1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622
|
import json
from packaging.version import Version
import numpy as np
import pandas as pd
import pyarrow as pa
from numpy.typing import NDArray
import shapely
from shapely import GeometryType
from geopandas import GeoDataFrame
from geopandas._compat import SHAPELY_GE_204
from geopandas.array import from_shapely, from_wkb
GEOARROW_ENCODINGS = [
"point",
"linestring",
"polygon",
"multipoint",
"multilinestring",
"multipolygon",
]
## GeoPandas -> GeoArrow
class ArrowTable:
"""
Wrapper class for Arrow data.
This class implements the `Arrow PyCapsule Protocol`_ (i.e. having an
``__arrow_c_stream__`` method). This object can then be consumed by
your Arrow implementation of choice that supports this protocol.
.. _Arrow PyCapsule Protocol: https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
Example
-------
>>> import pyarrow as pa
>>> pa.table(gdf.to_arrow()) # doctest: +SKIP
"""
def __init__(self, pa_table):
self._pa_table = pa_table
def __arrow_c_stream__(self, requested_schema=None):
return self._pa_table.__arrow_c_stream__(requested_schema=requested_schema)
class GeoArrowArray:
"""
Wrapper class for a geometry array as Arrow data.
This class implements the `Arrow PyCapsule Protocol`_ (i.e. having an
``__arrow_c_array/stream__`` method). This object can then be consumed by
your Arrow implementation of choice that supports this protocol.
.. _Arrow PyCapsule Protocol: https://arrow.apache.org/docs/format/CDataInterface/PyCapsuleInterface.html
Example
-------
>>> import pyarrow as pa
>>> pa.array(ser.to_arrow()) # doctest: +SKIP
"""
def __init__(self, pa_field, pa_array):
self._pa_array = pa_array
self._pa_field = pa_field
def __arrow_c_array__(self, requested_schema=None):
if requested_schema is not None:
raise NotImplementedError(
"Requested schema is not supported for geometry arrays"
)
return (
self._pa_field.__arrow_c_schema__(),
self._pa_array.__arrow_c_array__()[1],
)
def geopandas_to_arrow(
df,
index=None,
geometry_encoding="WKB",
interleaved=True,
include_z=None,
):
"""
Convert GeoDataFrame to a pyarrow.Table.
Parameters
----------
df : GeoDataFrame
The GeoDataFrame to convert.
index : bool, default None
If ``True``, always include the dataframe's index(es) as columns
in the file output.
If ``False``, the index(es) will not be written to the file.
If ``None``, the index(ex) will be included as columns in the file
output except `RangeIndex` which is stored as metadata only.
geometry_encoding : {'WKB', 'geoarrow' }, default 'WKB'
The GeoArrow encoding to use for the data conversion.
interleaved : bool, default True
Only relevant for 'geoarrow' encoding. If True, the geometries'
coordinates are interleaved in a single fixed size list array.
If False, the coordinates are stored as separate arrays in a
struct type.
include_z : bool, default None
Only relevant for 'geoarrow' encoding (for WKB, the dimensionality
of the individial geometries is preserved).
If False, return 2D geometries. If True, include the third dimension
in the output (if a geometry has no third dimension, the z-coordinates
will be NaN). By default, will infer the dimensionality from the
input geometries. Note that this inference can be unreliable with
empty geometries (for a guaranteed result, it is recommended to
specify the keyword).
"""
mask = df.dtypes == "geometry"
geometry_columns = df.columns[mask]
geometry_indices = np.asarray(mask).nonzero()[0]
df_attr = pd.DataFrame(df.copy(deep=False))
# replace geometry columns with dummy values -> will get converted to
# Arrow null column (not holding any memory), so we can afterwards
# fill the resulting table with the correct geometry fields
for col in geometry_columns:
df_attr[col] = None
table = pa.Table.from_pandas(df_attr, preserve_index=index)
geometry_encoding_dict = {}
if geometry_encoding.lower() == "geoarrow":
# Encode all geometry columns to GeoArrow
for i, col in zip(geometry_indices, geometry_columns):
field, geom_arr = construct_geometry_array(
np.array(df[col].array),
include_z=include_z,
field_name=col,
crs=df[col].crs,
interleaved=interleaved,
)
table = table.set_column(i, field, geom_arr)
geometry_encoding_dict[col] = (
field.metadata[b"ARROW:extension:name"]
.decode()
.removeprefix("geoarrow.")
