1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
import os
import numpy as np
from numpy.testing import assert_array_equal
import pandas as pd
import shapely
from shapely.geometry import Point, GeometryCollection
import geopandas
from geopandas import GeoDataFrame, GeoSeries
from geopandas._compat import PANDAS_GE_024, PANDAS_GE_025, PANDAS_GE_11
from geopandas.array import from_shapely
from geopandas.testing import assert_geodataframe_equal, assert_geoseries_equal
from pandas.testing import assert_frame_equal, assert_series_equal
import pytest
@pytest.fixture
def s():
return GeoSeries([Point(x, y) for x, y in zip(range(3), range(3))])
@pytest.fixture
def df():
return GeoDataFrame(
{
"geometry": [Point(x, x) for x in range(3)],
"value1": np.arange(3, dtype="int64"),
"value2": np.array([1, 2, 1], dtype="int64"),
}
)
def test_repr(s, df):
assert "POINT" in repr(s)
assert "POINT" in repr(df)
assert "POINT" in df._repr_html_()
@pytest.mark.skipif(
not PANDAS_GE_024, reason="formatting for EA only implemented in 0.24.0"
)
def test_repr_boxed_display_precision():
# geographic coordinates
p1 = Point(10.123456789, 50.123456789)
p2 = Point(4.123456789, 20.123456789)
s1 = GeoSeries([p1, p2, None])
assert "POINT (10.12346 50.12346)" in repr(s1)
# projected coordinates
p1 = Point(3000.123456789, 3000.123456789)
p2 = Point(4000.123456789, 4000.123456789)
s2 = GeoSeries([p1, p2, None])
assert "POINT (3000.123 3000.123)" in repr(s2)
geopandas.options.display_precision = 1
assert "POINT (10.1 50.1)" in repr(s1)
geopandas.options.display_precision = 9
assert "POINT (10.123456789 50.123456789)" in repr(s1)
def test_repr_all_missing():
# https://github.com/geopandas/geopandas/issues/1195
s = GeoSeries([None, None, None])
assert "None" in repr(s)
df = GeoDataFrame({"a": [1, 2, 3], "geometry": s})
assert "None" in repr(df)
assert "geometry" in df._repr_html_()
def test_repr_empty():
# https://github.com/geopandas/geopandas/issues/1195
s = GeoSeries([])
if PANDAS_GE_025:
# repr with correct name fixed in pandas 0.25
assert repr(s) == "GeoSeries([], dtype: geometry)"
else:
assert repr(s) == "Series([], dtype: geometry)"
df = GeoDataFrame({"a": [], "geometry": s})
assert "Empty GeoDataFrame" in repr(df)
# https://github.com/geopandas/geopandas/issues/1184
assert "geometry" in df._repr_html_()
def test_indexing(s, df):
# accessing scalar from the geometry (colunm)
exp = Point(1, 1)
assert s[1] == exp
assert s.loc[1] == exp
assert s.iloc[1] == exp
assert df.loc[1, "geometry"] == exp
assert df.iloc[1, 0] == exp
# multiple values
exp = GeoSeries([Point(2, 2), Point(0, 0)], index=[2, 0])
assert_geoseries_equal(s.loc[[2, 0]], exp)
assert_geoseries_equal(s.iloc[[2, 0]], exp)
assert_geoseries_equal(s.reindex([2, 0]), exp)
assert_geoseries_equal(df.loc[[2, 0], "geometry"], exp)
# TODO here iloc does not return a GeoSeries
assert_series_equal(
df.iloc[[2, 0], 0], exp, check_series_type=False, check_names=False
)
# boolean indexing
exp = GeoSeries([Point(0, 0), Point(2, 2)], index=[0, 2])
mask = np.array([True, False, True])
assert_geoseries_equal(s[mask], exp)
assert_geoseries_equal(s.loc[mask], exp)
assert_geoseries_equal(df[mask]["geometry"], exp)
assert_geoseries_equal(df.loc[mask, "geometry"], exp)
# slices
s.index = [1, 2, 3]
exp = GeoSeries([Point(1, 1), Point(2, 2)], index=[2, 3])
assert_series_equal(s[1:], exp)
assert_series_equal(s.iloc[1:], exp)
assert_series_equal(s.loc[2:], exp)
def test_reindex(s, df):
# GeoSeries reindex
res = s.reindex([1, 2, 3])
exp = GeoSeries([Point(1, 1), Point(2, 2), None], index=[1, 2, 3])
assert_geoseries_equal(res, exp)
# GeoDataFrame reindex index
res = df.reindex(index=[1, 2, 3])
assert_geoseries_equal(res.geometry, exp)
# GeoDataFrame reindex columns
res = df.reindex(columns=["value1", "geometry"])
assert isinstance(res, GeoDataFrame)
assert isinstance(res.geometry, GeoSeries)
assert_frame_equal(res, df[["value1", "geometry"]])
