File: test_sjoin.py

package info (click to toggle)
python-geopandas 0.12.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 13,464 kB
  • sloc: python: 21,174; makefile: 149; sh: 25
file content (932 lines) | stat: -rw-r--r-- 35,795 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
from packaging.version import Version
import math
from typing import Sequence
from geopandas.testing import assert_geodataframe_equal

import numpy as np
import pandas as pd

from shapely.geometry import Point, Polygon, GeometryCollection

import geopandas
import geopandas._compat as compat
from geopandas import GeoDataFrame, GeoSeries, read_file, sjoin, sjoin_nearest
from geopandas.testing import assert_geoseries_equal

from pandas.testing import assert_frame_equal
import pytest


TEST_NEAREST = compat.USE_SHAPELY_20 or (compat.PYGEOS_GE_010 and compat.USE_PYGEOS)


pytestmark = pytest.mark.skip_no_sindex


@pytest.fixture()
def dfs(request):
    polys1 = GeoSeries(
        [
            Polygon([(0, 0), (5, 0), (5, 5), (0, 5)]),
            Polygon([(5, 5), (6, 5), (6, 6), (5, 6)]),
            Polygon([(6, 0), (9, 0), (9, 3), (6, 3)]),
        ]
    )

    polys2 = GeoSeries(
        [
            Polygon([(1, 1), (4, 1), (4, 4), (1, 4)]),
            Polygon([(4, 4), (7, 4), (7, 7), (4, 7)]),
            Polygon([(7, 7), (10, 7), (10, 10), (7, 10)]),
        ]
    )

    df1 = GeoDataFrame({"geometry": polys1, "df1": [0, 1, 2]})
    df2 = GeoDataFrame({"geometry": polys2, "df2": [3, 4, 5]})

    if request.param == "string-index":
        df1.index = ["a", "b", "c"]
        df2.index = ["d", "e", "f"]

    if request.param == "named-index":
        df1.index.name = "df1_ix"
        df2.index.name = "df2_ix"

    if request.param == "multi-index":
        i1 = ["a", "b", "c"]
        i2 = ["d", "e", "f"]
        df1 = df1.set_index([i1, i2])
        df2 = df2.set_index([i2, i1])

    if request.param == "named-multi-index":
        i1 = ["a", "b", "c"]
        i2 = ["d", "e", "f"]
        df1 = df1.set_index([i1, i2])
        df2 = df2.set_index([i2, i1])
        df1.index.names = ["df1_ix1", "df1_ix2"]
        df2.index.names = ["df2_ix1", "df2_ix2"]

    # construction expected frames
    expected = {}

    part1 = df1.copy().reset_index().rename(columns={"index": "index_left"})
    part2 = (
        df2.copy()
        .iloc[[0, 1, 1, 2]]
        .reset_index()
        .rename(columns={"index": "index_right"})
    )
    part1["_merge"] = [0, 1, 2]
    part2["_merge"] = [0, 0, 1, 3]
    exp = pd.merge(part1, part2, on="_merge", how="outer")
    expected["intersects"] = exp.drop("_merge", axis=1).copy()

    part1 = df1.copy().reset_index().rename(columns={"index": "index_left"})
    part2 = df2.copy().reset_index().rename(columns={"index": "index_right"})
    part1["_merge"] = [0, 1, 2]
    part2["_merge"] = [0, 3, 3]
    exp = pd.merge(part1, part2, on="_merge", how="outer")
    expected["contains"] = exp.drop("_merge", axis=1).copy()

    part1["_merge"] = [0, 1, 2]
    part2["_merge"] = [3, 1, 3]
    exp = pd.merge(part1, part2, on="_merge", how="outer")
    expected["within"] = exp.drop("_merge", axis=1).copy()

    return [request.param, df1, df2, expected]


class TestSpatialJoin:
    @pytest.mark.parametrize(
        "how, lsuffix, rsuffix, expected_cols",
        [
            ("left", "left", "right", {"col_left", "col_right", "index_right"}),
            ("inner", "left", "right", {"col_left", "col_right", "index_right"}),
            ("right", "left", "right", {"col_left", "col_right", "index_left"}),
            ("left", "lft", "rgt", {"col_lft", "col_rgt", "index_rgt"}),
            ("inner", "lft", "rgt", {"col_lft", "col_rgt", "index_rgt"}),
            ("right", "lft", "rgt", {"col_lft", "col_rgt", "index_lft"}),
        ],
    )
    def test_suffixes(self, how: str, lsuffix: str, rsuffix: str, expected_cols):
        left = GeoDataFrame({"col": [1], "geometry": [Point(0, 0)]})
        right = GeoDataFrame({"col": [1], "geometry": [Point(0, 0)]})
        joined = sjoin(left, right, how=how, lsuffix=lsuffix, rsuffix=rsuffix)
        assert set(joined.columns) == expected_cols | set(("geometry",))

