File: test_arrow.py

package info (click to toggle)
python-geopandas 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,004 kB
  • sloc: python: 14,226; makefile: 150; sh: 14
file content (511 lines) | stat: -rw-r--r-- 15,130 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
from __future__ import absolute_import

from distutils.version import LooseVersion
import os

import pytest
from pandas import DataFrame, read_parquet as pd_read_parquet
from pandas.testing import assert_frame_equal
import numpy as np

import geopandas
from geopandas import GeoDataFrame, read_file, read_parquet, read_feather
from geopandas.array import to_wkb
from geopandas.datasets import get_path
from geopandas.io.arrow import (
    _create_metadata,
    _decode_metadata,
    _encode_metadata,
    _encode_wkb,
    _validate_dataframe,
    _validate_metadata,
    METADATA_VERSION,
)
from geopandas.testing import assert_geodataframe_equal, assert_geoseries_equal


# Skip all tests in this module if pyarrow is not available
pyarrow = pytest.importorskip("pyarrow")

# TEMPORARY: hide warning from to_parquet
pytestmark = pytest.mark.filterwarnings("ignore:.*initial implementation of Parquet.*")


@pytest.fixture(
    params=[
        "parquet",
        pytest.param(
            "feather",
            marks=pytest.mark.skipif(
                pyarrow.__version__ < LooseVersion("0.17.0"),
                reason="needs pyarrow >= 0.17",
            ),
        ),
    ]
)
def file_format(request):
    if request.param == "parquet":
        return read_parquet, GeoDataFrame.to_parquet
    elif request.param == "feather":
        return read_feather, GeoDataFrame.to_feather


def test_create_metadata():
    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))
    metadata = _create_metadata(df)

    assert isinstance(metadata, dict)
    assert metadata["schema_version"] == METADATA_VERSION
    assert metadata["creator"]["library"] == "geopandas"
    assert metadata["creator"]["version"] == geopandas.__version__
    assert metadata["primary_column"] == "geometry"
    assert "geometry" in metadata["columns"]
    assert metadata["columns"]["geometry"]["crs"] == df.geometry.crs.to_wkt()
    assert metadata["columns"]["geometry"]["encoding"] == "WKB"

    assert np.array_equal(
        metadata["columns"]["geometry"]["bbox"], df.geometry.total_bounds
    )


def test_encode_metadata():
    metadata = {"a": "b"}

    expected = b'{"a": "b"}'
    assert _encode_metadata(metadata) == expected


def test_decode_metadata():
    metadata_str = b'{"a": "b"}'

    expected = {"a": "b"}
    assert _decode_metadata(metadata_str) == expected


def test_validate_dataframe():
    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    # valid: should not raise ValueError
    _validate_dataframe(df)
    _validate_dataframe(df.set_index("iso_a3"))

    # add column with non-string type
    df[0] = 1

    # invalid: should raise ValueError
    with pytest.raises(ValueError):
        _validate_dataframe(df)

    with pytest.raises(ValueError):
        _validate_dataframe(df.set_index(0))

    # not a DataFrame: should raise ValueError
    with pytest.raises(ValueError):
        _validate_dataframe("not a dataframe")


def test_validate_metadata_valid():
    _validate_metadata(
        {
            "primary_column": "geometry",
            "columns": {"geometry": {"crs": None, "encoding": "WKB"}},
        }
    )

    _validate_metadata(
        {
            "primary_column": "geometry",
            "columns": {"geometry": {"crs": "WKT goes here", "encoding": "WKB"}},
        }
    )


@pytest.mark.parametrize(
    "metadata,error",
    [
        ({}, "Missing or malformed geo metadata in Parquet/Feather file"),
        (
            {"primary_column": "foo"},
            "'geo' metadata in Parquet/Feather file is missing required key:",
        ),
        (
            {"primary_column": "foo", "columns": None},
            "'geo' metadata in Parquet/Feather file is missing required key",
        ),
        (
            {"primary_column": "foo", "columns": []},
            "'columns' in 'geo' metadata must be a dict",
        ),
        (
            {"primary_column": "foo", "columns": {"foo": {}}},
            (
                "'geo' metadata in Parquet/Feather file is missing required key 'crs' "
                "for column 'foo'"
            ),
        ),
        (
            {"primary_column": "foo", "columns": {"foo": {"crs": None}}},
            "'geo' metadata in Parquet/Feather file is missing required key",
        ),
        (
            {"primary_column": "foo", "columns": {"foo": {"encoding": None}}},
            "'geo' metadata in Parquet/Feather file is missing required key",
        ),
        (
            {
                "primary_column": "foo",
                "columns": {"foo": {"crs": None, "encoding": None}},
            },
            "Only WKB geometry encoding is supported",
        ),
        (
            {
                "primary_column": "foo",
                "columns": {"foo": {"crs": None, "encoding": "BKW"}},
            },
            "Only WKB geometry encoding is supported",
        ),
    ],
)
def test_validate_metadata_invalid(metadata, error):
    with pytest.raises(ValueError, match=error):
        _validate_metadata(metadata)


def test_encode_wkb():
    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    encoded = _encode_wkb(df)

