1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876
|
import inspect
import numbers
import operator
import warnings
from functools import lru_cache
import numpy as np
import pandas as pd
from pandas.api.extensions import (
ExtensionArray,
ExtensionDtype,
register_extension_dtype,
)
import shapely
import shapely.affinity
import shapely.geometry
import shapely.ops
import shapely.wkt
from shapely.geometry.base import BaseGeometry
from ._compat import (
GEOS_GE_312,
HAS_PYPROJ,
PANDAS_GE_21,
PANDAS_GE_22,
SHAPELY_GE_21,
requires_pyproj,
)
from .sindex import SpatialIndex
if HAS_PYPROJ:
from pyproj import Transformer
TransformerFromCRS = lru_cache(Transformer.from_crs)
_names = {
"MISSING": None,
"NAG": None,
"POINT": "Point",
"LINESTRING": "LineString",
"LINEARRING": "LinearRing",
"POLYGON": "Polygon",
"MULTIPOINT": "MultiPoint",
"MULTILINESTRING": "MultiLineString",
"MULTIPOLYGON": "MultiPolygon",
"GEOMETRYCOLLECTION": "GeometryCollection",
}
POLYGON_GEOM_TYPES = {"Polygon", "MultiPolygon"}
LINE_GEOM_TYPES = {"LineString", "MultiLineString", "LinearRing"}
POINT_GEOM_TYPES = {"Point", "MultiPoint"}
type_mapping = {p.value: _names[p.name] for p in shapely.GeometryType}
geometry_type_ids = list(type_mapping.keys())
geometry_type_values = np.array(list(type_mapping.values()), dtype=object)
class GeometryDtype(ExtensionDtype):
type = BaseGeometry
name = "geometry"
na_value = None
@classmethod
def construct_from_string(cls, string):
if not isinstance(string, str):
raise TypeError(
f"'construct_from_string' expects a string, got {type(string)}"
)
elif string == cls.name:
return cls()
else:
raise TypeError(f"Cannot construct a '{cls.__name__}' from '{string}'")
@classmethod
def construct_array_type(cls):
return GeometryArray
register_extension_dtype(GeometryDtype)
def _check_crs(left, right, allow_none=False):
"""
Check if the projection of both arrays is the same.
If allow_none is True, empty CRS is treated as the same.
"""
if allow_none:
if not left.crs or not right.crs:
return True
if not left.crs == right.crs:
return False
return True
def _crs_mismatch_warn(left, right, stacklevel=3):
"""Raise a CRS mismatch warning with the information on the assigned CRS."""
if left.crs:
left_srs = left.crs.to_string()
left_srs = left_srs if len(left_srs) <= 50 else " ".join([left_srs[:50], "..."])
else:
left_srs = None
if right.crs:
right_srs = right.crs.to_string()
right_srs = (
right_srs if len(right_srs) <= 50 else " ".join([right_srs[:50], "..."])
)
else:
right_srs = None
warnings.warn(
"CRS mismatch between the CRS of left geometries "
"and the CRS of right geometries.\n"
"Use `to_crs()` to reproject one of "
"the input geometries to match the CRS of the other.\n\n"
f"Left CRS: {left_srs}\n"
f"Right CRS: {right_srs}\n",
UserWarning,
stacklevel=stacklevel,
)
def isna(value):
"""
Check if scalar value is NA-like (None, np.nan or pd.NA).
Custom version that only works for scalars (returning True or False),
as `pd.isna` also works for array-like input returning a boolean array.
"""
if value is None:
return True
elif isinstance(value, float) and np.isnan(value):
return True
elif value is pd.NA:
return True
else:
return False
# -----------------------------------------------------------------------------
# Constructors / converters to other formats
# -----------------------------------------------------------------------------
def _is_scalar_geometry(geom):
return isinstance(geom, BaseGeometry)
def from_shapely(data, crs=None):
"""
Convert a list or array of shapely objects to a GeometryArray.
Validates the elements.
Parameters
----------
data : array-like
list or array of shapely objects
crs : value, optional
Coordinate Reference System of the geometry objects. Can be anything accepted by
:meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
such as an authority string (eg "EPSG:4326") or a WKT string.
"""
if not isinstance(data, np.ndarray):
arr = np.empty(len(data), dtype=object)
arr[:] = data
elif len(data) == 0 and data.dtype == "float64":
arr = data.astype(object)
else:
arr = data
if not shapely.is_valid_input(arr).all():
out = []
for geom in data:
if isinstance(geom, BaseGeometry):
out.append(geom)
elif hasattr(geom, "__geo_interface__"):
geom = shapely.geometry.shape(geom)
out.append(geom)
elif isna(geom):
out.append(None)
else:
raise TypeError(f"Input must be valid geometry objects: {geom}")
arr = np.array(out, dtype=object)
return GeometryArray(arr, crs=crs)
def to_shapely(geoms):
"""Convert GeometryArray to numpy object array of shapely objects."""
if not isinstance(geoms, GeometryArray):
raise ValueError("'geoms' must be a GeometryArray")
return geoms._data
def from_wkb(data, crs=None, on_invalid="raise"):
"""
Convert a list or array of WKB objects to a GeometryArray.
Parameters
----------
data : array-like
list or array of WKB objects
crs : value, optional
Coordinate Reference System of the geometry objects. Can be anything accepted by
:meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
such as an authority string (eg "EPSG:4326") or a WKT string.
on_invalid: {"raise", "warn", "ignore"}, default "raise"
- raise: an exception will be raised if a WKB input geometry is invalid.
- warn: a warning will be raised and invalid WKB geometries will be returned as
None.
- ignore: invalid WKB geometries will be returned as None without a warning.
- fix: an effort is made to fix invalid input geometries (e.g. close
unclosed rings). If this is not possible, they are returned as ``None``
without a warning. Requires GEOS >= 3.11 and shapely >= 2.1.
"""
return GeometryArray(shapely.from_wkb(data, on_invalid=on_invalid), crs=crs)
def to_wkb(geoms, hex=False, **kwargs):
"""Convert GeometryArray to a numpy object array of WKB objects."""
if not isinstance(geoms, GeometryArray):
raise ValueError("'geoms' must be a GeometryArray")
return shapely.to_wkb(geoms, hex=hex, **kwargs)
def from_wkt(data, crs=None, on_invalid="raise"):
"""
Convert a list or array of WKT objects to a GeometryArray.
Parameters
----------
data : array-like
list or array of WKT objects
crs : value, optional
Coordinate Reference System of the geometry objects. Can be anything accepted by
:meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
such as an authority string (eg "EPSG:4326") or a WKT string.
on_invalid : {"raise", "warn", "ignore"}, default "raise"
- raise: an exception will be raised if a WKT input geometry is invalid.