    @pytest.mark.parametrize("dfs", ["default-index", "string-index"], indirect=True)
    def test_crs_mismatch(self, dfs):
        index, df1, df2, expected = dfs
        df1.crs = "epsg:4326"
        with pytest.warns(UserWarning, match="CRS mismatch between the CRS"):
            sjoin(df1, df2)

    @pytest.mark.parametrize("dfs", ["default-index"], indirect=True)
    @pytest.mark.parametrize("op", ["intersects", "contains", "within"])
    def test_deprecated_op_param(self, dfs, op):
        _, df1, df2, _ = dfs
        with pytest.warns(FutureWarning, match="`op` parameter is deprecated"):
            sjoin(df1, df2, op=op)

    @pytest.mark.parametrize("dfs", ["default-index"], indirect=True)
    @pytest.mark.parametrize("op", ["intersects", "contains", "within"])
    @pytest.mark.parametrize("predicate", ["contains", "within"])
    def test_deprecated_op_param_nondefault_predicate(self, dfs, op, predicate):
        _, df1, df2, _ = dfs
        match = "use the `predicate` parameter instead"
        if op != predicate:
            warntype = UserWarning
            match = (
                "`predicate` will be overridden by the value of `op`"
                + r"(.|\s)*"
                + match
            )
        else:
            warntype = FutureWarning
        with pytest.warns(warntype, match=match):
            sjoin(df1, df2, predicate=predicate, op=op)

    @pytest.mark.parametrize("dfs", ["default-index"], indirect=True)
    def test_unknown_kwargs(self, dfs):
        _, df1, df2, _ = dfs
        with pytest.raises(
            TypeError,
            match=r"sjoin\(\) got an unexpected keyword argument 'extra_param'",
        ):
            sjoin(df1, df2, extra_param="test")

    @pytest.mark.filterwarnings("ignore:The `op` parameter:FutureWarning")
    @pytest.mark.parametrize(
        "dfs",
        [
            "default-index",
            "string-index",
            "named-index",
            "multi-index",
            "named-multi-index",
        ],
        indirect=True,
    )
    @pytest.mark.parametrize("predicate", ["intersects", "contains", "within"])
    @pytest.mark.parametrize("predicate_kw", ["predicate", "op"])
    def test_inner(self, predicate, predicate_kw, dfs):
        index, df1, df2, expected = dfs

        res = sjoin(df1, df2, how="inner", **{predicate_kw: predicate})

        exp = expected[predicate].dropna().copy()
        exp = exp.drop("geometry_y", axis=1).rename(columns={"geometry_x": "geometry"})
        exp[["df1", "df2"]] = exp[["df1", "df2"]].astype("int64")
        if index == "default-index":
            exp[["index_left", "index_right"]] = exp[
                ["index_left", "index_right"]
            ].astype("int64")
        if index == "named-index":
            exp[["df1_ix", "df2_ix"]] = exp[["df1_ix", "df2_ix"]].astype("int64")
            exp = exp.set_index("df1_ix").rename(columns={"df2_ix": "index_right"})
        if index in ["default-index", "string-index"]:
            exp = exp.set_index("index_left")
            exp.index.name = None
        if index == "multi-index":
            exp = exp.set_index(["level_0_x", "level_1_x"]).rename(
                columns={"level_0_y": "index_right0", "level_1_y": "index_right1"}
            )
            exp.index.names = df1.index.names
        if index == "named-multi-index":
            exp = exp.set_index(["df1_ix1", "df1_ix2"]).rename(
                columns={"df2_ix1": "index_right0", "df2_ix2": "index_right1"}
            )
            exp.index.names = df1.index.names

        assert_frame_equal(res, exp)