    # make sure original is not modified
    assert isinstance(df, GeoDataFrame)
    assert (
        encoded.geometry.iloc[0][:16]
        == b"\x01\x06\x00\x00\x00\x03\x00\x00\x00\x01\x03\x00\x00\x00\x01\x00"
    )


# TEMPORARY: used to determine if pyarrow fails for roundtripping pandas data
# without geometries
def test_pandas_parquet_roundtrip1(tmpdir):
    df = DataFrame({"a": [1, 2, 3], "b": ["a", "b", "c"]})

    filename = os.path.join(str(tmpdir), "test.pq")
    df.to_parquet(filename)

    pq_df = pd_read_parquet(filename)

    assert_frame_equal(df, pq_df)


@pytest.mark.parametrize(
    "test_dataset", ["naturalearth_lowres", "naturalearth_cities", "nybb"]
)
def test_pandas_parquet_roundtrip2(test_dataset, tmpdir):
    test_dataset = "naturalearth_lowres"
    df = DataFrame(read_file(get_path(test_dataset)).drop(columns=["geometry"]))

    filename = os.path.join(str(tmpdir), "test.pq")
    df.to_parquet(filename)

    pq_df = pd_read_parquet(filename)

    assert_frame_equal(df, pq_df)


@pytest.mark.parametrize(
    "test_dataset", ["naturalearth_lowres", "naturalearth_cities", "nybb"]
)
def test_roundtrip(tmpdir, file_format, test_dataset):
    """Writing to parquet should not raise errors, and should not alter original
    GeoDataFrame
    """
    reader, writer = file_format

    df = read_file(get_path(test_dataset))
    orig = df.copy()

    filename = os.path.join(str(tmpdir), "test.pq")

    # TEMP: Initial implementation should raise a UserWarning
    with pytest.warns(UserWarning, match="initial implementation"):
        writer(df, filename)

    assert os.path.exists(filename)

    # make sure that the original data frame is unaltered
    assert_geodataframe_equal(df, orig)

    # make sure that we can roundtrip the data frame
    pq_df = reader(filename)

    assert isinstance(pq_df, GeoDataFrame)
    assert_geodataframe_equal(df, pq_df)


def test_index(tmpdir, file_format):
    """Setting index=`True` should preserve index in output, and
    setting index=`False` should drop index from output.
    """
    reader, writer = file_format

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset)).set_index("iso_a3")

    filename = os.path.join(str(tmpdir), "test_with_index.pq")
    writer(df, filename, index=True)
    pq_df = reader(filename)
    assert_geodataframe_equal(df, pq_df)

    filename = os.path.join(str(tmpdir), "drop_index.pq")
    writer(df, filename, index=False)
    pq_df = reader(filename)
    assert_geodataframe_equal(df.reset_index(drop=True), pq_df)


@pytest.mark.parametrize("compression", ["snappy", "gzip", "brotli", None])
def test_parquet_compression(compression, tmpdir):
    """Using compression options should not raise errors, and should
    return identical GeoDataFrame.
    """

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    filename = os.path.join(str(tmpdir), "test.pq")
    df.to_parquet(filename, compression=compression)
    pq_df = read_parquet(filename)

    assert isinstance(pq_df, GeoDataFrame)
    assert_geodataframe_equal(df, pq_df)


@pytest.mark.skipif(
    pyarrow.__version__ < LooseVersion("0.17.0"),
    reason="Feather only supported for pyarrow >= 0.17",
)
@pytest.mark.parametrize("compression", ["uncompressed", "lz4", "zstd"])
def test_feather_compression(compression, tmpdir):
    """Using compression options should not raise errors, and should
    return identical GeoDataFrame.
    """

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    filename = os.path.join(str(tmpdir), "test.feather")
    df.to_feather(filename, compression=compression)
    pq_df = read_feather(filename)

    assert isinstance(pq_df, GeoDataFrame)
    assert_geodataframe_equal(df, pq_df)


def test_parquet_multiple_geom_cols(tmpdir, file_format):
    """If multiple geometry columns are present when written to parquet,
    they should all be returned as such when read from parquet.
    """
    reader, writer = file_format

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))
    df["geom2"] = df.geometry.copy()

    filename = os.path.join(str(tmpdir), "test.pq")
    writer(df, filename)

    assert os.path.exists(filename)

    pq_df = reader(filename)

    assert isinstance(pq_df, GeoDataFrame)
    assert_geodataframe_equal(df, pq_df)

    assert_geoseries_equal(df.geom2, pq_df.geom2, check_geom_type=True)


def test_parquet_missing_metadata(tmpdir):
    """Missing geo metadata, such as from a parquet file created
    from a pandas DataFrame, will raise a ValueError.
    """

