File: test_geom_methods.py

package info (click to toggle)
python-geopandas 0.8.2-1
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 12,004 kB
  • sloc: python: 14,226; makefile: 150; sh: 14
file content (783 lines) | stat: -rw-r--r-- 29,386 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
import string

import numpy as np
from numpy.testing import assert_array_equal
from pandas import DataFrame, MultiIndex, Series

from shapely.geometry import LinearRing, LineString, MultiPoint, Point, Polygon
from shapely.geometry.collection import GeometryCollection
from shapely.ops import unary_union

from geopandas import GeoDataFrame, GeoSeries
from geopandas.base import GeoPandasBase

from geopandas.tests.util import assert_geoseries_equal, geom_almost_equals, geom_equals
from geopandas import _compat as compat
from pandas.testing import assert_frame_equal, assert_series_equal
import pytest


def assert_array_dtype_equal(a, b, *args, **kwargs):
    a = np.asanyarray(a)
    b = np.asanyarray(b)
    assert a.dtype == b.dtype
    assert_array_equal(a, b, *args, **kwargs)


class TestGeomMethods:
    def setup_method(self):
        self.t1 = Polygon([(0, 0), (1, 0), (1, 1)])
        self.t2 = Polygon([(0, 0), (1, 1), (0, 1)])
        self.t3 = Polygon([(2, 0), (3, 0), (3, 1)])
        self.sq = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])
        self.t4 = Polygon([(0, 0), (3, 0), (3, 3), (0, 2)])
        self.t5 = Polygon([(2, 0), (3, 0), (3, 3), (2, 3)])
        self.inner_sq = Polygon(
            [(0.25, 0.25), (0.75, 0.25), (0.75, 0.75), (0.25, 0.75)]
        )
        self.nested_squares = Polygon(self.sq.boundary, [self.inner_sq.boundary])
        self.p0 = Point(5, 5)
        self.p3d = Point(5, 5, 5)
        self.g0 = GeoSeries(
            [
                self.t1,
                self.t2,
                self.sq,
                self.inner_sq,
                self.nested_squares,
                self.p0,
                None,
            ]
        )
        self.g1 = GeoSeries([self.t1, self.sq])
        self.g2 = GeoSeries([self.sq, self.t1])
        self.g3 = GeoSeries([self.t1, self.t2])
        self.g3.crs = "epsg:4326"
        self.g4 = GeoSeries([self.t2, self.t1])
        self.g4.crs = "epsg:4326"
        self.g_3d = GeoSeries([self.p0, self.p3d])
        self.na = GeoSeries([self.t1, self.t2, Polygon()])
        self.na_none = GeoSeries([self.t1, None])
        self.a1 = self.g1.copy()
        self.a1.index = ["A", "B"]
        self.a2 = self.g2.copy()
        self.a2.index = ["B", "C"]
        self.esb = Point(-73.9847, 40.7484)
        self.sol = Point(-74.0446, 40.6893)
        self.landmarks = GeoSeries([self.esb, self.sol], crs="epsg:4326")
        self.l1 = LineString([(0, 0), (0, 1), (1, 1)])
        self.l2 = LineString([(0, 0), (1, 0), (1, 1), (0, 1)])
        self.g5 = GeoSeries([self.l1, self.l2])
        self.g6 = GeoSeries([self.p0, self.t3])
        self.g7 = GeoSeries([self.sq, self.t4])
        self.g8 = GeoSeries([self.t1, self.t5])
        self.empty = GeoSeries([])
        self.all_none = GeoSeries([None, None])
        self.empty_poly = Polygon()

        # Crossed lines
        self.l3 = LineString([(0, 0), (1, 1)])
        self.l4 = LineString([(0, 1), (1, 0)])
        self.crossed_lines = GeoSeries([self.l3, self.l4])