    @pytest.mark.parametrize(
        "dfs",
        [
            "default-index",
            "string-index",
            "named-index",
            "multi-index",
            "named-multi-index",
        ],
        indirect=True,
    )
    @pytest.mark.parametrize("predicate", ["intersects", "contains", "within"])
    def test_left(self, predicate, dfs):
        index, df1, df2, expected = dfs

        res = sjoin(df1, df2, how="left", predicate=predicate)

        if index in ["default-index", "string-index"]:
            exp = expected[predicate].dropna(subset=["index_left"]).copy()
        elif index == "named-index":
            exp = expected[predicate].dropna(subset=["df1_ix"]).copy()
        elif index == "multi-index":
            exp = expected[predicate].dropna(subset=["level_0_x"]).copy()
        elif index == "named-multi-index":
            exp = expected[predicate].dropna(subset=["df1_ix1"]).copy()
        exp = exp.drop("geometry_y", axis=1).rename(columns={"geometry_x": "geometry"})
        exp["df1"] = exp["df1"].astype("int64")
        if index == "default-index":
            exp["index_left"] = exp["index_left"].astype("int64")
            # TODO: in result the dtype is object
            res["index_right"] = res["index_right"].astype(float)
        elif index == "named-index":
            exp[["df1_ix"]] = exp[["df1_ix"]].astype("int64")
            exp = exp.set_index("df1_ix").rename(columns={"df2_ix": "index_right"})
        if index in ["default-index", "string-index"]:
            exp = exp.set_index("index_left")
            exp.index.name = None
        if index == "multi-index":
            exp = exp.set_index(["level_0_x", "level_1_x"]).rename(
                columns={"level_0_y": "index_right0", "level_1_y": "index_right1"}
            )
            exp.index.names = df1.index.names
        if index == "named-multi-index":
            exp = exp.set_index(["df1_ix1", "df1_ix2"]).rename(
                columns={"df2_ix1": "index_right0", "df2_ix2": "index_right1"}
            )
            exp.index.names = df1.index.names

        assert_frame_equal(res, exp)

    def test_empty_join(self):
        # Check joins resulting in empty gdfs.
        polygons = geopandas.GeoDataFrame(
            {
                "col2": [1, 2],
                "geometry": [
                    Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]),
                    Polygon([(1, 0), (2, 0), (2, 1), (1, 1)]),
                ],
            }
        )
        not_in = geopandas.GeoDataFrame({"col1": [1], "geometry": [Point(-0.5, 0.5)]})
        empty = sjoin(not_in, polygons, how="left", predicate="intersects")
        assert empty.index_right.isnull().all()
        empty = sjoin(not_in, polygons, how="right", predicate="intersects")
        assert empty.index_left.isnull().all()
        empty = sjoin(not_in, polygons, how="inner", predicate="intersects")
        assert empty.empty

    @pytest.mark.parametrize(
        "predicate",
        [
            "contains",
            "contains_properly",
            "covered_by",
            "covers",
            "crosses",
            "intersects",
            "touches",
            "within",
        ],
    )
    @pytest.mark.parametrize(
        "empty",
        [
            GeoDataFrame(geometry=[GeometryCollection(), GeometryCollection()]),
            GeoDataFrame(geometry=GeoSeries()),
        ],
    )
    def test_join_with_empty(self, predicate, empty):
        # Check joins with empty geometry columns/dataframes.
        polygons = geopandas.GeoDataFrame(
            {
                "col2": [1, 2],
                "geometry": [
                    Polygon([(0, 0), (1, 0), (1, 1), (0, 1)]),
                    Polygon([(1, 0), (2, 0), (2, 1), (1, 1)]),
                ],
            }
        )
        result = sjoin(empty, polygons, how="left", predicate=predicate)
        assert result.index_right.isnull().all()
        result = sjoin(empty, polygons, how="right", predicate=predicate)
        assert result.index_left.isnull().all()
        result = sjoin(empty, polygons, how="inner", predicate=predicate)
        assert result.empty

    @pytest.mark.parametrize("dfs", ["default-index", "string-index"], indirect=True)
    def test_sjoin_invalid_args(self, dfs):
        index, df1, df2, expected = dfs

        with pytest.raises(ValueError, match="'left_df' should be GeoDataFrame"):
            sjoin(df1.geometry, df2)

        with pytest.raises(ValueError, match="'right_df' should be GeoDataFrame"):
            sjoin(df1, df2.geometry)