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    # convert to DataFrame
    df = DataFrame(df)

    # convert the geometry column so we can extract later
    df["geometry"] = to_wkb(df["geometry"].values)

    filename = os.path.join(str(tmpdir), "test.pq")

    # use pandas to_parquet (no geo metadata)
    df.to_parquet(filename)

    # missing metadata will raise ValueError
    with pytest.raises(
        ValueError, match="Missing geo metadata in Parquet/Feather file."
    ):
        read_parquet(filename)


@pytest.mark.parametrize(
    "geo_meta,error",
    [
        ({"geo": b""}, "Missing or malformed geo metadata in Parquet/Feather file"),
        (
            {"geo": _encode_metadata({})},
            "Missing or malformed geo metadata in Parquet/Feather file",
        ),
        (
            {"geo": _encode_metadata({"foo": "bar"})},
            "'geo' metadata in Parquet/Feather file is missing required key",
        ),
    ],
)
def test_parquet_invalid_metadata(tmpdir, geo_meta, error):
    """Has geo metadata with missing required fields will raise a ValueError.

    This requires writing the parquet file directly below, so that we can
    control the metadata that is written for this test.
    """

    from pyarrow import parquet, Table

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    # convert to DataFrame and encode geometry to WKB
    df = DataFrame(df)
    df["geometry"] = to_wkb(df["geometry"].values)

    table = Table.from_pandas(df)
    metadata = table.schema.metadata
    metadata.update(geo_meta)
    table = table.replace_schema_metadata(metadata)

    filename = os.path.join(str(tmpdir), "test.pq")
    parquet.write_table(table, filename)

    with pytest.raises(ValueError, match=error):
        read_parquet(filename)


def test_subset_columns(tmpdir, file_format):
    """Reading a subset of columns should correctly decode selected geometry
    columns.
    """
    reader, writer = file_format

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    filename = os.path.join(str(tmpdir), "test.pq")
    writer(df, filename)
    pq_df = reader(filename, columns=["name", "geometry"])

    assert_geodataframe_equal(df[["name", "geometry"]], pq_df)

    with pytest.raises(
        ValueError, match="No geometry columns are included in the columns read"
    ):
        reader(filename, columns=["name"])


def test_parquet_repeat_columns(tmpdir):
    """Reading repeated columns should return first value of each repeated column
    """

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    filename = os.path.join(str(tmpdir), "test.pq")
    df.to_parquet(filename)

    columns = ["name", "name", "iso_a3", "name", "geometry"]
    pq_df = read_parquet(filename, columns=columns)

    assert pq_df.columns.tolist() == ["name", "iso_a3", "geometry"]


def test_promote_secondary_geometry(tmpdir, file_format):
    """Reading a subset of columns that does not include the primary geometry
    column should promote the first geometry column present.
    """
    reader, writer = file_format

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))
    df["geom2"] = df.geometry.copy()

    filename = os.path.join(str(tmpdir), "test.pq")
    writer(df, filename)
    pq_df = reader(filename, columns=["name", "geom2"])

    assert_geodataframe_equal(df.set_geometry("geom2")[["name", "geom2"]], pq_df)

    df["geom3"] = df.geometry.copy()

    writer(df, filename)
    with pytest.warns(
        UserWarning,
        match="Multiple non-primary geometry columns read from Parquet/Feather file.",
    ):
        pq_df = reader(filename, columns=["name", "geom2", "geom3"])

    assert_geodataframe_equal(
        df.set_geometry("geom2")[["name", "geom2", "geom3"]], pq_df
    )


def test_columns_no_geometry(tmpdir, file_format):
    """Reading a parquet file that is missing all of the geometry columns
    should raise a ValueError"""
    reader, writer = file_format

    test_dataset = "naturalearth_lowres"
    df = read_file(get_path(test_dataset))

    filename = os.path.join(str(tmpdir), "test.pq")
    writer(df, filename)

    with pytest.raises(ValueError):
        reader(filename, columns=["name"])


def test_missing_crs(tmpdir, file_format):
    """If CRS is `None`, it should be properly handled
    and remain `None` when read from parquet`.
    """
    reader, writer = file_format

    test_dataset = "naturalearth_lowres"

    df = read_file(get_path(test_dataset))
    df.crs = None

    filename = os.path.join(str(tmpdir), "test.pq")
    writer(df, filename)
    pq_df = reader(filename)

    assert pq_df.crs is None

    assert_geodataframe_equal(df, pq_df, check_crs=True)


@pytest.mark.skipif(
    pyarrow.__version__ >= LooseVersion("0.17.0"),
    reason="Feather only supported for pyarrow >= 0.17",
)
def test_feather_arrow_version(tmpdir):
    df = read_file(get_path("naturalearth_lowres"))
    filename = os.path.join(str(tmpdir), "test.feather")

    with pytest.raises(
        ImportError, match="pyarrow >= 0.17 required for Feather support"
    ):
        df.to_feather(filename)