        # Placeholder for testing, will just drop in different geometries
        # when needed
        self.gdf1 = GeoDataFrame(
            {"geometry": self.g1, "col0": [1.0, 2.0], "col1": ["geo", "pandas"]}
        )
        self.gdf2 = GeoDataFrame(
            {"geometry": self.g1, "col3": [4, 5], "col4": ["rand", "string"]}
        )
        self.gdf3 = GeoDataFrame(
            {"geometry": self.g3, "col3": [4, 5], "col4": ["rand", "string"]}
        )

    def _test_unary_real(self, op, expected, a):
        """ Tests for 'area', 'length', 'is_valid', etc. """
        fcmp = assert_series_equal
        self._test_unary(op, expected, a, fcmp)

    def _test_unary_topological(self, op, expected, a):
        if isinstance(expected, GeoPandasBase):
            fcmp = assert_geoseries_equal
        else:

            def fcmp(a, b):
                assert a.equals(b)

        self._test_unary(op, expected, a, fcmp)

    def _test_binary_topological(self, op, expected, a, b, *args, **kwargs):
        """ Tests for 'intersection', 'union', 'symmetric_difference', etc. """
        if isinstance(expected, GeoPandasBase):
            fcmp = assert_geoseries_equal
        else:

            def fcmp(a, b):
                assert geom_equals(a, b)

        if isinstance(b, GeoPandasBase):
            right_df = True
        else:
            right_df = False

        self._binary_op_test(op, expected, a, b, fcmp, True, right_df, *args, **kwargs)

    def _test_binary_real(self, op, expected, a, b, *args, **kwargs):
        fcmp = assert_series_equal
        self._binary_op_test(op, expected, a, b, fcmp, True, False, *args, **kwargs)

    def _test_binary_operator(self, op, expected, a, b):
        """
        The operators only have GeoSeries on the left, but can have
        GeoSeries or GeoDataFrame on the right.
        If GeoDataFrame is on the left, geometry column is used.

        """
        if isinstance(expected, GeoPandasBase):
            fcmp = assert_geoseries_equal
        else:

            def fcmp(a, b):
                assert geom_equals(a, b)

        if isinstance(b, GeoPandasBase):
            right_df = True
        else:
            right_df = False

        self._binary_op_test(op, expected, a, b, fcmp, False, right_df)

    def _binary_op_test(
        self, op, expected, left, right, fcmp, left_df, right_df, *args, **kwargs
    ):
        """
        This is a helper to call a function on GeoSeries and GeoDataFrame
        arguments. For example, 'intersection' is a member of both GeoSeries
        and GeoDataFrame and can take either GeoSeries or GeoDataFrame inputs.
        This function has the ability to test all four combinations of input
        types.

        Parameters
        ----------

        expected : str
            The operation to be tested. e.g., 'intersection'
        left: GeoSeries
        right: GeoSeries
        fcmp: function
            Called with the result of the operation and expected. It should
            assert if the result is incorrect
        left_df: bool
            If the left input should also be called with a GeoDataFrame
        right_df: bool
            Indicates whether the right input should be called with a
            GeoDataFrame

        """

        def _make_gdf(s):
            n = len(s)
            col1 = string.ascii_lowercase[:n]
            col2 = range(n)

            return GeoDataFrame(
                {"geometry": s.values, "col1": col1, "col2": col2},
                index=s.index,
                crs=s.crs,
            )

        # Test GeoSeries.op(GeoSeries)
        result = getattr(left, op)(right, *args, **kwargs)
        fcmp(result, expected)

        if left_df:
            # Test GeoDataFrame.op(GeoSeries)
            gdf_left = _make_gdf(left)
            result = getattr(gdf_left, op)(right, *args, **kwargs)
            fcmp(result, expected)

        if right_df:
            # Test GeoSeries.op(GeoDataFrame)
            gdf_right = _make_gdf(right)
            result = getattr(left, op)(gdf_right, *args, **kwargs)
            fcmp(result, expected)

            if left_df:
                # Test GeoDataFrame.op(GeoDataFrame)
                result = getattr(gdf_left, op)(gdf_right, *args, **kwargs)
                fcmp(result, expected)

    def _test_unary(self, op, expected, a, fcmp):
        # GeoSeries, (GeoSeries or geometry)
        result = getattr(a, op)
        fcmp(result, expected)

        # GeoDataFrame, (GeoSeries or geometry)
        gdf = self.gdf1.set_geometry(a)
        result = getattr(gdf, op)
        fcmp(result, expected)