- warn: a warning will be raised and invalid WKT geometries will be
returned as ``None``.
- ignore: invalid WKT geometries will be returned as ``None`` without a warning.
- fix: an effort is made to fix invalid input geometries (e.g. close
unclosed rings). If this is not possible, they are returned as ``None``
without a warning. Requires GEOS >= 3.11 and shapely >= 2.1.
"""
return GeometryArray(shapely.from_wkt(data, on_invalid=on_invalid), crs=crs)
def to_wkt(geoms, **kwargs):
"""Convert GeometryArray to a numpy object array of WKT objects."""
if not isinstance(geoms, GeometryArray):
raise ValueError("'geoms' must be a GeometryArray")
return shapely.to_wkt(geoms, **kwargs)
def points_from_xy(x, y, z=None, crs=None):
"""
Generate GeometryArray of shapely Point geometries from x, y(, z) coordinates.
In case of geographic coordinates, it is assumed that longitude is captured by
``x`` coordinates and latitude by ``y``.
Parameters
----------
x, y, z : iterable
crs : value, optional
Coordinate Reference System of the geometry objects. Can be anything accepted by
:meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
such as an authority string (eg "EPSG:4326") or a WKT string.
Examples
--------
>>> import pandas as pd
>>> df = pd.DataFrame({'x': [0, 1, 2], 'y': [0, 1, 2], 'z': [0, 1, 2]})
>>> df
x y z
0 0 0 0
1 1 1 1
2 2 2 2
>>> geometry = geopandas.points_from_xy(x=[1, 0], y=[0, 1])
>>> geometry = geopandas.points_from_xy(df['x'], df['y'], df['z'])
>>> gdf = geopandas.GeoDataFrame(
... df, geometry=geopandas.points_from_xy(df['x'], df['y']))
Having geographic coordinates:
>>> df = pd.DataFrame({'longitude': [-140, 0, 123], 'latitude': [-65, 1, 48]})
>>> df
longitude latitude
0 -140 -65
1 0 1
2 123 48
>>> geometry = geopandas.points_from_xy(df.longitude, df.latitude, crs="EPSG:4326")
Returns
-------
output : GeometryArray
"""
x = np.asarray(x, dtype="float64")
y = np.asarray(y, dtype="float64")
if z is not None:
z = np.asarray(z, dtype="float64")
return GeometryArray(shapely.points(x, y, z), crs=crs)
class GeometryArray(ExtensionArray):
"""Class wrapping a numpy array of Shapely objects.
It also holds the array-based implementations.
"""
_dtype = GeometryDtype()
def __init__(self, data, crs=None):
if isinstance(data, self.__class__):
if not crs:
crs = data.crs
data = data._data
elif not isinstance(data, np.ndarray):
raise TypeError(
"'data' should be array of geometry objects. Use from_shapely, "
"from_wkb, from_wkt functions to construct a GeometryArray."
)
elif not data.ndim == 1:
raise ValueError(
"'data' should be a 1-dimensional array of geometry objects."
)
self._data = data
self._crs = None
self.crs = crs
self._sindex = None
@property
def sindex(self):
"""Spatial index for the geometries in this array."""
if self._sindex is None:
self._sindex = SpatialIndex(self._data)
return self._sindex
@property
def has_sindex(self):
"""Check the existence of the spatial index without generating it.
Use the `.sindex` attribute on a GeoDataFrame or GeoSeries
to generate a spatial index if it does not yet exist,
which may take considerable time based on the underlying index
implementation.
Note that the underlying spatial index may not be fully
initialized until the first use.
See Also
--------
GeoDataFrame.has_sindex
Returns
-------
bool
`True` if the spatial index has been generated or
`False` if not.
"""
return self._sindex is not None
@property
def crs(self):
"""The Coordinate Reference System (CRS) represented as a ``pyproj.CRS`` object.
Returns None if the CRS is not set, and to set the value it
:getter: Returns a ``pyproj.CRS`` or None. When setting, the value
Coordinate Reference System of the geometry objects. Can be anything accepted by
:meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
such as an authority string (eg "EPSG:4326") or a WKT string.
"""
return self._crs
@crs.setter
def crs(self, value):
"""Set the value of the crs."""
if HAS_PYPROJ:
from pyproj import CRS
self._crs = None if not value else CRS.from_user_input(value)
else:
if value is not None:
warnings.warn(
"Cannot set the CRS, falling back to None. The CRS support requires"
" the 'pyproj' package, but it is not installed or does not import"
" correctly. The functions depending on CRS will raise an error or"
" may produce unexpected results.",
UserWarning,
stacklevel=2,
)
self._crs = None
def check_geographic_crs(self, stacklevel):
"""Check CRS and warn if the planar operation is done in a geographic CRS."""
if self.crs and self.crs.is_geographic:
warnings.warn(
"Geometry is in a geographic CRS. Results from "
f"'{inspect.stack()[1].function}' are likely incorrect. "
"Use 'GeoSeries.to_crs()' to re-project geometries to a "
"projected CRS before this operation.\n",
UserWarning,
stacklevel=stacklevel,
)
@property
def dtype(self):
return self._dtype
def __len__(self):
return self.shape[0]
def __getitem__(self, idx):
if isinstance(idx, numbers.Integral):
return self._data[idx]
# array-like, slice
# validate and convert IntegerArray/BooleanArray
# to numpy array, pass-through non-array-like indexers
idx = pd.api.indexers.check_array_indexer(self, idx)
return GeometryArray(self._data[idx], crs=self.crs)
def __setitem__(self, key, value):
# validate and convert IntegerArray/BooleanArray
# keys to numpy array, pass-through non-array-like indexers
key = pd.api.indexers.check_array_indexer(self, key)
if isinstance(value, pd.Series):
value = value.values
if isinstance(value, pd.DataFrame):
value = value.values.flatten()
if isinstance(value, list | np.ndarray):
value = from_shapely(value)
if isinstance(value, GeometryArray):
if isinstance(key, numbers.Integral):
raise ValueError("cannot set a single element with an array")
self._data[key] = value._data
elif isinstance(value, BaseGeometry) or isna(value):
if isna(value):
# internally only use None as missing value indicator
# but accept others
value = None
elif isinstance(value, BaseGeometry):
value = from_shapely([value])._data[0]
else:
raise TypeError("should be valid geometry")
if isinstance(key, slice | list | np.ndarray):
value_array = np.empty(1, dtype=object)
value_array[:] = [value]
self._data[key] = value_array
else:
self._data[key] = value
else:
raise TypeError(
f"Value should be either a BaseGeometry or None, got {value!s}"
)