# TODO df.reindex(columns=['value1', 'value2']) still returns GeoDataFrame,
# should it return DataFrame instead ?
def test_take(s, df):
inds = np.array([0, 2])
# GeoSeries take
result = s.take(inds)
expected = s.iloc[[0, 2]]
assert isinstance(result, GeoSeries)
assert_geoseries_equal(result, expected)
# GeoDataFrame take axis 0
result = df.take(inds, axis=0)
expected = df.iloc[[0, 2], :]
assert isinstance(result, GeoDataFrame)
assert_geodataframe_equal(result, expected)
# GeoDataFrame take axis 1
df = df.reindex(columns=["value1", "value2", "geometry"]) # ensure consistent order
result = df.take(inds, axis=1)
expected = df[["value1", "geometry"]]
assert isinstance(result, GeoDataFrame)
assert_geodataframe_equal(result, expected)
result = df.take(np.array([0, 1]), axis=1)
expected = df[["value1", "value2"]]
assert isinstance(result, pd.DataFrame)
assert_frame_equal(result, expected)
def test_take_empty(s, df):
# ensure that index type is preserved in an empty take
# https://github.com/geopandas/geopandas/issues/1190
inds = np.array([], dtype="int64")
# use non-default index
df.index = pd.date_range("2012-01-01", periods=len(df))
result = df.take(inds, axis=0)
assert isinstance(result, GeoDataFrame)
assert result.shape == (0, 3)
assert isinstance(result.index, pd.DatetimeIndex)
# the original bug report was an empty boolean mask
for result in [df.loc[df["value1"] > 100], df[df["value1"] > 100]]:
assert isinstance(result, GeoDataFrame)
assert result.shape == (0, 3)
assert isinstance(result.index, pd.DatetimeIndex)
def test_assignment(s, df):
exp = GeoSeries([Point(10, 10), Point(1, 1), Point(2, 2)])
s2 = s.copy()
s2[0] = Point(10, 10)
assert_geoseries_equal(s2, exp)
s2 = s.copy()
s2.loc[0] = Point(10, 10)
assert_geoseries_equal(s2, exp)
s2 = s.copy()
s2.iloc[0] = Point(10, 10)
assert_geoseries_equal(s2, exp)
df2 = df.copy()
df2.loc[0, "geometry"] = Point(10, 10)
assert_geoseries_equal(df2["geometry"], exp)
df2 = df.copy()
df2.iloc[0, 0] = Point(10, 10)
assert_geoseries_equal(df2["geometry"], exp)
def test_assign(df):
res = df.assign(new=1)
exp = df.copy()
exp["new"] = 1
assert isinstance(res, GeoDataFrame)
assert_frame_equal(res, exp)
def test_astype(s, df):
# check geoseries functionality
with pytest.raises(TypeError):
s.astype(int)
assert s.astype(str)[0] == "POINT (0 0)"
res = s.astype(object)
assert isinstance(res, pd.Series) and not isinstance(res, GeoSeries)
assert res.dtype == object
df = df.rename_geometry("geom_list")
# check whether returned object is a geodataframe
res = df.astype({"value1": float})
assert isinstance(res, GeoDataFrame)
# check whether returned object is a datafrane
res = df.astype(str)
assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)
res = df.astype({"geom_list": str})
assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)
res = df.astype(object)
assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)
assert res["geom_list"].dtype == object
def test_astype_invalid_geodataframe():
# https://github.com/geopandas/geopandas/issues/1144
# a GeoDataFrame without geometry column should not error in astype
df = GeoDataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
res = df.astype(object)
assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)
assert res["a"].dtype == object