    # TODO reenable for all operations once we use pyproj > 2
    # def test_crs_warning(self):
    #     # operations on geometries should warn for different CRS
    #     no_crs_g3 = self.g3.copy()
    #     no_crs_g3.crs = None
    #     with pytest.warns(UserWarning):
    #         self._test_binary_topological('intersection', self.g3,
    #                                       self.g3, no_crs_g3)

    def test_intersection(self):
        self._test_binary_topological("intersection", self.t1, self.g1, self.g2)
        with pytest.warns(UserWarning, match="The indices .+ different"):
            self._test_binary_topological(
                "intersection", self.all_none, self.g1, self.empty
            )

    def test_union_series(self):
        self._test_binary_topological("union", self.sq, self.g1, self.g2)

    def test_union_polygon(self):
        self._test_binary_topological("union", self.sq, self.g1, self.t2)

    def test_symmetric_difference_series(self):
        self._test_binary_topological("symmetric_difference", self.sq, self.g3, self.g4)

    def test_symmetric_difference_poly(self):
        expected = GeoSeries([GeometryCollection(), self.sq], crs=self.g3.crs)
        self._test_binary_topological(
            "symmetric_difference", expected, self.g3, self.t1
        )

    def test_difference_series(self):
        expected = GeoSeries([GeometryCollection(), self.t2])
        self._test_binary_topological("difference", expected, self.g1, self.g2)

    def test_difference_poly(self):
        expected = GeoSeries([self.t1, self.t1])
        self._test_binary_topological("difference", expected, self.g1, self.t2)

    def test_geo_op_empty_result(self):
        l1 = LineString([(0, 0), (1, 1)])
        l2 = LineString([(2, 2), (3, 3)])
        expected = GeoSeries([GeometryCollection()])
        # binary geo resulting in empty geometry
        result = GeoSeries([l1]).intersection(l2)
        assert_geoseries_equal(result, expected)
        # binary geo empty result with right GeoSeries
        result = GeoSeries([l1]).intersection(GeoSeries([l2]))
        assert_geoseries_equal(result, expected)
        # unary geo resulting in emtpy geometry
        result = GeoSeries([GeometryCollection()]).convex_hull
        assert_geoseries_equal(result, expected)

    def test_boundary(self):
        l1 = LineString([(0, 0), (1, 0), (1, 1), (0, 0)])
        l2 = LineString([(0, 0), (1, 0), (1, 1), (0, 1), (0, 0)])
        expected = GeoSeries([l1, l2], index=self.g1.index, crs=self.g1.crs)

        self._test_unary_topological("boundary", expected, self.g1)

    def test_area(self):
        expected = Series(np.array([0.5, 1.0]), index=self.g1.index)
        self._test_unary_real("area", expected, self.g1)

        expected = Series(np.array([0.5, np.nan]), index=self.na_none.index)
        self._test_unary_real("area", expected, self.na_none)

    def test_area_crs_warn(self):
        with pytest.warns(UserWarning, match="Geometry is in a geographic CRS"):
            self.g4.area

    def test_bounds(self):
        # Set columns to get the order right
        expected = DataFrame(
            {
                "minx": [0.0, 0.0],
                "miny": [0.0, 0.0],
                "maxx": [1.0, 1.0],
                "maxy": [1.0, 1.0],
            },
            index=self.g1.index,
            columns=["minx", "miny", "maxx", "maxy"],
        )

        result = self.g1.bounds
        assert_frame_equal(expected, result)

        gdf = self.gdf1.set_geometry(self.g1)
        result = gdf.bounds
        assert_frame_equal(expected, result)

    def test_bounds_empty(self):
        # test bounds of empty GeoSeries
        # https://github.com/geopandas/geopandas/issues/1195
        s = GeoSeries([])
        result = s.bounds
        expected = DataFrame(
            columns=["minx", "miny", "maxx", "maxy"], index=s.index, dtype="float64"
        )
        assert_frame_equal(result, expected)

    def test_unary_union(self):
        p1 = self.t1
        p2 = Polygon([(2, 0), (3, 0), (3, 1)])
        expected = unary_union([p1, p2])
        g = GeoSeries([p1, p2])

        self._test_unary_topological("unary_union", expected, g)

    def test_contains(self):
        expected = [True, False, True, False, False, False, False]
        assert_array_dtype_equal(expected, self.g0.contains(self.t1))

    def test_length(self):
        expected = Series(np.array([2 + np.sqrt(2), 4]), index=self.g1.index)
        self._test_unary_real("length", expected, self.g1)