# invalidate spatial index
self._sindex = None
# TODO: use this once pandas-dev/pandas#33457 is fixed
# if hasattr(value, "crs"):
# if value.crs and (value.crs != self.crs):
# raise ValueError(
# "CRS mismatch between CRS of the passed geometries "
# "and CRS of existing geometries."
# )
def __getstate__(self):
return (shapely.to_wkb(self._data), self._crs)
def __setstate__(self, state):
if not isinstance(state, dict):
# pickle file saved with pygeos
geoms = shapely.from_wkb(state[0])
self._crs = state[1]
self._sindex = None # pygeos.STRtree could not be pickled yet
self._data = geoms
self.base = None
else:
if "data" in state:
state["_data"] = state.pop("data")
if "_crs" not in state:
state["_crs"] = None
self.__dict__.update(state)
# -------------------------------------------------------------------------
# Geometry related methods
# -------------------------------------------------------------------------
@property
def is_valid(self):
return shapely.is_valid(self._data)
def is_valid_reason(self):
return shapely.is_valid_reason(self._data)
def is_valid_coverage(self, gap_width=0.0):
if not (SHAPELY_GE_21 and GEOS_GE_312):
raise ImportError(
"Method 'is_valid_coverage' requires shapely>=2.1 and GEOS>=3.12."
)
return bool(shapely.coverage_is_valid(self._data, gap_width=gap_width))
def invalid_coverage_edges(self, gap_width=0.0):
if not (SHAPELY_GE_21 and GEOS_GE_312):
raise ImportError(
"Method 'invalid_coverage_edges' requires shapely>=2.1 and GEOS>=3.12."
)
return shapely.coverage_invalid_edges(self._data, gap_width=gap_width)
@property
def is_empty(self):
return shapely.is_empty(self._data)
@property
def is_simple(self):
return shapely.is_simple(self._data)
@property
def is_ring(self):
return shapely.is_ring(self._data)
@property
def is_closed(self):
return shapely.is_closed(self._data)
@property
def is_ccw(self):
return shapely.is_ccw(self._data)
@property
def has_z(self):
return shapely.has_z(self._data)
@property
def has_m(self):
if not SHAPELY_GE_21:
raise ImportError("'has_m' requires shapely>=2.1.")
return shapely.has_m(self._data)
@property
def geom_type(self):
res = shapely.get_type_id(self._data)
return geometry_type_values[np.searchsorted(geometry_type_ids, res)]
@property
def area(self):
"""Return the area of the geometries in this array.
Raises a UserWarning if the CRS is geographic, as the area
calculation is not accurate in that case.
Note that the area is calculated in the units of the CRS.
Returns
-------
np.ndarray of float
Area of the geometries.
"""
self.check_geographic_crs(stacklevel=5)
return shapely.area(self._data)
@property
def length(self):
self.check_geographic_crs(stacklevel=5)
return shapely.length(self._data)
def count_coordinates(self):
return shapely.get_num_coordinates(self._data)
def count_geometries(self):
return shapely.get_num_geometries(self._data)
def count_interior_rings(self):
return shapely.get_num_interior_rings(self._data)
def get_precision(self):
return shapely.get_precision(self._data)
def get_geometry(self, index):
return shapely.get_geometry(self._data, index=index)
#
# Unary operations that return new geometries
#
@property
def boundary(self):
return GeometryArray(shapely.boundary(self._data), crs=self.crs)
@property
def centroid(self):
self.check_geographic_crs(stacklevel=5)
return GeometryArray(shapely.centroid(self._data), crs=self.crs)
def concave_hull(self, ratio, allow_holes):
return shapely.concave_hull(self._data, ratio=ratio, allow_holes=allow_holes)
def constrained_delaunay_triangles(self):
if not SHAPELY_GE_21:
raise ImportError("'constrained_delaunay_triangles' requires shapely>=2.1.")
return GeometryArray(
shapely.constrained_delaunay_triangles(self._data), crs=self.crs
)
@property
def convex_hull(self):
"""Return the convex hull of the geometries in this array."""
return GeometryArray(shapely.convex_hull(self._data), crs=self.crs)
@property
def envelope(self):
"""Return the envelope of the geometries in this array."""
return GeometryArray(shapely.envelope(self._data), crs=self.crs)
def minimum_rotated_rectangle(self):
"""Return the minimum rotated rectangle of the geometries in this array."""
return GeometryArray(shapely.oriented_envelope(self._data), crs=self.crs)
@property
def exterior(self):
return GeometryArray(shapely.get_exterior_ring(self._data), crs=self.crs)
def extract_unique_points(self):
return GeometryArray(shapely.extract_unique_points(self._data), crs=self.crs)
def offset_curve(self, distance, quad_segs=8, join_style="round", mitre_limit=5.0):
return GeometryArray(
shapely.offset_curve(
self._data,
distance,
quad_segs=quad_segs,
join_style=join_style,
mitre_limit=mitre_limit,
),
crs=self.crs,
)
@property
def interiors(self):
# no GeometryArray as result
has_non_poly = False
inner_rings = []
for geom in self._data:
interior_ring_seq = getattr(geom, "interiors", None)
# polygon case
if interior_ring_seq is not None:
inner_rings.append(list(interior_ring_seq))
# non-polygon case
else:
has_non_poly = True
inner_rings.append(None)
if has_non_poly:
warnings.warn(
"Only Polygon objects have interior rings. For other "
"geometry types, None is returned.",
stacklevel=2,
)
# need to allocate empty first in case of all empty lists in inner_rings
data = np.empty(len(inner_rings), dtype=object)
data[:] = inner_rings
return data
def remove_repeated_points(self, tolerance=0.0):
return GeometryArray(
shapely.remove_repeated_points(self._data, tolerance=tolerance),
crs=self.crs,
)
def representative_point(self):
return GeometryArray(shapely.point_on_surface(self._data), crs=self.crs)
def minimum_bounding_circle(self):
return GeometryArray(shapely.minimum_bounding_circle(self._data), crs=self.crs)
def maximum_inscribed_circle(self, tolerance):
if not SHAPELY_GE_21:
raise ImportError("'maximum_inscribed_circle' requires shapely>=2.1.")
return GeometryArray(
shapely.maximum_inscribed_circle(self._data, tolerance=tolerance),
crs=self.crs,
)
def minimum_bounding_radius(self):
return shapely.minimum_bounding_radius(self._data)
def minimum_clearance(self):
return shapely.minimum_clearance(self._data)
def minimum_clearance_line(self):
if not SHAPELY_GE_21:
raise ImportError("'minimum_clearance_line' requires shapely>=2.1.")
return GeometryArray(shapely.minimum_clearance_line(self._data), crs=self.crs)
def normalize(self):
return GeometryArray(shapely.normalize(self._data), crs=self.crs)
def orient_polygons(self, exterior_cw=False):
if not SHAPELY_GE_21:
raise ImportError("'orient_polygons' requires shapely>=2.1.")
return GeometryArray(
shapely.orient_polygons(self._data, exterior_cw=exterior_cw), crs=self.crs
)
def make_valid(self, method="linework", keep_collapsed=True):
kwargs = {}
if SHAPELY_GE_21:
kwargs["method"] = method
kwargs["keep_collapsed"] = keep_collapsed
else:
if method != "linework":
raise ValueError(
"Only the 'linework' method is supported for shapely < 2.1."