)
elif geometry_encoding.lower() == "wkb":
# Encode all geometry columns to WKB
for i, col in zip(geometry_indices, geometry_columns):
field, wkb_arr = construct_wkb_array(
np.asarray(df[col].array), field_name=col, crs=df[col].crs
)
table = table.set_column(i, field, wkb_arr)
geometry_encoding_dict[col] = "WKB"
else:
raise ValueError(
f"Expected geometry encoding 'WKB' or 'geoarrow' got {geometry_encoding}"
)
return table, geometry_encoding_dict
def construct_wkb_array(
shapely_arr: NDArray[np.object_],
*,
field_name: str = "geometry",
crs: str | None = None,
) -> tuple[pa.Field, pa.Array]:
if shapely.geos_version > (3, 10, 0):
kwargs = {"flavor": "iso"}
else:
if shapely.has_z(shapely_arr).any():
raise ValueError("Cannot write 3D geometries with GEOS<3.10")
kwargs = {}
wkb_arr = shapely.to_wkb(shapely_arr, **kwargs)
extension_metadata = {"ARROW:extension:name": "geoarrow.wkb"}
if crs is not None:
extension_metadata["ARROW:extension:metadata"] = json.dumps(
{"crs": crs.to_json_dict()}
)
else:
# In theory this should not be needed, but otherwise pyarrow < 17
# crashes on receiving such data through C Data Interface
# https://github.com/apache/arrow/issues/41741
extension_metadata["ARROW:extension:metadata"] = "{}"
field = pa.field(
field_name, type=pa.binary(), nullable=True, metadata=extension_metadata
)
parr = pa.array(np.asarray(wkb_arr), pa.binary())
return field, parr
def _convert_inner_coords(coords, interleaved, dims, mask=None):
if interleaved:
coords_field = pa.field(dims, pa.float64(), nullable=False)
typ = pa.list_(coords_field, len(dims))
if mask is None:
# mask keyword only added in pyarrow 15.0.0
parr = pa.FixedSizeListArray.from_arrays(coords.ravel(), type=typ)
else:
parr = pa.FixedSizeListArray.from_arrays(
coords.ravel(), type=typ, mask=mask
)
else:
if dims == "xy":
fields = [
pa.field("x", pa.float64(), nullable=False),
pa.field("y", pa.float64(), nullable=False),
]
parr = pa.StructArray.from_arrays(
[coords[:, 0].copy(), coords[:, 1].copy()], fields=fields, mask=mask
)
else:
fields = [
pa.field("x", pa.float64(), nullable=False),
pa.field("y", pa.float64(), nullable=False),
pa.field("z", pa.float64(), nullable=False),
]
parr = pa.StructArray.from_arrays(
[coords[:, 0].copy(), coords[:, 1].copy(), coords[:, 2].copy()],
fields=fields,
mask=mask,
)
return parr
def _linestring_type(point_type):
return pa.list_(pa.field("vertices", point_type, nullable=False))
def _polygon_type(point_type):
return pa.list_(
pa.field(
"rings",
pa.list_(pa.field("vertices", point_type, nullable=False)),
nullable=False,
)
)
def _multipoint_type(point_type):
return pa.list_(pa.field("points", point_type, nullable=False))
def _multilinestring_type(point_type):
return pa.list_(
pa.field("linestrings", _linestring_type(point_type), nullable=False)
)
def _multipolygon_type(point_type):
return pa.list_(pa.field("polygons", _polygon_type(point_type), nullable=False))
def construct_geometry_array(
shapely_arr: NDArray[np.object_],
include_z: bool | None = None,
*,
field_name: str = "geometry",
crs: str | None = None,
interleaved: bool = True,
) -> tuple[pa.Field, pa.Array]:
# NOTE: this implementation returns a (field, array) pair so that it can set the
# extension metadata on the field without instantiating extension types into the
# global pyarrow registry
mask = shapely.is_missing(shapely_arr)
if len(shapely_arr) == 0 or mask.all():
raise NotImplementedError(
"Converting an empty or all-missing GeoDataFrame to the 'geoarrow' "
"encoding is not yet supported."
)
geom_type, coords, offsets = shapely.to_ragged_array(
shapely_arr, include_z=include_z
)
if mask.any():
if (
geom_type == GeometryType.POINT
and interleaved
and Version(pa.__version__) < Version("15.0.0")
):
raise ValueError(
"Converting point geometries with missing values is not supported "
"for interleaved coordinates with pyarrow < 15.0.0. Please "
"upgrade to a newer version of pyarrow."