        expected = Series(np.array([2 + np.sqrt(2), np.nan]), index=self.na_none.index)
        self._test_unary_real("length", expected, self.na_none)

    def test_length_crs_warn(self):
        with pytest.warns(UserWarning, match="Geometry is in a geographic CRS"):
            self.g4.length

    def test_crosses(self):
        expected = [False, False, False, False, False, False, False]
        assert_array_dtype_equal(expected, self.g0.crosses(self.t1))

        expected = [False, True]
        assert_array_dtype_equal(expected, self.crossed_lines.crosses(self.l3))

    def test_disjoint(self):
        expected = [False, False, False, False, False, True, False]
        assert_array_dtype_equal(expected, self.g0.disjoint(self.t1))

    def test_relate(self):
        expected = Series(
            [
                "212101212",
                "212101212",
                "212FF1FF2",
                "2FFF1FFF2",
                "FF2F112F2",
                "FF0FFF212",
                None,
            ],
            index=self.g0.index,
        )
        assert_array_dtype_equal(expected, self.g0.relate(self.inner_sq))

        expected = Series(["FF0FFF212", None], index=self.g6.index)
        assert_array_dtype_equal(expected, self.g6.relate(self.na_none))

    def test_distance(self):
        expected = Series(
            np.array([np.sqrt((5 - 1) ** 2 + (5 - 1) ** 2), np.nan]), self.na_none.index
        )
        assert_array_dtype_equal(expected, self.na_none.distance(self.p0))

        expected = Series(np.array([np.sqrt(4 ** 2 + 4 ** 2), np.nan]), self.g6.index)
        assert_array_dtype_equal(expected, self.g6.distance(self.na_none))

    def test_distance_crs_warning(self):
        with pytest.warns(UserWarning, match="Geometry is in a geographic CRS"):
            self.g4.distance(self.p0)

    def test_intersects(self):
        expected = [True, True, True, True, True, False, False]
        assert_array_dtype_equal(expected, self.g0.intersects(self.t1))

        expected = [True, False]
        assert_array_dtype_equal(expected, self.na_none.intersects(self.t2))

        expected = np.array([], dtype=bool)
        assert_array_dtype_equal(expected, self.empty.intersects(self.t1))

        expected = np.array([], dtype=bool)
        assert_array_dtype_equal(expected, self.empty.intersects(self.empty_poly))

        expected = [False] * 7
        assert_array_dtype_equal(expected, self.g0.intersects(self.empty_poly))

    def test_overlaps(self):
        expected = [True, True, False, False, False, False, False]
        assert_array_dtype_equal(expected, self.g0.overlaps(self.inner_sq))

        expected = [False, False]
        assert_array_dtype_equal(expected, self.g4.overlaps(self.t1))

    def test_touches(self):
        expected = [False, True, False, False, False, False, False]
        assert_array_dtype_equal(expected, self.g0.touches(self.t1))

    def test_within(self):
        expected = [True, False, False, False, False, False, False]
        assert_array_dtype_equal(expected, self.g0.within(self.t1))

        expected = [True, True, True, True, True, False, False]
        assert_array_dtype_equal(expected, self.g0.within(self.sq))

    def test_covers_itself(self):
        # Each polygon in a Series covers itself
        res = self.g1.covers(self.g1)
        exp = Series([True, True])
        assert_series_equal(res, exp)

    def test_covers(self):
        res = self.g7.covers(self.g8)
        exp = Series([True, False])
        assert_series_equal(res, exp)

    def test_covers_inverse(self):
        res = self.g8.covers(self.g7)
        exp = Series([False, False])
        assert_series_equal(res, exp)