)
return GeometryArray(shapely.make_valid(self._data, **kwargs), crs=self.crs)
def reverse(self):
return GeometryArray(shapely.reverse(self._data), crs=self.crs)
def segmentize(self, max_segment_length):
return GeometryArray(
shapely.segmentize(self._data, max_segment_length),
crs=self.crs,
)
def force_2d(self):
return GeometryArray(shapely.force_2d(self._data), crs=self.crs)
def force_3d(self, z=0):
return GeometryArray(shapely.force_3d(self._data, z=z), crs=self.crs)
def transform(self, transformation, include_z=False):
return GeometryArray(
shapely.transform(self._data, transformation, include_z=include_z),
crs=self.crs,
)
def line_merge(self, directed=False):
return GeometryArray(
shapely.line_merge(self._data, directed=directed), crs=self.crs
)
def set_precision(self, grid_size, mode="valid_output"):
return GeometryArray(
shapely.set_precision(self._data, grid_size=grid_size, mode=mode),
crs=self.crs,
)
#
# Binary predicates
#
@staticmethod
def _binary_method(op, left, right, **kwargs):
if isinstance(right, GeometryArray):
if len(left) != len(right):
msg = (
"Lengths of inputs do not match. "
f"Left: {len(left)}, Right: {len(right)}"
)
raise ValueError(msg)
if not _check_crs(left, right):
_crs_mismatch_warn(left, right, stacklevel=7)
right = right._data
return getattr(shapely, op)(left._data, right, **kwargs)
def covers(self, other):
return self._binary_method("covers", self, other)
def covered_by(self, other):
return self._binary_method("covered_by", self, other)
def contains(self, other):
return self._binary_method("contains", self, other)
def contains_properly(self, other):
return self._binary_method("contains_properly", self, other)
def crosses(self, other):
return self._binary_method("crosses", self, other)
def disjoint(self, other):
return self._binary_method("disjoint", self, other)
def geom_equals(self, other):
return self._binary_method("equals", self, other)
def intersects(self, other):
return self._binary_method("intersects", self, other)
def overlaps(self, other):
return self._binary_method("overlaps", self, other)
def touches(self, other):
return self._binary_method("touches", self, other)
def within(self, other):
return self._binary_method("within", self, other)
def dwithin(self, other, distance):
self.check_geographic_crs(stacklevel=6)
return self._binary_method("dwithin", self, other, distance=distance)
def geom_equals_exact(self, other, tolerance):
return self._binary_method("equals_exact", self, other, tolerance=tolerance)
def geom_equals_identical(self, other):
if not SHAPELY_GE_21:
raise ImportError("'geom_equals_identical' requires shapely>=2.1.")
return self._binary_method("equals_identical", self, other)
#
# Binary operations that return new geometries
#
def clip_by_rect(self, xmin, ymin, xmax, ymax):
return GeometryArray(
shapely.clip_by_rect(self._data, xmin, ymin, xmax, ymax), crs=self.crs
)
def difference(self, other):
return GeometryArray(
self._binary_method("difference", self, other), crs=self.crs
)
def intersection(self, other):
return GeometryArray(
self._binary_method("intersection", self, other), crs=self.crs
)
def symmetric_difference(self, other):
return GeometryArray(
self._binary_method("symmetric_difference", self, other), crs=self.crs
)
def union(self, other):
return GeometryArray(self._binary_method("union", self, other), crs=self.crs)
def shortest_line(self, other):
return GeometryArray(
self._binary_method("shortest_line", self, other), crs=self.crs
)
def snap(self, other, tolerance):
return GeometryArray(
self._binary_method("snap", self, other, tolerance=tolerance), crs=self.crs
)
def shared_paths(self, other):
return GeometryArray(
self._binary_method("shared_paths", self, other), crs=self.crs
)
#
# Other operations
#
def distance(self, other):
self.check_geographic_crs(stacklevel=6)
return self._binary_method("distance", self, other)
def hausdorff_distance(self, other, **kwargs):
self.check_geographic_crs(stacklevel=6)
return self._binary_method("hausdorff_distance", self, other, **kwargs)
def frechet_distance(self, other, **kwargs):
self.check_geographic_crs(stacklevel=6)
return self._binary_method("frechet_distance", self, other, **kwargs)
def buffer(self, distance, resolution=16, **kwargs):
if not (isinstance(distance, int | float) and distance == 0):
self.check_geographic_crs(stacklevel=5)
return GeometryArray(
shapely.buffer(self._data, distance, quad_segs=resolution, **kwargs),
crs=self.crs,
)
def interpolate(self, distance, normalized=False):
self.check_geographic_crs(stacklevel=5)
return GeometryArray(
shapely.line_interpolate_point(self._data, distance, normalized=normalized),
crs=self.crs,
)
def simplify(self, tolerance, preserve_topology=True):
return GeometryArray(
shapely.simplify(
self._data, tolerance, preserve_topology=preserve_topology
),
crs=self.crs,
)
def simplify_coverage(self, tolerance, simplify_boundary=True):
if not (SHAPELY_GE_21 and GEOS_GE_312):
raise ImportError(
"'simplify_coverage' requires shapely>=2.1 and GEOS>=3.12."