)
mask = pa.array(mask, type=pa.bool_())
if geom_type == GeometryType.POINT and not SHAPELY_GE_204:
# bug in shapely < 2.0.4, see https://github.com/shapely/shapely/pull/2034
# this workaround only works if there are no empty points
indices = np.nonzero(mask)[0]
indices = indices - np.arange(len(indices))
coords = np.insert(coords, indices, np.nan, axis=0)
else:
mask = None
if coords.shape[-1] == 2:
dims = "xy"
elif coords.shape[-1] == 3:
dims = "xyz"
else:
raise ValueError(f"Unexpected coords dimensions: {coords.shape}")
extension_metadata: dict[str, str] = {}
if crs is not None:
extension_metadata["ARROW:extension:metadata"] = json.dumps(
{"crs": crs.to_json_dict()}
)
else:
# In theory this should not be needed, but otherwise pyarrow < 17
# crashes on receiving such data through C Data Interface
# https://github.com/apache/arrow/issues/41741
extension_metadata["ARROW:extension:metadata"] = "{}"
if geom_type == GeometryType.POINT:
parr = _convert_inner_coords(coords, interleaved, dims, mask=mask)
extension_metadata["ARROW:extension:name"] = "geoarrow.point"
field = pa.field(
field_name,
parr.type,
nullable=True,
metadata=extension_metadata,
)
return field, parr
elif geom_type == GeometryType.LINESTRING:
assert len(offsets) == 1, "Expected one offsets array"
(geom_offsets,) = offsets
_parr = _convert_inner_coords(coords, interleaved, dims)
parr = pa.ListArray.from_arrays(
pa.array(geom_offsets), _parr, _linestring_type(_parr.type), mask=mask
)
extension_metadata["ARROW:extension:name"] = "geoarrow.linestring"
field = pa.field(
field_name,
parr.type,
nullable=True,
metadata=extension_metadata,
)
return field, parr
elif geom_type == GeometryType.POLYGON:
assert len(offsets) == 2, "Expected two offsets arrays"
ring_offsets, geom_offsets = offsets
_parr = _convert_inner_coords(coords, interleaved, dims)
_parr1 = pa.ListArray.from_arrays(pa.array(ring_offsets), _parr)
parr = pa.ListArray.from_arrays(pa.array(geom_offsets), _parr1, mask=mask)
parr = parr.cast(_polygon_type(_parr.type))
extension_metadata["ARROW:extension:name"] = "geoarrow.polygon"
field = pa.field(
field_name,
parr.type,
nullable=True,
metadata=extension_metadata,
)
return field, parr
elif geom_type == GeometryType.MULTIPOINT:
assert len(offsets) == 1, "Expected one offsets array"
(geom_offsets,) = offsets
_parr = _convert_inner_coords(coords, interleaved, dims)
parr = pa.ListArray.from_arrays(
pa.array(geom_offsets), _parr, type=_multipoint_type(_parr.type), mask=mask
)
extension_metadata["ARROW:extension:name"] = "geoarrow.multipoint"
field = pa.field(
field_name,
parr.type,
nullable=True,
metadata=extension_metadata,
)
return field, parr
elif geom_type == GeometryType.MULTILINESTRING:
assert len(offsets) == 2, "Expected two offsets arrays"
ring_offsets, geom_offsets = offsets
_parr = _convert_inner_coords(coords, interleaved, dims)
_parr1 = pa.ListArray.from_arrays(pa.array(ring_offsets), _parr)
parr = pa.ListArray.from_arrays(pa.array(geom_offsets), _parr1, mask=mask)
parr = parr.cast(_multilinestring_type(_parr.type))
extension_metadata["ARROW:extension:name"] = "geoarrow.multilinestring"
field = pa.field(
field_name,
parr.type,
nullable=True,
metadata=extension_metadata,
)
return field, parr
elif geom_type == GeometryType.MULTIPOLYGON:
assert len(offsets) == 3, "Expected three offsets arrays"
ring_offsets, polygon_offsets, geom_offsets = offsets
_parr = _convert_inner_coords(coords, interleaved, dims)
_parr1 = pa.ListArray.from_arrays(pa.array(ring_offsets), _parr)
_parr2 = pa.ListArray.from_arrays(pa.array(polygon_offsets), _parr1)
parr = pa.ListArray.from_arrays(pa.array(geom_offsets), _parr2, mask=mask)
parr = parr.cast(_multipolygon_type(_parr.type))
extension_metadata["ARROW:extension:name"] = "geoarrow.multipolygon"
field = pa.field(
field_name,
parr.type,
nullable=True,
metadata=extension_metadata,
)
return field, parr
else:
raise ValueError(f"Unsupported type for geoarrow: {geom_type}")
## GeoArrow -> GeoPandas
def _get_arrow_geometry_field(field):
if (meta := field.metadata) is not None:
if (ext_name := meta.get(b"ARROW:extension:name", None)) is not None:
if ext_name.startswith(b"geoarrow."):
if (
ext_meta := meta.get(b"ARROW:extension:metadata", None)
) is not None:
ext_meta = json.loads(ext_meta.decode())
return ext_name.decode(), ext_meta
if isinstance(field.type, pa.ExtensionType):
ext_name = field.type.extension_name
if ext_name.startswith("geoarrow."):
ext_meta_ser = field.type.__arrow_ext_serialize__()
if ext_meta_ser:
ext_meta = json.loads(ext_meta_ser.decode())
else:
ext_meta = None
return ext_name, ext_meta
return None
def arrow_to_geopandas(table, geometry=None, to_pandas_kwargs=None):
"""
Convert Arrow table object to a GeoDataFrame based on GeoArrow extension types.