    @pytest.mark.skipif(
        not compat.USE_PYGEOS,
        reason="covered_by is only implemented for pygeos, not shapely",
    )
    def test_covered_by(self):
        res = self.g1.covered_by(self.g1)
        exp = Series([True, True])
        assert_series_equal(res, exp)

    def test_is_valid(self):
        expected = Series(np.array([True] * len(self.g1)), self.g1.index)
        self._test_unary_real("is_valid", expected, self.g1)

    def test_is_empty(self):
        expected = Series(np.array([False] * len(self.g1)), self.g1.index)
        self._test_unary_real("is_empty", expected, self.g1)

    def test_is_ring(self):
        expected = Series(np.array([True] * len(self.g1)), self.g1.index)
        self._test_unary_real("is_ring", expected, self.g1)

    def test_is_simple(self):
        expected = Series(np.array([True] * len(self.g1)), self.g1.index)
        self._test_unary_real("is_simple", expected, self.g1)

    def test_has_z(self):
        expected = Series([False, True], self.g_3d.index)
        self._test_unary_real("has_z", expected, self.g_3d)

    def test_xy_points(self):
        expected_x = [-73.9847, -74.0446]
        expected_y = [40.7484, 40.6893]

        assert_array_dtype_equal(expected_x, self.landmarks.geometry.x)
        assert_array_dtype_equal(expected_y, self.landmarks.geometry.y)

    def test_xy_polygons(self):
        # accessing x attribute in polygon geoseries should raise an error
        with pytest.raises(ValueError):
            _ = self.gdf1.geometry.x
        # and same for accessing y attribute in polygon geoseries
        with pytest.raises(ValueError):
            _ = self.gdf1.geometry.y

    def test_centroid(self):
        polygon = Polygon([(-1, -1), (1, -1), (1, 1), (-1, 1)])
        point = Point(0, 0)
        polygons = GeoSeries([polygon for i in range(3)])
        points = GeoSeries([point for i in range(3)])
        assert_geoseries_equal(polygons.centroid, points)

    def test_centroid_crs_warn(self):
        with pytest.warns(UserWarning, match="Geometry is in a geographic CRS"):
            self.g4.centroid

    def test_convex_hull(self):
        # the convex hull of a square should be the same as the square
        squares = GeoSeries([self.sq for i in range(3)])
        assert_geoseries_equal(squares, squares.convex_hull)

    def test_exterior(self):
        exp_exterior = GeoSeries([LinearRing(p.boundary) for p in self.g3])
        for expected, computed in zip(exp_exterior, self.g3.exterior):
            assert computed.equals(expected)

    def test_interiors(self):
        original = GeoSeries([self.t1, self.nested_squares])

        # This is a polygon with no interior.
        expected = []
        assert original.interiors[0] == expected
        # This is a polygon with an interior.
        expected = LinearRing(self.inner_sq.boundary)
        assert original.interiors[1][0].equals(expected)

    def test_interpolate(self):
        expected = GeoSeries([Point(0.5, 1.0), Point(0.75, 1.0)])
        self._test_binary_topological(
            "interpolate", expected, self.g5, 0.75, normalized=True
        )

        expected = GeoSeries([Point(0.5, 1.0), Point(1.0, 0.5)])
        self._test_binary_topological("interpolate", expected, self.g5, 1.5)

    def test_interpolate_distance_array(self):
        expected = GeoSeries([Point(0.0, 0.75), Point(1.0, 0.5)])
        self._test_binary_topological(
            "interpolate", expected, self.g5, np.array([0.75, 1.5])
        )

        expected = GeoSeries([Point(0.5, 1.0), Point(0.0, 1.0)])
        self._test_binary_topological(
            "interpolate", expected, self.g5, np.array([0.75, 1.5]), normalized=True
        )

    def test_interpolate_distance_wrong_length(self):
        distances = np.array([1, 2, 3])
        with pytest.raises(ValueError):
            self.g5.interpolate(distances)

    def test_interpolate_distance_wrong_index(self):
        distances = Series([1, 2], index=[99, 98])
        with pytest.raises(ValueError):
            self.g5.interpolate(distances)

    def test_interpolate_crs_warning(self):
        g5_crs = self.g5.copy()
        g5_crs.crs = 4326
        with pytest.warns(UserWarning, match="Geometry is in a geographic CRS"):
            g5_crs.interpolate(1)

    def test_project(self):
        expected = Series([2.0, 1.5], index=self.g5.index)
        p = Point(1.0, 0.5)
        self._test_binary_real("project", expected, self.g5, p)

        expected = Series([1.0, 0.5], index=self.g5.index)
        self._test_binary_real("project", expected, self.g5, p, normalized=True)

    def test_affine_transform(self):
        # 45 degree reflection matrix
        matrix = [0, 1, 1, 0, 0, 0]
        expected = self.g4