)
return GeometryArray(
shapely.coverage_simplify(
self._data, tolerance, simplify_boundary=simplify_boundary
),
crs=self.crs,
)
def project(self, other, normalized=False):
if isinstance(other, GeometryArray):
other = other._data
return shapely.line_locate_point(self._data, other, normalized=normalized)
def relate(self, other):
if isinstance(other, GeometryArray):
other = other._data
return shapely.relate(self._data, other)
def relate_pattern(self, other, pattern):
if isinstance(other, GeometryArray):
other = other._data
return shapely.relate_pattern(self._data, other, pattern)
#
# Reduction operations that return a Shapely geometry
#
def unary_union(self):
warnings.warn(
"The 'unary_union' attribute is deprecated, "
"use the 'union_all' method instead.",
DeprecationWarning,
stacklevel=2,
)
return self.union_all()
def union_all(self, method="unary", grid_size=None):
if method != "unary" and grid_size is not None:
raise ValueError(f"grid_size is not supported for method '{method}'.")
if method == "coverage":
return shapely.coverage_union_all(self._data)
elif method == "unary":
return shapely.union_all(self._data, grid_size=grid_size)
elif method == "disjoint_subset":
if not (SHAPELY_GE_21 and GEOS_GE_312):
raise ImportError(
"Method 'disjoin_subset' requires shapely>=2.1 and GEOS>=3.12."
)
return shapely.disjoint_subset_union_all(self._data)
else:
raise ValueError(
f"Method '{method}' not recognized. Use 'coverage', 'unary' or "
"'disjoint_subset'."
)
def intersection_all(self):
return shapely.intersection_all(self._data)
#
# Affinity operations
#
@staticmethod
def _affinity_method(op, left, *args, **kwargs):
# not all shapely.affinity methods can handle empty geometries:
# affine_transform itself works (as well as translate), but rotate, scale
# and skew fail (they try to unpack the bounds).
# Here: consistently returning empty geom for input empty geom
out = []
for geom in left:
if geom is None or geom.is_empty:
res = geom
else:
res = getattr(shapely.affinity, op)(geom, *args, **kwargs)
out.append(res)
data = np.empty(len(left), dtype=object)
data[:] = out
return data
def affine_transform(self, matrix):
return GeometryArray(
self._affinity_method("affine_transform", self._data, matrix),
crs=self.crs,
)
def translate(self, xoff=0.0, yoff=0.0, zoff=0.0):
return GeometryArray(
self._affinity_method("translate", self._data, xoff, yoff, zoff),
crs=self.crs,
)
def rotate(self, angle, origin="center", use_radians=False):
return GeometryArray(
self._affinity_method(
"rotate", self._data, angle, origin=origin, use_radians=use_radians
),
crs=self.crs,
)
def scale(self, xfact=1.0, yfact=1.0, zfact=1.0, origin="center"):
return GeometryArray(
self._affinity_method(
"scale", self._data, xfact, yfact, zfact, origin=origin
),
crs=self.crs,
)
def skew(self, xs=0.0, ys=0.0, origin="center", use_radians=False):
return GeometryArray(
self._affinity_method(
"skew", self._data, xs, ys, origin=origin, use_radians=use_radians
),
crs=self.crs,
)
@requires_pyproj
def to_crs(self, crs=None, epsg=None):
"""Transform all geometries to a different coordinate reference system.
Transform all geometries in a GeometryArray to a different coordinate
reference system. The ``crs`` attribute on the current GeometryArray must
be set. Either ``crs`` or ``epsg`` may be specified for output.
This method will transform all points in all objects. It has no notion
of projecting entire geometries. All segments joining points are
assumed to be lines in the current projection, not geodesics. Objects
crossing the dateline (or other projection boundary) will have
undesirable behavior.
Parameters
----------
crs : pyproj.CRS, optional if `epsg` is specified
The value can be anything accepted
by :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
such as an authority string (eg "EPSG:4326") or a WKT string.
epsg : int, optional if `crs` is specified
EPSG code specifying output projection.
Returns
-------
GeometryArray
Examples
--------
>>> from shapely.geometry import Point
>>> from geopandas.array import from_shapely, to_wkt
>>> a = from_shapely([Point(1, 1), Point(2, 2), Point(3, 3)], crs=4326)
>>> to_wkt(a)
array(['POINT (1 1)', 'POINT (2 2)', 'POINT (3 3)'], dtype=object)
>>> a.crs # doctest: +SKIP
<Geographic 2D CRS: EPSG:4326>
Name: WGS 84
Axis Info [ellipsoidal]:
- Lat[north]: Geodetic latitude (degree)
- Lon[east]: Geodetic longitude (degree)
Area of Use:
- name: World
- bounds: (-180.0, -90.0, 180.0, 90.0)
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
>>> a = a.to_crs(3857)
>>> to_wkt(a)
array(['POINT (111319.490793 111325.142866)',
'POINT (222638.981587 222684.208506)',
'POINT (333958.47238 334111.171402)'], dtype=object)
>>> a.crs # doctest: +SKIP
<Projected CRS: EPSG:3857>
Name: WGS 84 / Pseudo-Mercator
Axis Info [cartesian]:
- X[east]: Easting (metre)
- Y[north]: Northing (metre)
Area of Use:
- name: World - 85°S to 85°N
- bounds: (-180.0, -85.06, 180.0, 85.06)
Coordinate Operation:
- name: Popular Visualisation Pseudo-Mercator
- method: Popular Visualisation Pseudo Mercator
Datum: World Geodetic System 1984
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
"""
from pyproj import CRS
if self.crs is None:
raise ValueError(
"Cannot transform naive geometries. "
"Please set a crs on the object first."
)
if crs is not None:
crs = CRS.from_user_input(crs)
elif epsg is not None:
crs = CRS.from_epsg(epsg)
else:
raise ValueError("Must pass either crs or epsg.")
# skip if the input CRS and output CRS are the exact same
if self.crs.is_exact_same(crs):
return self
transformer = TransformerFromCRS(self.crs, crs, always_xy=True)
new_data = transform(self._data, transformer.transform)
return GeometryArray(new_data, crs=crs)
@requires_pyproj
def estimate_utm_crs(self, datum_name="WGS 84"):
"""Return the estimated UTM CRS based on the bounds of the dataset.
.. versionadded:: 0.9
.. note:: Requires pyproj 3+
Parameters
----------
datum_name : str, optional
The name of the datum to use in the query. Default is WGS 84.
Returns
-------
pyproj.CRS
Examples
--------
>>> import geodatasets
>>> df = geopandas.read_file(
... geodatasets.get_path("geoda.chicago_commpop")
... )
>>> df.geometry.values.estimate_utm_crs() # doctest: +SKIP
<Derived Projected CRS: EPSG:32616>
Name: WGS 84 / UTM zone 16N
Axis Info [cartesian]:
- E[east]: Easting (metre)
- N[north]: Northing (metre)
Area of Use:
- name: Between 90°W and 84°W, northern hemisphere between equator and 84°N,...