    @pytest.mark.parametrize(
        "dfs",
        [
            "default-index",
            "string-index",
            "named-index",
            "multi-index",
            "named-multi-index",
        ],
        indirect=True,
    )
    @pytest.mark.parametrize("predicate", ["intersects", "contains", "within"])
    def test_right(self, predicate, dfs):
        index, df1, df2, expected = dfs

        res = sjoin(df1, df2, how="right", predicate=predicate)

        if index in ["default-index", "string-index"]:
            exp = expected[predicate].dropna(subset=["index_right"]).copy()
        elif index == "named-index":
            exp = expected[predicate].dropna(subset=["df2_ix"]).copy()
        elif index == "multi-index":
            exp = expected[predicate].dropna(subset=["level_0_y"]).copy()
        elif index == "named-multi-index":
            exp = expected[predicate].dropna(subset=["df2_ix1"]).copy()
        exp = exp.drop("geometry_x", axis=1).rename(columns={"geometry_y": "geometry"})
        exp["df2"] = exp["df2"].astype("int64")
        if index == "default-index":
            exp["index_right"] = exp["index_right"].astype("int64")
            res["index_left"] = res["index_left"].astype(float)
        elif index == "named-index":
            exp[["df2_ix"]] = exp[["df2_ix"]].astype("int64")
            exp = exp.set_index("df2_ix").rename(columns={"df1_ix": "index_left"})
        if index in ["default-index", "string-index"]:
            exp = exp.set_index("index_right")
            exp = exp.reindex(columns=res.columns)
            exp.index.name = None
        if index == "multi-index":
            exp = exp.set_index(["level_0_y", "level_1_y"]).rename(
                columns={"level_0_x": "index_left0", "level_1_x": "index_left1"}
            )
            exp.index.names = df2.index.names
        if index == "named-multi-index":
            exp = exp.set_index(["df2_ix1", "df2_ix2"]).rename(
                columns={"df1_ix1": "index_left0", "df1_ix2": "index_left1"}
            )
            exp.index.names = df2.index.names

        # GH 1364 fix of behaviour was done in pandas 1.1.0
        if predicate == "within" and Version(pd.__version__) >= Version("1.1.0"):
            exp = exp.sort_index()

        assert_frame_equal(res, exp, check_index_type=False)


class TestSpatialJoinNYBB:
    def setup_method(self):
        nybb_filename = geopandas.datasets.get_path("nybb")
        self.polydf = read_file(nybb_filename)
        self.crs = self.polydf.crs
        N = 20
        b = [int(x) for x in self.polydf.total_bounds]
        self.pointdf = GeoDataFrame(
            [
                {"geometry": Point(x, y), "pointattr1": x + y, "pointattr2": x - y}
                for x, y in zip(
                    range(b[0], b[2], int((b[2] - b[0]) / N)),
                    range(b[1], b[3], int((b[3] - b[1]) / N)),
                )
            ],
            crs=self.crs,
        )

    def test_geometry_name(self):
        # test sjoin is working with other geometry name
        polydf_original_geom_name = self.polydf.geometry.name
        self.polydf = self.polydf.rename(columns={"geometry": "new_geom"}).set_geometry(
            "new_geom"
        )
        assert polydf_original_geom_name != self.polydf.geometry.name
        res = sjoin(self.polydf, self.pointdf, how="left")
        assert self.polydf.geometry.name == res.geometry.name

    def test_sjoin_left(self):
        df = sjoin(self.pointdf, self.polydf, how="left")
        assert df.shape == (21, 8)
        for i, row in df.iterrows():
            assert row.geometry.geom_type == "Point"
        assert "pointattr1" in df.columns
        assert "BoroCode" in df.columns

    def test_sjoin_right(self):
        # the inverse of left
        df = sjoin(self.pointdf, self.polydf, how="right")
        df2 = sjoin(self.polydf, self.pointdf, how="left")
        assert df.shape == (12, 8)
        assert df.shape == df2.shape
        for i, row in df.iterrows():
            assert row.geometry.geom_type == "MultiPolygon"
        for i, row in df2.iterrows():
            assert row.geometry.geom_type == "MultiPolygon"

    def test_sjoin_inner(self):
        df = sjoin(self.pointdf, self.polydf, how="inner")
        assert df.shape == (11, 8)

    def test_sjoin_predicate(self):
        # points within polygons
        df = sjoin(self.pointdf, self.polydf, how="left", predicate="within")
        assert df.shape == (21, 8)
        assert df.loc[1]["BoroName"] == "Staten Island"

