1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235
|
import warnings
from functools import reduce
import numpy as np
import pandas as pd
from geopandas import GeoDataFrame, GeoSeries
from geopandas.array import _check_crs, _crs_mismatch_warn
def _ensure_geometry_column(df):
"""
Helper function to ensure the geometry column is called 'geometry'.
If another column with that name exists, it will be dropped.
"""
if not df._geometry_column_name == "geometry":
if "geometry" in df.columns:
df.drop("geometry", axis=1, inplace=True)
df.rename(
columns={df._geometry_column_name: "geometry"}, copy=False, inplace=True
)
df.set_geometry("geometry", inplace=True)
def _overlay_intersection(df1, df2):
"""
Overlay Intersection operation used in overlay function
"""
# Spatial Index to create intersections
idx1, idx2 = df2.sindex.query_bulk(df1.geometry, predicate="intersects", sort=True)
# Create pairs of geometries in both dataframes to be intersected
if idx1.size > 0 and idx2.size > 0:
left = df1.geometry.take(idx1)
left.reset_index(drop=True, inplace=True)
right = df2.geometry.take(idx2)
right.reset_index(drop=True, inplace=True)
intersections = left.intersection(right)
poly_ix = intersections.type.isin(["Polygon", "MultiPolygon"])
intersections.loc[poly_ix] = intersections[poly_ix].buffer(0)
# only keep actual intersecting geometries
pairs_intersect = pd.DataFrame({"__idx1": idx1, "__idx2": idx2})
geom_intersect = intersections
# merge data for intersecting geometries
df1 = df1.reset_index(drop=True)
df2 = df2.reset_index(drop=True)
dfinter = pairs_intersect.merge(
df1.drop(df1._geometry_column_name, axis=1),
left_on="__idx1",
right_index=True,
)
dfinter = dfinter.merge(
df2.drop(df2._geometry_column_name, axis=1),
left_on="__idx2",
right_index=True,
suffixes=("_1", "_2"),
)
return GeoDataFrame(dfinter, geometry=geom_intersect, crs=df1.crs)
else:
return GeoDataFrame(
[],
columns=list(set(df1.columns).union(df2.columns)) + ["__idx1", "__idx2"],
crs=df1.crs,
)
def _overlay_difference(df1, df2):
"""
Overlay Difference operation used in overlay function
"""
# spatial index query to find intersections
idx1, idx2 = df2.sindex.query_bulk(df1.geometry, predicate="intersects", sort=True)
idx1_unique, idx1_unique_indices = np.unique(idx1, return_index=True)
idx2_split = np.split(idx2, idx1_unique_indices[1:])
sidx = [
idx2_split.pop(0) if idx in idx1_unique else []
for idx in range(df1.geometry.size)
]
# Create differences
new_g = []
for geom, neighbours in zip(df1.geometry, sidx):
new = reduce(
lambda x, y: x.difference(y), [geom] + list(df2.geometry.iloc[neighbours])
)
new_g.append(new)
differences = GeoSeries(new_g, index=df1.index, crs=df1.crs)
poly_ix = differences.type.isin(["Polygon", "MultiPolygon"])
differences.loc[poly_ix] = differences[poly_ix].buffer(0)
geom_diff = differences[~differences.is_empty].copy()
dfdiff = df1[~differences.is_empty].copy()
dfdiff[dfdiff._geometry_column_name] = geom_diff
return dfdiff
def _overlay_symmetric_diff(df1, df2):
"""
Overlay Symmetric Difference operation used in overlay function
"""
dfdiff1 = _overlay_difference(df1, df2)
dfdiff2 = _overlay_difference(df2, df1)
dfdiff1["__idx1"] = range(len(dfdiff1))
dfdiff2["__idx2"] = range(len(dfdiff2))
dfdiff1["__idx2"] = np.nan
dfdiff2["__idx1"] = np.nan
# ensure geometry name (otherwise merge goes wrong)
_ensure_geometry_column(dfdiff1)
_ensure_geometry_column(dfdiff2)
# combine both 'difference' dataframes
dfsym = dfdiff1.merge(
dfdiff2, on=["__idx1", "__idx2"], how="outer", suffixes=("_1", "_2")
)
geometry = dfsym.geometry_1.copy()
geometry.name = "geometry"
# https://github.com/pandas-dev/pandas/issues/26468 use loc for now
geometry.loc[dfsym.geometry_1.isnull()] = dfsym.loc[
dfsym.geometry_1.isnull(), "geometry_2"
]
dfsym.drop(["geometry_1", "geometry_2"], axis=1, inplace=True)
dfsym.reset_index(drop=True, inplace=True)
dfsym = GeoDataFrame(dfsym, geometry=geometry, crs=df1.crs)
return dfsym
def _overlay_union(df1, df2):
"""
Overlay Union operation used in overlay function
"""
dfinter = _overlay_intersection(df1, df2)
dfsym = _overlay_symmetric_diff(df1, df2)
dfunion = pd.concat([dfinter, dfsym], ignore_index=True, sort=False)
# keep geometry column last
columns = list(dfunion.columns)
columns.remove("geometry")
columns = columns + ["geometry"]
return dfunion.reindex(columns=columns)
def overlay(df1, df2, how="intersection", make_valid=True, keep_geom_type=True):
"""Perform spatial overlay between two GeoDataFrames.