- bounds: (-90.0, 0.0, -84.0, 84.0)
Coordinate Operation:
- name: UTM zone 16N
- method: Transverse Mercator
Datum: World Geodetic System 1984 ensemble
- Ellipsoid: WGS 84
- Prime Meridian: Greenwich
"""
from pyproj import CRS
from pyproj.aoi import AreaOfInterest
from pyproj.database import query_utm_crs_info
if not self.crs:
raise RuntimeError("crs must be set to estimate UTM CRS.")
minx, miny, maxx, maxy = self.total_bounds
if self.crs.is_geographic:
x_center = np.mean([minx, maxx])
y_center = np.mean([miny, maxy])
# ensure using geographic coordinates
else:
transformer = TransformerFromCRS(self.crs, "EPSG:4326", always_xy=True)
minx, miny, maxx, maxy = transformer.transform_bounds(
minx, miny, maxx, maxy
)
y_center = np.mean([miny, maxy])
# crossed the antimeridian
if minx > maxx:
# shift maxx from [-180,180] to [0,360]
# so both numbers are positive for center calculation
# Example: -175 to 185
maxx += 360
x_center = np.mean([minx, maxx])
# shift back to [-180,180]
x_center = ((x_center + 180) % 360) - 180
else:
x_center = np.mean([minx, maxx])
utm_crs_list = query_utm_crs_info(
datum_name=datum_name,
area_of_interest=AreaOfInterest(
west_lon_degree=x_center,
south_lat_degree=y_center,
east_lon_degree=x_center,
north_lat_degree=y_center,
),
)
try:
return CRS.from_epsg(utm_crs_list[0].code)
except IndexError:
raise RuntimeError("Unable to determine UTM CRS")
#
# Coordinate related properties
#
@property
def x(self):
"""Return the x location of point geometries in a GeoSeries."""
if (self.geom_type[~self.isna()] == "Point").all():
empty = self.is_empty
if empty.any():
nonempty = ~empty
coords = np.full_like(nonempty, dtype=float, fill_value=np.nan)
coords[nonempty] = shapely.get_x(self._data[nonempty])
return coords
else:
return shapely.get_x(self._data)
else:
message = "x attribute access only provided for Point geometries"
raise ValueError(message)
@property
def y(self):
"""Return the y location of point geometries in a GeoSeries."""
if (self.geom_type[~self.isna()] == "Point").all():
empty = self.is_empty
if empty.any():
nonempty = ~empty
coords = np.full_like(nonempty, dtype=float, fill_value=np.nan)
coords[nonempty] = shapely.get_y(self._data[nonempty])
return coords
else:
return shapely.get_y(self._data)
else:
message = "y attribute access only provided for Point geometries"
raise ValueError(message)
@property
def z(self):
"""Return the z location of point geometries in a GeoSeries."""
if (self.geom_type[~self.isna()] == "Point").all():
empty = self.is_empty
if empty.any():
nonempty = ~empty
coords = np.full_like(nonempty, dtype=float, fill_value=np.nan)
coords[nonempty] = shapely.get_z(self._data[nonempty])
return coords
else:
return shapely.get_z(self._data)
else:
message = "z attribute access only provided for Point geometries"
raise ValueError(message)
@property
def m(self):
"""Return the m coordinate of point geometries in a GeoSeries."""
if not SHAPELY_GE_21:
raise ImportError("'m' requires shapely>=2.1.")
if (self.geom_type[~self.isna()] == "Point").all():
empty = self.is_empty
if empty.any():
nonempty = ~empty
coords = np.full_like(nonempty, dtype=float, fill_value=np.nan)
coords[nonempty] = shapely.get_m(self._data[nonempty])
return coords
else:
return shapely.get_m(self._data)
else:
message = "m attribute access only provided for Point geometries"
raise ValueError(message)
@property
def bounds(self):
return shapely.bounds(self._data)
@property
def total_bounds(self):
if len(self) == 0:
# numpy 'min' cannot handle empty arrays
# TODO with numpy >= 1.15, the 'initial' argument can be used
return np.array([np.nan, np.nan, np.nan, np.nan])
b = self.bounds
with warnings.catch_warnings():
# if all rows are empty geometry / none, nan is expected
warnings.filterwarnings(
"ignore", r"All-NaN slice encountered", RuntimeWarning
)
return np.array(
(
np.nanmin(b[:, 0]), # minx
np.nanmin(b[:, 1]), # miny
np.nanmax(b[:, 2]), # maxx
np.nanmax(b[:, 3]), # maxy
)
)
# -------------------------------------------------------------------------
# general array like compat
# -------------------------------------------------------------------------
@property
def size(self):
return self._data.size
@property
def shape(self):
return (self.size,)
@property
def ndim(self):
return len(self.shape)
def copy(self, *args, **kwargs):
# still taking args/kwargs for compat with pandas 0.24
return GeometryArray(self._data.copy(), crs=self._crs)
def take(self, indices, allow_fill=False, fill_value=None):
from pandas.api.extensions import take
if allow_fill:
if fill_value is None or pd.isna(fill_value):
fill_value = None
elif not _is_scalar_geometry(fill_value):
raise TypeError("provide geometry or None as fill value")
result = take(self._data, indices, allow_fill=allow_fill, fill_value=fill_value)
if allow_fill and fill_value is None:
result[~shapely.is_valid_input(result)] = None
return GeometryArray(result, crs=self.crs)
# compat for pandas < 3.0
def _pad_or_backfill(
self, method, limit=None, limit_area=None, copy=True, **kwargs
):
if PANDAS_GE_21 and not PANDAS_GE_22:
if limit_area is not None:
# limit area not supported, but, but we feed through
# so the caller gets the pandas exception
kwargs["limit_area"] = limit_area
else:
kwargs["limit_area"] = limit_area
return super()._pad_or_backfill(method=method, limit=limit, copy=copy, **kwargs)
def fillna(self, value=None, method=None, limit=None, copy=True):
"""
Fill NA values with geometry (or geometries) or using the specified method.
Parameters
----------
value : shapely geometry object or GeometryArray
If a geometry value is passed it is used to fill all missing values.
Alternatively, an GeometryArray 'value' can be given. It's expected
that the GeometryArray has the same length as 'self'.
method : {'backfill', 'bfill', 'pad', 'ffill', None}, default None
Method to use for filling holes in reindexed Series
pad / ffill: propagate last valid observation forward to next valid
backfill / bfill: use NEXT valid observation to fill gap
limit : int, default None
The maximum number of entries where NA values will be filled.
copy : bool, default True
Whether to make a copy of the data before filling. If False, then
the original should be modified and no new memory should be allocated.