        # points contain polygons? never happens so we should have nulls
        df = sjoin(self.pointdf, self.polydf, how="left", predicate="contains")
        assert df.shape == (21, 8)
        assert np.isnan(df.loc[1]["Shape_Area"])

    def test_sjoin_bad_predicate(self):
        # AttributeError: 'Point' object has no attribute 'spandex'
        with pytest.raises(ValueError):
            sjoin(self.pointdf, self.polydf, how="left", predicate="spandex")

    def test_sjoin_duplicate_column_name(self):
        pointdf2 = self.pointdf.rename(columns={"pointattr1": "Shape_Area"})
        df = sjoin(pointdf2, self.polydf, how="left")
        assert "Shape_Area_left" in df.columns
        assert "Shape_Area_right" in df.columns

    @pytest.mark.parametrize("how", ["left", "right", "inner"])
    def test_sjoin_named_index(self, how):
        # original index names should be unchanged
        pointdf2 = self.pointdf.copy()
        pointdf2.index.name = "pointid"
        polydf = self.polydf.copy()
        polydf.index.name = "polyid"

        res = sjoin(pointdf2, polydf, how=how)
        assert pointdf2.index.name == "pointid"
        assert polydf.index.name == "polyid"

        # original index name should pass through to result
        if how == "right":
            assert res.index.name == "polyid"
        else:  # how == "left", how == "inner"
            assert res.index.name == "pointid"

    def test_sjoin_values(self):
        # GH190
        self.polydf.index = [1, 3, 4, 5, 6]
        df = sjoin(self.pointdf, self.polydf, how="left")
        assert df.shape == (21, 8)
        df = sjoin(self.polydf, self.pointdf, how="left")
        assert df.shape == (12, 8)

    @pytest.mark.xfail
    def test_no_overlapping_geometry(self):
        # Note: these tests are for correctly returning GeoDataFrame
        # when result of the join is empty

        df_inner = sjoin(self.pointdf.iloc[17:], self.polydf, how="inner")
        df_left = sjoin(self.pointdf.iloc[17:], self.polydf, how="left")
        df_right = sjoin(self.pointdf.iloc[17:], self.polydf, how="right")

        expected_inner_df = pd.concat(
            [
                self.pointdf.iloc[:0],
                pd.Series(name="index_right", dtype="int64"),
                self.polydf.drop("geometry", axis=1).iloc[:0],
            ],
            axis=1,
        )

        expected_inner = GeoDataFrame(expected_inner_df)

        expected_right_df = pd.concat(
            [
                self.pointdf.drop("geometry", axis=1).iloc[:0],
                pd.concat(
                    [
                        pd.Series(name="index_left", dtype="int64"),
                        pd.Series(name="index_right", dtype="int64"),
                    ],
                    axis=1,
                ),
                self.polydf,
            ],
            axis=1,
        )

        expected_right = GeoDataFrame(expected_right_df).set_index("index_right")

        expected_left_df = pd.concat(
            [
                self.pointdf.iloc[17:],
                pd.Series(name="index_right", dtype="int64"),
                self.polydf.iloc[:0].drop("geometry", axis=1),
            ],
            axis=1,
        )

        expected_left = GeoDataFrame(expected_left_df)

        assert expected_inner.equals(df_inner)
        assert expected_right.equals(df_right)
        assert expected_left.equals(df_left)

    @pytest.mark.skip("Not implemented")
    def test_sjoin_outer(self):
        df = sjoin(self.pointdf, self.polydf, how="outer")
        assert df.shape == (21, 8)

    def test_sjoin_empty_geometries(self):
        # https://github.com/geopandas/geopandas/issues/944
        empty = GeoDataFrame(geometry=[GeometryCollection()] * 3)
        df = sjoin(pd.concat([self.pointdf, empty]), self.polydf, how="left")
        assert df.shape == (24, 8)
        df2 = sjoin(self.pointdf, pd.concat([self.polydf, empty]), how="left")
        assert df2.shape == (21, 8)

    @pytest.mark.parametrize("predicate", ["intersects", "within", "contains"])
    def test_sjoin_no_valid_geoms(self, predicate):
        """Tests a completely empty GeoDataFrame."""
        empty = GeoDataFrame(geometry=[], crs=self.pointdf.crs)
        assert sjoin(self.pointdf, empty, how="inner", predicate=predicate).empty
        assert sjoin(self.pointdf, empty, how="right", predicate=predicate).empty
        assert sjoin(empty, self.pointdf, how="inner", predicate=predicate).empty
        assert sjoin(empty, self.pointdf, how="left", predicate=predicate).empty

    def test_empty_sjoin_return_duplicated_columns(self):

        nybb = geopandas.read_file(geopandas.datasets.get_path("nybb"))
        nybb2 = nybb.copy()
        nybb2.geometry = nybb2.translate(200000)  # to get non-overlapping