def test_to_csv(df):
exp = (
"geometry,value1,value2\nPOINT (0 0),0,1\nPOINT (1 1),1,2\nPOINT (2 2),2,1\n"
).replace("\n", os.linesep)
assert df.to_csv(index=False) == exp
def test_numerical_operations(s, df):
# df methods ignore the geometry column
exp = pd.Series([3, 4], index=["value1", "value2"])
assert_series_equal(df.sum(), exp)
# series methods raise error
with pytest.raises(TypeError):
s.sum()
with pytest.raises(TypeError):
s.max()
with pytest.raises(TypeError):
s.idxmax()
# numerical ops raise an error
with pytest.raises(TypeError):
df + 1
with pytest.raises((TypeError, AssertionError)):
# TODO(pandas 0.23) remove AssertionError -> raised in 0.23
s + 1
# boolean comparisons work
res = df == 100
exp = pd.DataFrame(False, index=df.index, columns=df.columns)
assert_frame_equal(res, exp)
@pytest.mark.skipif(
not PANDAS_GE_024, reason="where for EA only implemented in 0.24.0 (GH24114)"
)
def test_where(s):
res = s.where(np.array([True, False, True]))
exp = GeoSeries([Point(0, 0), None, Point(2, 2)])
assert_series_equal(res, exp)
def test_select_dtypes(df):
res = df.select_dtypes(include=[np.number])
exp = df[["value1", "value2"]]
assert_frame_equal(res, exp)
def test_equals(s, df):
# https://github.com/geopandas/geopandas/issues/1420
s2 = s.copy()
assert s.equals(s2) is True
s2.iloc[0] = None
assert s.equals(s2) is False
df2 = df.copy()
assert df.equals(df2) is True
df2.loc[0, "geometry"] = Point(10, 10)
assert df.equals(df2) is False
df2 = df.copy()
df2.loc[0, "value1"] = 10
assert df.equals(df2) is False
# Missing values
def test_fillna(s, df):
s2 = GeoSeries([Point(0, 0), None, Point(2, 2)])
res = s2.fillna(Point(1, 1))
assert_geoseries_equal(res, s)
# allow np.nan although this does not change anything
# https://github.com/geopandas/geopandas/issues/1149
res = s2.fillna(np.nan)
assert_geoseries_equal(res, s2)
# raise exception if trying to fill missing geometry w/ non-geometry
df2 = df.copy()
df2["geometry"] = s2
res = df2.fillna(Point(1, 1))
assert_geodataframe_equal(res, df)
with pytest.raises(NotImplementedError):
df2.fillna(0)
# allow non-geometry fill value if there are no missing values
# https://github.com/geopandas/geopandas/issues/1149
df3 = df.copy()
df3.loc[0, "value1"] = np.nan
res = df3.fillna(0)
assert_geodataframe_equal(res.astype({"value1": "int64"}), df)
def test_dropna():
s2 = GeoSeries([Point(0, 0), None, Point(2, 2)])
res = s2.dropna()
exp = s2.loc[[0, 2]]
assert_geoseries_equal(res, exp)
@pytest.mark.parametrize("NA", [None, np.nan])
def test_isna(NA):
s2 = GeoSeries([Point(0, 0), NA, Point(2, 2)], index=[2, 4, 5], name="tt")
exp = pd.Series([False, True, False], index=[2, 4, 5], name="tt")
res = s2.isnull()
assert type(res) == pd.Series
assert_series_equal(res, exp)
res = s2.isna()
assert_series_equal(res, exp)
res = s2.notnull()
assert_series_equal(res, ~exp)
res = s2.notna()
assert_series_equal(res, ~exp)
# Any / all
def test_any_all():
empty = GeometryCollection([])
s = GeoSeries([empty, Point(1, 1)])
assert not s.all()
assert s.any()
s = GeoSeries([Point(1, 1), Point(1, 1)])
assert s.all()
assert s.any()
s = GeoSeries([empty, empty])
assert not s.all()
assert not s.any()
# Groupby / algos
def test_unique():
s = GeoSeries([Point(0, 0), Point(0, 0), Point(2, 2)])
