1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
import warnings
import pandas as pd
from geopandas import GeoDataFrame
from geopandas.array import _check_crs, _crs_mismatch_warn
def sjoin(
left_df, right_df, how="inner", op="intersects", lsuffix="left", rsuffix="right"
):
"""Spatial join of two GeoDataFrames.
Parameters
----------
left_df, right_df : GeoDataFrames
how : string, default 'inner'
The type of join:
* 'left': use keys from left_df; retain only left_df geometry column
* 'right': use keys from right_df; retain only right_df geometry column
* 'inner': use intersection of keys from both dfs; retain only
left_df geometry column
op : string, default 'intersects'
Binary predicate, one of {'intersects', 'contains', 'within'}.
See http://shapely.readthedocs.io/en/latest/manual.html#binary-predicates.
lsuffix : string, default 'left'
Suffix to apply to overlapping column names (left GeoDataFrame).
rsuffix : string, default 'right'
Suffix to apply to overlapping column names (right GeoDataFrame).
"""
if not isinstance(left_df, GeoDataFrame):
raise ValueError(
"'left_df' should be GeoDataFrame, got {}".format(type(left_df))
)
if not isinstance(right_df, GeoDataFrame):
raise ValueError(
"'right_df' should be GeoDataFrame, got {}".format(type(right_df))
)
allowed_hows = ["left", "right", "inner"]
if how not in allowed_hows:
raise ValueError(
'`how` was "%s" but is expected to be in %s' % (how, allowed_hows)
)
allowed_ops = ["contains", "within", "intersects"]
if op not in allowed_ops:
raise ValueError(
'`op` was "%s" but is expected to be in %s' % (op, allowed_ops)
)
if not _check_crs(left_df, right_df):
_crs_mismatch_warn(left_df, right_df, stacklevel=3)
index_left = "index_%s" % lsuffix
index_right = "index_%s" % rsuffix
# due to GH 352
if any(left_df.columns.isin([index_left, index_right])) or any(
right_df.columns.isin([index_left, index_right])
):
raise ValueError(
"'{0}' and '{1}' cannot be names in the frames being"
" joined".format(index_left, index_right)
)
# query index
with warnings.catch_warnings():
# We don't need to show our own warning here
# TODO remove this once the deprecation has been enforced
warnings.filterwarnings(
"ignore", "Generated spatial index is empty", FutureWarning
)
if op == "within":
# within is implemented as the inverse of contains
# contains is a faster predicate
# see discussion at https://github.com/geopandas/geopandas/pull/1421
predicate = "contains"
sindex = left_df.sindex
input_geoms = right_df.geometry
else:
# all other predicates are symmetric
# keep them the same
predicate = op
sindex = right_df.sindex
input_geoms = left_df.geometry
if sindex:
l_idx, r_idx = sindex.query_bulk(input_geoms, predicate=predicate, sort=False)
result = pd.DataFrame({"_key_left": l_idx, "_key_right": r_idx})
else:
# when sindex is empty / has no valid geometries
result = pd.DataFrame(columns=["_key_left", "_key_right"], dtype=float)
if op == "within":
# within is implemented as the inverse of contains
# flip back the results
result = result.rename(
columns={"_key_left": "_key_right", "_key_right": "_key_left"}
)
# the spatial index only allows limited (numeric) index types, but an
# index in geopandas may be any arbitrary dtype. so reset both indices now
# and store references to the original indices, to be reaffixed later.
# GH 352
left_df = left_df.copy(deep=True)
try:
left_index_name = left_df.index.name
left_df.index = left_df.index.rename(index_left)
except TypeError:
index_left = [
"index_%s" % lsuffix + str(pos)
for pos, ix in enumerate(left_df.index.names)
]
left_index_name = left_df.index.names
left_df.index = left_df.index.rename(index_left)
left_df = left_df.reset_index()
right_df = right_df.copy(deep=True)
try:
right_index_name = right_df.index.name
right_df.index = right_df.index.rename(index_right)
except TypeError:
index_right = [
"index_%s" % rsuffix + str(pos)
for pos, ix in enumerate(right_df.index.names)
]
right_index_name = right_df.index.names
right_df.index = right_df.index.rename(index_right)
right_df = right_df.reset_index()
# perform join on the dataframes
if how == "inner":
result = result.set_index("_key_left")
joined = (
left_df.merge(result, left_index=True, right_index=True)
.merge(
right_df.drop(right_df.geometry.name, axis=1),
left_on="_key_right",
right_index=True,
suffixes=("_%s" % lsuffix, "_%s" % rsuffix),
)
.set_index(index_left)
.drop(["_key_right"], axis=1)
)
if isinstance(index_left, list):
joined.index.names = left_index_name
else:
joined.index.name = left_index_name
elif how == "left":
result = result.set_index("_key_left")
joined = (
left_df.merge(result, left_index=True, right_index=True, how="left")
.merge(
right_df.drop(right_df.geometry.name, axis=1),
how="left",
left_on="_key_right",
right_index=True,
suffixes=("_%s" % lsuffix, "_%s" % rsuffix),
)
.set_index(index_left)
.drop(["_key_right"], axis=1)
)
if isinstance(index_left, list):
joined.index.names = left_index_name
else:
joined.index.name = left_index_name
else: # how == 'right':
joined = (
left_df.drop(left_df.geometry.name, axis=1)
.merge(
result.merge(
right_df, left_on="_key_right", right_index=True, how="right"
),
left_index=True,
right_on="_key_left",
how="right",
)
.set_index(index_right)
.drop(["_key_left", "_key_right"], axis=1)
)
if isinstance(index_right, list):
joined.index.names = right_index_name
else:
joined.index.name = right_index_name
return joined
|