        res = self.g3.affine_transform(matrix)
        assert_geoseries_equal(expected, res)

    def test_translate_tuple(self):
        trans = self.sol.x - self.esb.x, self.sol.y - self.esb.y
        assert self.landmarks.translate(*trans)[0].equals(self.sol)

        res = self.gdf1.set_geometry(self.landmarks).translate(*trans)[0]
        assert res.equals(self.sol)

    def test_rotate(self):
        angle = 98
        expected = self.g4

        o = Point(0, 0)
        res = self.g4.rotate(angle, origin=o).rotate(-angle, origin=o)
        assert geom_almost_equals(self.g4, res)

        res = self.gdf1.set_geometry(self.g4).rotate(angle, origin=Point(0, 0))
        assert geom_almost_equals(expected, res.rotate(-angle, origin=o))

    def test_scale(self):
        expected = self.g4

        scale = 2.0, 1.0
        inv = tuple(1.0 / i for i in scale)

        o = Point(0, 0)
        res = self.g4.scale(*scale, origin=o).scale(*inv, origin=o)
        assert geom_almost_equals(expected, res)

        res = self.gdf1.set_geometry(self.g4).scale(*scale, origin=o)
        res = res.scale(*inv, origin=o)
        assert geom_almost_equals(expected, res)

    def test_skew(self):
        expected = self.g4

        skew = 45.0
        o = Point(0, 0)

        # Test xs
        res = self.g4.skew(xs=skew, origin=o).skew(xs=-skew, origin=o)
        assert geom_almost_equals(expected, res)

        res = self.gdf1.set_geometry(self.g4).skew(xs=skew, origin=o)
        res = res.skew(xs=-skew, origin=o)
        assert geom_almost_equals(expected, res)

        # Test ys
        res = self.g4.skew(ys=skew, origin=o).skew(ys=-skew, origin=o)
        assert geom_almost_equals(expected, res)

        res = self.gdf1.set_geometry(self.g4).skew(ys=skew, origin=o)
        res = res.skew(ys=-skew, origin=o)
        assert geom_almost_equals(expected, res)

    def test_buffer(self):
        original = GeoSeries([Point(0, 0)])
        expected = GeoSeries([Polygon(((5, 0), (0, -5), (-5, 0), (0, 5), (5, 0)))])
        calculated = original.buffer(5, resolution=1)
        assert geom_almost_equals(expected, calculated)

    def test_buffer_args(self):
        args = dict(cap_style=3, join_style=2, mitre_limit=2.5)
        calculated_series = self.g0.buffer(10, **args)
        for original, calculated in zip(self.g0, calculated_series):
            if original is None:
                assert calculated is None
            else:
                expected = original.buffer(10, **args)
                assert calculated.equals(expected)

    def test_buffer_distance_array(self):
        original = GeoSeries([self.p0, self.p0])
        expected = GeoSeries(
            [
                Polygon(((6, 5), (5, 4), (4, 5), (5, 6), (6, 5))),
                Polygon(((10, 5), (5, 0), (0, 5), (5, 10), (10, 5))),
            ]
        )
        calculated = original.buffer(np.array([1, 5]), resolution=1)
        assert_geoseries_equal(calculated, expected, check_less_precise=True)

    def test_buffer_distance_wrong_length(self):
        original = GeoSeries([self.p0, self.p0])
        distances = np.array([1, 2, 3])
        with pytest.raises(ValueError):
            original.buffer(distances)

    def test_buffer_distance_wrong_index(self):
        original = GeoSeries([self.p0, self.p0], index=[0, 1])
        distances = Series(data=[1, 2], index=[99, 98])
        with pytest.raises(ValueError):
            original.buffer(distances)

    def test_buffer_empty_none(self):
        p = Polygon([(0, 0), (0, 1), (1, 1), (1, 0)])
        s = GeoSeries([p, GeometryCollection(), None])
        result = s.buffer(0)
        assert_geoseries_equal(result, s)

        result = s.buffer(np.array([0, 0, 0]))
        assert_geoseries_equal(result, s)

    def test_buffer_crs_warn(self):
        with pytest.warns(UserWarning, match="Geometry is in a geographic CRS"):
            self.g4.buffer(1)

        with pytest.warns(None) as record:
            # do not warn for 0
            self.g4.buffer(0)