Returns
-------
GeometryArray
"""
if method is not None:
raise NotImplementedError("fillna with a method is not yet supported")
mask = self.isna()
if copy:
new_values = self.copy()
else:
new_values = self
if not mask.any():
return new_values
if limit is not None and limit < len(self):
modify = mask.cumsum() > limit
if modify.any():
mask[modify] = False
if isna(value):
value = [None]
elif _is_scalar_geometry(value):
value = [value]
elif isinstance(value, GeometryArray):
value = value[mask]
else:
raise TypeError(
"'value' parameter must be None, a scalar geometry, or a GeoSeries, "
f"but you passed a {type(value).__name__!r}"
)
value_arr = np.asarray(value, dtype=object)
new_values._data[mask] = value_arr
return new_values
def astype(self, dtype, copy=True):
"""
Cast to a NumPy array with 'dtype'.
Parameters
----------
dtype : str or dtype
Typecode or data-type to which the array is cast.
copy : bool, default True
Whether to copy the data, even if not necessary. If False,
a copy is made only if the old dtype does not match the
new dtype.
Returns
-------
array : ndarray
NumPy ndarray with 'dtype' for its dtype.
"""
if isinstance(dtype, GeometryDtype):
if copy:
return self.copy()
else:
return self
elif pd.api.types.is_string_dtype(dtype) and not pd.api.types.is_object_dtype(
dtype
):
string_values = to_wkt(self)
pd_dtype = pd.api.types.pandas_dtype(dtype)
if isinstance(pd_dtype, pd.StringDtype):
# ensure to return a pandas string array instead of numpy array
return pd.array(string_values, dtype=pd_dtype)
return string_values.astype(dtype, copy=False)
else:
# numpy 2.0 makes copy=False case strict (errors if cannot avoid the copy)
# -> in that case use `np.asarray` as backwards compatible alternative
# for `copy=None` (when requiring numpy 2+, this can be cleaned up)
if not copy:
return np.asarray(self, dtype=dtype)
else:
return np.array(self, dtype=dtype, copy=copy)
def isna(self):
"""Boolean NumPy array indicating if each value is missing."""
return shapely.is_missing(self._data)
def value_counts(
self,
dropna: bool = True,
):
"""
Compute a histogram of the counts of non-null values.
Parameters
----------
dropna : bool, default True
Don't include counts of NaN
Returns
-------
pd.Series
"""
# note ExtensionArray usage of value_counts only specifies dropna,
# so sort, normalize and bins are not arguments
values = to_wkb(self)
from pandas import Index, Series
result = Series(values).value_counts(dropna=dropna)
# value_counts converts None to nan, need to convert back for from_wkb to work
# note result.index already has object dtype, not geometry
# Can't use fillna(None) or Index.putmask, as this gets converted back to nan
# for object dtypes
result.index = Index(
from_wkb(np.where(result.index.isna(), None, result.index))
)
return result
def unique(self):
"""Compute the ExtensionArray of unique values.
Returns
-------
uniques : ExtensionArray
"""
from pandas import factorize
_, uniques = factorize(self)
return uniques
@property
def nbytes(self):
return self._data.nbytes
def shift(self, periods=1, fill_value=None):
"""
Shift values by desired number.
Newly introduced missing values are filled with
``self.dtype.na_value``.
Parameters
----------
periods : int, default 1
The number of periods to shift. Negative values are allowed
for shifting backwards.
fill_value : object, optional (default None)
The scalar value to use for newly introduced missing values.
The default is ``self.dtype.na_value``.
Returns
-------
GeometryArray
Shifted.
Notes
-----
If ``self`` is empty or ``periods`` is 0, a copy of ``self`` is
returned.
If ``periods > len(self)``, then an array of size
len(self) is returned, with all values filled with
``self.dtype.na_value``.
"""
shifted = super().shift(periods, fill_value)
shifted.crs = self.crs
return shifted
# -------------------------------------------------------------------------
# ExtensionArray specific
# -------------------------------------------------------------------------
@classmethod
def _from_sequence(cls, scalars, dtype=None, copy=False):
"""
Construct a new ExtensionArray from a sequence of scalars.
Parameters
----------
scalars : Sequence
Each element will be an instance of the scalar type for this
array, ``cls.dtype.type``.
dtype : dtype, optional
Construct for this particular dtype. This should be a Dtype
compatible with the ExtensionArray.
copy : boolean, default False
If True, copy the underlying data.
Returns
-------
ExtensionArray
"""
# GH 1413
if isinstance(scalars, BaseGeometry):
scalars = [scalars]
return from_shapely(scalars)
@classmethod
def _from_sequence_of_strings(cls, strings, *, dtype=None, copy=False):
"""
Construct a new ExtensionArray from a sequence of strings.
Parameters
----------
strings : Sequence
Each element will be an instance of the scalar type for this
array, ``cls.dtype.type``.
dtype : dtype, optional
Construct for this particular dtype. This should be a Dtype
compatible with the ExtensionArray.
copy : bool, default False
If True, copy the underlying data.
Returns
-------
ExtensionArray
"""
# GH 3099
return from_wkt(strings)
def _values_for_factorize(self):
# type: () -> Tuple[np.ndarray, Any]
"""Return an array and missing value suitable for factorization.
Returns
-------
values : ndarray
An array suitable for factorization. This should maintain order
and be a supported dtype (Float64, Int64, UInt64, String, Object).
By default, the extension array is cast to object dtype.
na_value : object
The value in `values` to consider missing. This will be treated
as NA in the factorization routines, so it will be coded as
`na_sentinal` and not included in `uniques`. By default,
``np.nan`` is used.
"""
vals = to_wkb(self)
return vals, None
@classmethod
def _from_factorized(cls, values, original):
"""
Reconstruct an ExtensionArray after factorization.
Parameters
----------
values : ndarray
An integer ndarray with the factorized values.
original : ExtensionArray
The original ExtensionArray that factorize was called on.
See Also
--------
pandas.factorize
ExtensionArray.factorize
"""
return from_wkb(values, crs=original.crs)
def _values_for_argsort(self):
# type: () -> np.ndarray
"""Return values for sorting.
Returns
-------
ndarray
The transformed values should maintain the ordering between values
within the array.
