62137802    Europe      \
Italy    ITA   2221000.0
    1      San Marino  POINT (12.44177 43.93610)          141  62137802    Europe      \
Italy    ITA   2221000.0

    To include the distances:

    >>> cities_w_country_data = geopandas.sjoin_nearest\
(cities, countries, distance_col="distances")
    >>> cities_w_country_data[["name_left", "name_right", \
"distances"]].head(2)  # doctest: +SKIP
            name_left name_right distances
    0    Vatican City      Italy       0.0
    1      San Marino      Italy       0.0

    In the following example, we get multiple cities for Italy because all results are
    equidistant (in this case zero because they intersect).
    In fact, we get 3 results in total:

    >>> countries_w_city_data = geopandas.sjoin_nearest\
(cities, countries, distance_col="distances", how="right")
    >>> italy_results = \
countries_w_city_data[countries_w_city_data["name_left"] == "Italy"]
    >>> italy_results  # doctest: +SKIP
         name_x        name_y
    141  Vatican City  Italy
    141    San Marino  Italy
    141          Rome  Italy

    See also
    --------
    sjoin : binary predicate joins
    GeoDataFrame.sjoin_nearest : equivalent method

    Notes
    -----
    Since this join relies on distances, results will be inaccurate
    if your geometries are in a geographic CRS.

    Every operation in GeoPandas is planar, i.e. the potential third
    dimension is not taken into account.
    """
    _basic_checks(left_df, right_df, how, lsuffix, rsuffix)

    left_df.geometry.values.check_geographic_crs(stacklevel=1)
    right_df.geometry.values.check_geographic_crs(stacklevel=1)

    return_distance = distance_col is not None

    join_df = _nearest_query(left_df, right_df, max_distance, how, return_distance)

    if return_distance:
        join_df = join_df.rename(columns={"distances": distance_col})
    else:
        join_df.pop("distances")

    joined = _frame_join(join_df, left_df, right_df, how, lsuffix, rsuffix)

    if return_distance:
        columns = [c for c in joined.columns if c != distance_col] + [distance_col]
        joined = joined[columns]

    return joined