Currently only supports data GeoDataFrames with uniform geometry types,
i.e. containing only (Multi)Polygons, or only (Multi)Points, or a
combination of (Multi)LineString and LinearRing shapes.
Implements several methods that are all effectively subsets of the union.
Parameters
----------
df1 : GeoDataFrame
df2 : GeoDataFrame
how : string
Method of spatial overlay: 'intersection', 'union',
'identity', 'symmetric_difference' or 'difference'.
keep_geom_type : bool
If True, return only geometries of the same geometry type as df1 has,
if False, return all resulting gemetries.
Returns
-------
df : GeoDataFrame
GeoDataFrame with new set of polygons and attributes
resulting from the overlay
"""
# Allowed operations
allowed_hows = [
"intersection",
"union",
"identity",
"symmetric_difference",
"difference", # aka erase
]
# Error Messages
if how not in allowed_hows:
raise ValueError(
"`how` was '{0}' but is expected to be in {1}".format(how, allowed_hows)
)
if isinstance(df1, GeoSeries) or isinstance(df2, GeoSeries):
raise NotImplementedError(
"overlay currently only implemented for " "GeoDataFrames"
)
if not _check_crs(df1, df2):
_crs_mismatch_warn(df1, df2, stacklevel=3)
polys = ["Polygon", "MultiPolygon"]
lines = ["LineString", "MultiLineString", "LinearRing"]
points = ["Point", "MultiPoint"]
for i, df in enumerate([df1, df2]):
poly_check = df.geom_type.isin(polys).any()
lines_check = df.geom_type.isin(lines).any()
points_check = df.geom_type.isin(points).any()
if sum([poly_check, lines_check, points_check]) > 1:
raise NotImplementedError(
"df{} contains mixed geometry types.".format(i + 1)
)
# Computations
df1 = df1.copy()
df2 = df2.copy()
if df1.geom_type.isin(polys).all():
df1[df1._geometry_column_name] = df1.geometry.buffer(0)
if df2.geom_type.isin(polys).all():
df2[df2._geometry_column_name] = df2.geometry.buffer(0)
with warnings.catch_warnings(): # CRS checked above, supress array-level warning
warnings.filterwarnings("ignore", message="CRS mismatch between the CRS")
if how == "difference":
return _overlay_difference(df1, df2)
elif how == "intersection":
result = _overlay_intersection(df1, df2)
elif how == "symmetric_difference":
result = _overlay_symmetric_diff(df1, df2)
elif how == "union":
result = _overlay_union(df1, df2)
elif how == "identity":
dfunion = _overlay_union(df1, df2)
result = dfunion[dfunion["__idx1"].notnull()].copy()
if keep_geom_type:
type = df1.geom_type.iloc[0]
if type in polys:
result = result.loc[result.geom_type.isin(polys)]
elif type in lines:
result = result.loc[result.geom_type.isin(lines)]
elif type in points:
result = result.loc[result.geom_type.isin(points)]
else:
raise TypeError("`keep_geom_type` does not support {}.".format(type))
result.reset_index(drop=True, inplace=True)
result.drop(["__idx1", "__idx2"], axis=1, inplace=True)
return result
|