        result = geopandas.sjoin(nybb, nybb2)

        assert "BoroCode_right" in result.columns
        assert "BoroCode_left" in result.columns


class TestSpatialJoinNaturalEarth:
    def setup_method(self):
        world_path = geopandas.datasets.get_path("naturalearth_lowres")
        cities_path = geopandas.datasets.get_path("naturalearth_cities")
        self.world = read_file(world_path)
        self.cities = read_file(cities_path)

    def test_sjoin_inner(self):
        # GH637
        countries = self.world[["geometry", "name"]]
        countries = countries.rename(columns={"name": "country"})
        cities_with_country = sjoin(
            self.cities, countries, how="inner", predicate="intersects"
        )
        assert cities_with_country.shape == (213, 4)


@pytest.mark.skipif(
    TEST_NEAREST,
    reason=("This test can only be run _without_ PyGEOS >= 0.10 installed"),
)
def test_no_nearest_all():
    df1 = geopandas.GeoDataFrame({"geometry": []})
    df2 = geopandas.GeoDataFrame({"geometry": []})
    with pytest.raises(
        NotImplementedError,
        match="Currently, only PyGEOS >= 0.10.0 or Shapely >= 2.0 supports",
    ):
        sjoin_nearest(df1, df2)


@pytest.mark.skipif(
    not TEST_NEAREST,
    reason=(
        "PyGEOS >= 0.10.0"
        " must be installed and activated via the geopandas.compat module to"
        " test sjoin_nearest"
    ),
)
class TestNearest:
    @pytest.mark.parametrize(
        "how_kwargs", ({}, {"how": "inner"}, {"how": "left"}, {"how": "right"})
    )
    def test_allowed_hows(self, how_kwargs):
        left = geopandas.GeoDataFrame({"geometry": []})
        right = geopandas.GeoDataFrame({"geometry": []})
        sjoin_nearest(left, right, **how_kwargs)  # no error

    @pytest.mark.parametrize("how", ("outer", "abcde"))
    def test_invalid_hows(self, how: str):
        left = geopandas.GeoDataFrame({"geometry": []})
        right = geopandas.GeoDataFrame({"geometry": []})
        with pytest.raises(ValueError, match="`how` was"):
            sjoin_nearest(left, right, how=how)

    @pytest.mark.parametrize("distance_col", (None, "distance"))
    def test_empty_right_df_how_left(self, distance_col: str):
        # all records from left and no results from right
        left = geopandas.GeoDataFrame({"geometry": [Point(0, 0), Point(1, 1)]})
        right = geopandas.GeoDataFrame({"geometry": []})
        joined = sjoin_nearest(
            left,
            right,
            how="left",
            distance_col=distance_col,
        )
        assert_geoseries_equal(joined["geometry"], left["geometry"])
        assert joined["index_right"].isna().all()
        if distance_col is not None:
            assert joined[distance_col].isna().all()

    @pytest.mark.parametrize("distance_col", (None, "distance"))
    def test_empty_right_df_how_right(self, distance_col: str):
        # no records in joined
        left = geopandas.GeoDataFrame({"geometry": [Point(0, 0), Point(1, 1)]})
        right = geopandas.GeoDataFrame({"geometry": []})
        joined = sjoin_nearest(
            left,
            right,
            how="right",
            distance_col=distance_col,
        )
        assert joined.empty
        if distance_col is not None:
            assert distance_col in joined

    @pytest.mark.parametrize("how", ["inner", "left"])
    @pytest.mark.parametrize("distance_col", (None, "distance"))
    def test_empty_left_df(self, how, distance_col: str):
        right = geopandas.GeoDataFrame({"geometry": [Point(0, 0), Point(1, 1)]})
        left = geopandas.GeoDataFrame({"geometry": []})
        joined = sjoin_nearest(left, right, how=how, distance_col=distance_col)
        assert joined.empty
        if distance_col is not None:
            assert distance_col in joined

    @pytest.mark.parametrize("distance_col", (None, "distance"))
    def test_empty_left_df_how_right(self, distance_col: str):
        right = geopandas.GeoDataFrame({"geometry": [Point(0, 0), Point(1, 1)]})
        left = geopandas.GeoDataFrame({"geometry": []})
        joined = sjoin_nearest(
            left,
            right,
            how="right",
            distance_col=distance_col,
        )
        assert_geoseries_equal(joined["geometry"], right["geometry"])
        assert joined["index_left"].isna().all()
        if distance_col is not None:
            assert joined[distance_col].isna().all()