See Also
--------
ExtensionArray.argsort
"""
# Note: this is used in `ExtensionArray.argsort`.
from geopandas.tools.hilbert_curve import _hilbert_distance
if self.size == 0:
# TODO _hilbert_distance fails for empty array
return np.array([], dtype="uint32")
mask_empty = self.is_empty
has_empty = mask_empty.any()
mask = self.isna() | mask_empty
if mask.any():
# if there are missing or empty geometries, we fill those with
# a dummy geometry so that the _hilbert_distance function can
# process those. The missing values are handled separately by
# pandas regardless of the values we return here (to sort
# first/last depending on 'na_position'), the distances for the
# empty geometries are substitued below with an appropriate value
geoms = self.copy()
indices = np.nonzero(~mask)[0]
if indices.size:
geom = self[indices[0]]
else:
# for all-empty/NA, just take random geometry
geom = shapely.geometry.Point(0, 0)
geoms[mask] = geom
else:
geoms = self
if has_empty:
# in case we have empty geometries, we need to expand the total
# bounds with a small percentage, so the empties can be
# deterministically sorted first
total_bounds = geoms.total_bounds
xoff = (total_bounds[2] - total_bounds[0]) * 0.01
yoff = (total_bounds[3] - total_bounds[1]) * 0.01
total_bounds += np.array([-xoff, -yoff, xoff, yoff])
else:
total_bounds = None
distances = _hilbert_distance(geoms, total_bounds=total_bounds)
if has_empty:
# empty geometries are sorted first ("smallest"), so fill in
# smallest possible value for uints
distances[mask_empty] = 0
return distances
def argmin(self, skipna: bool = True) -> int:
raise TypeError("geometries have no minimum or maximum")
def argmax(self, skipna: bool = True) -> int:
raise TypeError("geometries have no minimum or maximum")
def _formatter(self, boxed=False):
"""Return a formatting function for scalar values.
This is used in the default '__repr__'. The returned formatting
function receives instances of your scalar type.
Parameters
----------
boxed: bool, default False
An indicated for whether or not your array is being printed
within a Series, DataFrame, or Index (True), or just by
itself (False). This may be useful if you want scalar values
to appear differently within a Series versus on its own (e.g.
quoted or not).
Returns
-------
Callable[[Any], str]
A callable that gets instances of the scalar type and
returns a string. By default, :func:`repr` is used
when ``boxed=False`` and :func:`str` is used when
``boxed=True``.
"""
if boxed:
import geopandas
precision = geopandas.options.display_precision
if precision is None:
if self.crs:
if self.crs.is_projected:
precision = 3
else:
precision = 5
else:
# fallback
# dummy heuristic based on 10 first geometries that should
# work in most cases
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=RuntimeWarning)
xmin, ymin, xmax, ymax = self[~self.isna()][:10].total_bounds
if (
(-180 <= xmin <= 180)
and (-180 <= xmax <= 180)
and (-90 <= ymin <= 90)
and (-90 <= ymax <= 90)
):
# geographic coordinates
precision = 5
else:
# typically projected coordinates
# (in case of unit meter: mm precision)
precision = 3
return lambda geom: shapely.to_wkt(geom, rounding_precision=precision)
return repr
@classmethod
def _concat_same_type(cls, to_concat):
"""Concatenate multiple array.
Parameters
----------
to_concat : sequence of this type
Returns
-------
ExtensionArray
"""
data = np.concatenate([ga._data for ga in to_concat])
return GeometryArray(data, crs=_get_common_crs(to_concat))
def _reduce(self, name, skipna=True, keepdims=False, **kwargs):
# including the base class version here (that raises by default)
# because this was not yet defined in pandas 0.23
if name in ("any", "all"):
return getattr(self._data, name)(keepdims=keepdims)
raise TypeError(
f"'{type(self).__name__}' with dtype {self.dtype} "
f"does not support reduction '{name}'"
)
def __array__(self, dtype=None, copy=None):
"""Return the data as a numpy array.
This is the numpy array interface.
Returns
-------
values : numpy array
"""
if copy and (dtype is None or dtype == np.dtype("object")):
return self._data.copy()
return self._data
def _binop(self, other, op):
def convert_values(param):
if not _is_scalar_geometry(param) and (
isinstance(param, ExtensionArray) or pd.api.types.is_list_like(param)
):
ovalues = param
else: # Assume its an object
ovalues = [param] * len(self)
return ovalues
if isinstance(other, pd.Series | pd.Index | pd.DataFrame):
# rely on pandas to unbox and dispatch to us
return NotImplemented
lvalues = self
rvalues = convert_values(other)
if len(lvalues) != len(rvalues):
raise ValueError("Lengths must match to compare")
# If the operator is not defined for the underlying objects,
# a TypeError should be raised
res = [op(a, b) for (a, b) in zip(lvalues, rvalues)]
res = np.asarray(res, dtype=bool)
return res
def __eq__(self, other):
return self._binop(other, operator.eq)
def __ne__(self, other):
return self._binop(other, operator.ne)
def __contains__(self, item):
"""Return for `item in self`."""
if isna(item):
if (
item is self.dtype.na_value
or isinstance(item, self.dtype.type)
or item is None
):
return self.isna().any()
else:
return False
return (self == item).any()
def _get_common_crs(arr_seq):
# mask out all None arrays with no crs (most likely auto generated by pandas
# from concat with missing column)
arr_seq = [ga for ga in arr_seq if not (ga.isna().all() and ga.crs is None)]
# determine unique crs without using a set, because CRS hash can be different
# for objects with the same CRS
unique_crs = []
for arr in arr_seq:
if arr.crs not in unique_crs:
unique_crs.append(arr.crs)
crs_not_none = [crs for crs in unique_crs if crs is not None]
names = [crs.name for crs in crs_not_none]
if len(crs_not_none) == 0:
return None
if len(crs_not_none) == 1:
if len(unique_crs) != 1:
warnings.warn(
"CRS not set for some of the concatenation inputs. "
f"Setting output's CRS as {names[0]} "
"(the single non-null crs provided).",
stacklevel=2,
)
return crs_not_none[0]
raise ValueError(
f"Cannot determine common CRS for concatenation inputs, got {names}. "
"Use `to_crs()` to transform geometries to the same CRS before merging."
)
def transform(data, func):
has_z = shapely.has_z(data)
result = np.empty_like(data)
coords = shapely.get_coordinates(data[~has_z], include_z=False)
new_coords_z = func(coords[:, 0], coords[:, 1])
result[~has_z] = shapely.set_coordinates(
data[~has_z].copy(), np.array(new_coords_z).T
)
coords_z = shapely.get_coordinates(data[has_z], include_z=True)
new_coords_z = func(coords_z[:, 0], coords_z[:, 1], coords_z[:, 2])
result[has_z] = shapely.set_coordinates(
data[has_z].copy(), np.array(new_coords_z).T
)
return result
|