exp = from_shapely([Point(0, 0), Point(2, 2)])
# TODO should have specialized GeometryArray assert method
assert_array_equal(s.unique(), exp)
@pytest.mark.xfail
def test_value_counts():
# each object is considered unique
s = GeoSeries([Point(0, 0), Point(1, 1), Point(0, 0)])
res = s.value_counts()
exp = pd.Series([2, 1], index=[Point(0, 0), Point(1, 1)])
assert_series_equal(res, exp)
@pytest.mark.xfail(strict=False)
def test_drop_duplicates_series():
# duplicated does not yet use EA machinery
# (https://github.com/pandas-dev/pandas/issues/27264)
# but relies on unstable hashing of unhashable objects in numpy array
# giving flaky test (https://github.com/pandas-dev/pandas/issues/27035)
dups = GeoSeries([Point(0, 0), Point(0, 0)])
dropped = dups.drop_duplicates()
assert len(dropped) == 1
@pytest.mark.xfail(strict=False)
def test_drop_duplicates_frame():
# duplicated does not yet use EA machinery, see above
gdf_len = 3
dup_gdf = GeoDataFrame(
{"geometry": [Point(0, 0) for _ in range(gdf_len)], "value1": range(gdf_len)}
)
dropped_geometry = dup_gdf.drop_duplicates(subset="geometry")
assert len(dropped_geometry) == 1
dropped_all = dup_gdf.drop_duplicates()
assert len(dropped_all) == gdf_len
def test_groupby(df):
# counts work fine
res = df.groupby("value2").count()
exp = pd.DataFrame(
{"geometry": [2, 1], "value1": [2, 1], "value2": [1, 2]}
).set_index("value2")
assert_frame_equal(res, exp)
# reductions ignore geometry column
res = df.groupby("value2").sum()
exp = pd.DataFrame({"value1": [2, 1], "value2": [1, 2]}, dtype="int64").set_index(
"value2"
)
assert_frame_equal(res, exp)
# applying on the geometry column
res = df.groupby("value2")["geometry"].apply(lambda x: x.cascaded_union)
if PANDAS_GE_11:
exp = GeoSeries(
[shapely.geometry.MultiPoint([(0, 0), (2, 2)]), Point(1, 1)],
index=pd.Index([1, 2], name="value2"),
name="geometry",
)
else:
exp = pd.Series(
[shapely.geometry.MultiPoint([(0, 0), (2, 2)]), Point(1, 1)],
index=pd.Index([1, 2], name="value2"),
name="geometry",
)
assert_series_equal(res, exp)
# apply on geometry column not resulting in new geometry
res = df.groupby("value2")["geometry"].apply(lambda x: x.unary_union.area)
exp = pd.Series([0.0, 0.0], index=pd.Index([1, 2], name="value2"), name="geometry")
assert_series_equal(res, exp)
def test_groupby_groups(df):
g = df.groupby("value2")
res = g.get_group(1)
assert isinstance(res, GeoDataFrame)
exp = df.loc[[0, 2]]
assert_frame_equal(res, exp)
def test_apply(s):
# function that returns geometry preserves GeoSeries class
def geom_func(geom):
assert isinstance(geom, Point)
return geom
result = s.apply(geom_func)
assert isinstance(result, GeoSeries)
assert_geoseries_equal(result, s)
# function that returns non-geometry results in Series
def numeric_func(geom):
assert isinstance(geom, Point)
return geom.x
result = s.apply(numeric_func)
assert not isinstance(result, GeoSeries)
assert_series_equal(result, pd.Series([0.0, 1.0, 2.0]))
def test_apply_loc_len1(df):
# subset of len 1 with loc -> bug in pandas with inconsistent Block ndim
# resulting in bug in apply
# https://github.com/geopandas/geopandas/issues/1078
subset = df.loc[[0], "geometry"]
result = subset.apply(lambda geom: geom.is_empty)
expected = subset.is_empty
np.testing.assert_allclose(result, expected)
|