    @pytest.mark.parametrize("how", ["inner", "left"])
    def test_empty_join_due_to_max_distance(self, how):
        # after applying max_distance the join comes back empty
        # (as in NaN in the joined columns)
        left = geopandas.GeoDataFrame({"geometry": [Point(0, 0)]})
        right = geopandas.GeoDataFrame({"geometry": [Point(1, 1), Point(2, 2)]})
        joined = sjoin_nearest(
            left,
            right,
            how=how,
            max_distance=1,
            distance_col="distances",
        )
        expected = left.copy()
        expected["index_right"] = [np.nan]
        expected["distances"] = [np.nan]
        if how == "inner":
            expected = expected.dropna()
            expected["index_right"] = expected["index_right"].astype("int64")
        assert_geodataframe_equal(joined, expected)

    def test_empty_join_due_to_max_distance_how_right(self):
        # after applying max_distance the join comes back empty
        # (as in NaN in the joined columns)
        left = geopandas.GeoDataFrame({"geometry": [Point(0, 0), Point(1, 1)]})
        right = geopandas.GeoDataFrame({"geometry": [Point(2, 2)]})
        joined = sjoin_nearest(
            left,
            right,
            how="right",
            max_distance=1,
            distance_col="distances",
        )
        expected = right.copy()
        expected["index_left"] = [np.nan]
        expected["distances"] = [np.nan]
        expected = expected[["index_left", "geometry", "distances"]]
        assert_geodataframe_equal(joined, expected)

    @pytest.mark.parametrize("how", ["inner", "left"])
    def test_max_distance(self, how):
        left = geopandas.GeoDataFrame({"geometry": [Point(0, 0), Point(1, 1)]})
        right = geopandas.GeoDataFrame({"geometry": [Point(1, 1), Point(2, 2)]})
        joined = sjoin_nearest(
            left,
            right,
            how=how,
            max_distance=1,
            distance_col="distances",
        )
        expected = left.copy()
        expected["index_right"] = [np.nan, 0]
        expected["distances"] = [np.nan, 0]
        if how == "inner":
            expected = expected.dropna()
            expected["index_right"] = expected["index_right"].astype("int64")
        assert_geodataframe_equal(joined, expected)

    def test_max_distance_how_right(self):
        left = geopandas.GeoDataFrame({"geometry": [Point(1, 1), Point(2, 2)]})
        right = geopandas.GeoDataFrame({"geometry": [Point(0, 0), Point(1, 1)]})
        joined = sjoin_nearest(
            left,
            right,
            how="right",
            max_distance=1,
            distance_col="distances",
        )
        expected = right.copy()
        expected["index_left"] = [np.nan, 0]
        expected["distances"] = [np.nan, 0]
        expected = expected[["index_left", "geometry", "distances"]]
        assert_geodataframe_equal(joined, expected)

    @pytest.mark.parametrize("how", ["inner", "left"])
    @pytest.mark.parametrize(
        "geo_left, geo_right, expected_left, expected_right, distances",
        [
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1)],
                [0, 1],
                [0, 0],
                [math.sqrt(2), 0],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0, 0)],
                [0, 1],
                [1, 0],
                [0, 0],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0, 0), Point(0, 0)],
                [0, 0, 1],
                [1, 2, 0],
                [0, 0, 0],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0, 0), Point(2, 2)],
                [0, 1],
                [1, 0],
                [0, 0],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0.25, 1)],
                [0, 1],
                [1, 0],
                [math.sqrt(0.25**2 + 1), 0],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(-10, -10), Point(100, 100)],
                [0, 1],
                [0, 0],
                [math.sqrt(10**2 + 10**2), math.sqrt(11**2 + 11**2)],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(x, y) for x, y in zip(np.arange(10), np.arange(10))],
                [0, 1],
                [0, 1],
                [0, 0],
            ),
            (
                [Point(0, 0), Point(1, 1), Point(0, 0)],
                [Point(1.1, 1.1), Point(0, 0)],
                [0, 1, 2],
                [1, 0, 1],
                [0, np.sqrt(0.1**2 + 0.1**2), 0],
            ),
        ],
    )
    def test_sjoin_nearest_left(
        self,
        geo_left,
        geo_right,
        expected_left: Sequence[int],
        expected_right: Sequence[int],
        distances: Sequence[float],
        how,
    ):
        left = geopandas.GeoDataFrame({"geometry": geo_left})
        right = geopandas.GeoDataFrame({"geometry": geo_right})
        expected_gdf = left.iloc[expected_left].copy()
        expected_gdf["index_right"] = expected_right
        # without distance col
        joined = sjoin_nearest(left, right, how=how)
        # inner / left join give a different row order
        check_like = how == "inner"
        assert_geodataframe_equal(expected_gdf, joined, check_like=check_like)
        # with distance col
        expected_gdf["distance_col"] = np.array(distances, dtype=float)
        joined = sjoin_nearest(left, right, how=how, distance_col="distance_col")
        assert_geodataframe_equal(expected_gdf, joined, check_like=check_like)