        assert len(record) == 0

    def test_envelope(self):
        e = self.g3.envelope
        assert np.all(e.geom_equals(self.sq))
        assert isinstance(e, GeoSeries)
        assert self.g3.crs == e.crs

    def test_total_bounds(self):
        bbox = self.sol.x, self.sol.y, self.esb.x, self.esb.y
        assert isinstance(self.landmarks.total_bounds, np.ndarray)
        assert tuple(self.landmarks.total_bounds) == bbox

        df = GeoDataFrame(
            {"geometry": self.landmarks, "col1": range(len(self.landmarks))}
        )
        assert tuple(df.total_bounds) == bbox

    def test_explode_geoseries(self):
        s = GeoSeries(
            [MultiPoint([(0, 0), (1, 1)]), MultiPoint([(2, 2), (3, 3), (4, 4)])]
        )
        s.index.name = "test_index_name"
        expected_index_name = ["test_index_name", None]
        index = [(0, 0), (0, 1), (1, 0), (1, 1), (1, 2)]
        expected = GeoSeries(
            [Point(0, 0), Point(1, 1), Point(2, 2), Point(3, 3), Point(4, 4)],
            index=MultiIndex.from_tuples(index, names=expected_index_name),
        )
        assert_geoseries_equal(expected, s.explode())

    @pytest.mark.parametrize("index_name", [None, "test"])
    def test_explode_geodataframe(self, index_name):
        s = GeoSeries([MultiPoint([Point(1, 2), Point(2, 3)]), Point(5, 5)])
        df = GeoDataFrame({"col": [1, 2], "geometry": s})
        df.index.name = index_name

        test_df = df.explode()

        expected_s = GeoSeries([Point(1, 2), Point(2, 3), Point(5, 5)])
        expected_df = GeoDataFrame({"col": [1, 1, 2], "geometry": expected_s})
        expected_index = MultiIndex(
            [[0, 1], [0, 1]],  # levels
            [[0, 0, 1], [0, 1, 0]],  # labels/codes
            names=[index_name, None],
        )
        expected_df = expected_df.set_index(expected_index)
        assert_frame_equal(test_df, expected_df)

    @pytest.mark.parametrize("index_name", [None, "test"])
    def test_explode_geodataframe_level_1(self, index_name):
        # GH1393
        s = GeoSeries([MultiPoint([Point(1, 2), Point(2, 3)]), Point(5, 5)])
        df = GeoDataFrame({"level_1": [1, 2], "geometry": s})
        df.index.name = index_name

        test_df = df.explode()

        expected_s = GeoSeries([Point(1, 2), Point(2, 3), Point(5, 5)])
        expected_df = GeoDataFrame({"level_1": [1, 1, 2], "geometry": expected_s})
        expected_index = MultiIndex(
            [[0, 1], [0, 1]],  # levels
            [[0, 0, 1], [0, 1, 0]],  # labels/codes
            names=[index_name, None],
        )
        expected_df = expected_df.set_index(expected_index)
        if not compat.PANDAS_GE_024:
            expected_df = expected_df[["level_1", "geometry"]]
        assert_frame_equal(test_df, expected_df)

    #
    # Test '&', '|', '^', and '-'
    #
    def test_intersection_operator(self):
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__and__", self.t1, self.g1, self.g2)
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__and__", self.t1, self.gdf1, self.g2)

    def test_union_operator(self):
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__or__", self.sq, self.g1, self.g2)
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__or__", self.sq, self.gdf1, self.g2)

    def test_union_operator_polygon(self):
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__or__", self.sq, self.g1, self.t2)
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__or__", self.sq, self.gdf1, self.t2)

    def test_symmetric_difference_operator(self):
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__xor__", self.sq, self.g3, self.g4)
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__xor__", self.sq, self.gdf3, self.g4)

    def test_difference_series2(self):
        expected = GeoSeries([GeometryCollection(), self.t2])
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__sub__", expected, self.g1, self.g2)
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__sub__", expected, self.gdf1, self.g2)

    def test_difference_poly2(self):
        expected = GeoSeries([self.t1, self.t1])
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__sub__", expected, self.g1, self.t2)
        with pytest.warns(DeprecationWarning):
            self._test_binary_operator("__sub__", expected, self.gdf1, self.t2)