    @pytest.mark.parametrize(
        "geo_left, geo_right, expected_left, expected_right, distances",
        [
            ([Point(0, 0), Point(1, 1)], [Point(1, 1)], [1], [0], [0]),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0, 0)],
                [1, 0],
                [0, 1],
                [0, 0],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0, 0), Point(0, 0)],
                [1, 0, 0],
                [0, 1, 2],
                [0, 0, 0],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0, 0), Point(2, 2)],
                [1, 0, 1],
                [0, 1, 2],
                [0, 0, math.sqrt(2)],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(1, 1), Point(0.25, 1)],
                [1, 1],
                [0, 1],
                [0, 0.75],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(-10, -10), Point(100, 100)],
                [0, 1],
                [0, 1],
                [math.sqrt(10**2 + 10**2), math.sqrt(99**2 + 99**2)],
            ),
            (
                [Point(0, 0), Point(1, 1)],
                [Point(x, y) for x, y in zip(np.arange(10), np.arange(10))],
                [0, 1] + [1] * 8,
                list(range(10)),
                [0, 0] + [np.sqrt(x**2 + x**2) for x in np.arange(1, 9)],
            ),
            (
                [Point(0, 0), Point(1, 1), Point(0, 0)],
                [Point(1.1, 1.1), Point(0, 0)],
                [1, 0, 2],
                [0, 1, 1],
                [np.sqrt(0.1**2 + 0.1**2), 0, 0],
            ),
        ],
    )
    def test_sjoin_nearest_right(
        self,
        geo_left,
        geo_right,
        expected_left: Sequence[int],
        expected_right: Sequence[int],
        distances: Sequence[float],
    ):
        left = geopandas.GeoDataFrame({"geometry": geo_left})
        right = geopandas.GeoDataFrame({"geometry": geo_right})
        expected_gdf = right.iloc[expected_right].copy()
        expected_gdf["index_left"] = expected_left
        expected_gdf = expected_gdf[["index_left", "geometry"]]
        # without distance col
        joined = sjoin_nearest(left, right, how="right")
        assert_geodataframe_equal(expected_gdf, joined)
        # with distance col
        expected_gdf["distance_col"] = np.array(distances, dtype=float)
        joined = sjoin_nearest(left, right, how="right", distance_col="distance_col")
        assert_geodataframe_equal(expected_gdf, joined)

    @pytest.mark.filterwarnings("ignore:Geometry is in a geographic CRS")
    def test_sjoin_nearest_inner(self):
        # check equivalency of left and inner join
        countries = read_file(geopandas.datasets.get_path("naturalearth_lowres"))
        cities = read_file(geopandas.datasets.get_path("naturalearth_cities"))
        countries = countries[["geometry", "name"]].rename(columns={"name": "country"})

        # default: inner and left give the same result
        result1 = sjoin_nearest(cities, countries, distance_col="dist")
        assert result1.shape[0] == cities.shape[0]
        result2 = sjoin_nearest(cities, countries, distance_col="dist", how="inner")
        assert_geodataframe_equal(result2, result1)
        result3 = sjoin_nearest(cities, countries, distance_col="dist", how="left")
        assert_geodataframe_equal(result3, result1, check_like=True)

        # with max_distance: rows that go above are dropped in case of inner
        result4 = sjoin_nearest(cities, countries, distance_col="dist", max_distance=1)
        assert_geodataframe_equal(
            result4, result1[result1["dist"] < 1], check_like=True
        )
        result5 = sjoin_nearest(
            cities, countries, distance_col="dist", max_distance=1, how="left"
        )
        assert result5.shape[0] == cities.shape[0]
        result5 = result5.dropna()
        result5["index_right"] = result5["index_right"].astype("int64")
        assert_geodataframe_equal(result5, result4, check_like=True)