Parameters
----------
table : pyarrow.Table
The Arrow table to convert.
geometry : str, default None
The name of the geometry column to set as the active geometry
column. If None, the first geometry column found will be used.
to_pandas_kwargs : dict, optional
Arguments passed to the `pa.Table.to_pandas` method for non-geometry columns.
This can be used to control the behavior of the conversion of the non-geometry
columns to a pandas DataFrame. For example, you can use this to control the
dtype conversion of the columns. By default, the `to_pandas` method is called
with no additional arguments.
Returns
-------
GeoDataFrame
"""
if not isinstance(table, pa.Table):
table = pa.table(table)
geom_fields = []
for i, field in enumerate(table.schema):
geom = _get_arrow_geometry_field(field)
if geom is not None:
geom_fields.append((i, field.name, *geom))
if len(geom_fields) == 0:
raise ValueError("No geometry column found in the Arrow table.")
table_attr = table.drop([f[1] for f in geom_fields])
if to_pandas_kwargs is None:
to_pandas_kwargs = {}
df = table_attr.to_pandas(**to_pandas_kwargs)
for i, col, ext_name, ext_meta in geom_fields:
crs = None
if ext_meta is not None and "crs" in ext_meta:
crs = ext_meta["crs"]
if ext_name == "geoarrow.wkb":
geom_arr = from_wkb(np.array(table[col]), crs=crs)
elif ext_name.split(".")[1] in GEOARROW_ENCODINGS:
geom_arr = from_shapely(
construct_shapely_array(table[col].combine_chunks(), ext_name), crs=crs
)
else:
raise TypeError(f"Unknown GeoArrow extension type: {ext_name}")
df.insert(i, col, geom_arr)
return GeoDataFrame(df, geometry=geometry or geom_fields[0][1])
def arrow_to_geometry_array(arr):
"""
Convert Arrow array object (representing single GeoArrow array) to a
geopandas GeometryArray.
Specifically for GeoSeries.from_arrow.
"""
if Version(pa.__version__) < Version("14.0.0"):
raise ValueError("Importing from Arrow requires pyarrow >= 14.0.")
schema_capsule, array_capsule = arr.__arrow_c_array__()
field = pa.Field._import_from_c_capsule(schema_capsule)
pa_arr = pa.Array._import_from_c_capsule(field.__arrow_c_schema__(), array_capsule)
geom_info = _get_arrow_geometry_field(field)
if geom_info is None:
raise ValueError("No GeoArrow geometry field found.")
ext_name, ext_meta = geom_info
crs = None
if ext_meta is not None and "crs" in ext_meta:
crs = ext_meta["crs"]
if ext_name == "geoarrow.wkb":
geom_arr = from_wkb(np.array(pa_arr), crs=crs)
elif ext_name.split(".")[1] in GEOARROW_ENCODINGS:
geom_arr = from_shapely(construct_shapely_array(pa_arr, ext_name), crs=crs)
else:
raise ValueError(f"Unknown GeoArrow extension type: {ext_name}")
return geom_arr
def _get_inner_coords(arr):
if pa.types.is_struct(arr.type):
if arr.type.num_fields == 2:
coords = np.column_stack(
[np.asarray(arr.field("x")), np.asarray(arr.field("y"))]
)
else:
coords = np.column_stack(
[
np.asarray(arr.field("x")),
np.asarray(arr.field("y")),
np.asarray(arr.field("z")),
]
)
return coords
else:
# fixed size list
return np.asarray(arr.values).reshape(len(arr), -1)
def construct_shapely_array(arr: pa.Array, extension_name: str):
"""
Construct a NumPy array of shapely geometries from a pyarrow.Array
with GeoArrow extension type.
"""
if isinstance(arr, pa.ExtensionArray):
arr = arr.storage
if extension_name == "geoarrow.point":
coords = _get_inner_coords(arr)
result = shapely.from_ragged_array(GeometryType.POINT, coords, None)
elif extension_name == "geoarrow.linestring":
coords = _get_inner_coords(arr.values)
offsets1 = np.asarray(arr.offsets)
offsets = (offsets1,)
result = shapely.from_ragged_array(GeometryType.LINESTRING, coords, offsets)
elif extension_name == "geoarrow.polygon":
coords = _get_inner_coords(arr.values.values)
offsets2 = np.asarray(arr.offsets)
offsets1 = np.asarray(arr.values.offsets)
offsets = (offsets1, offsets2)
result = shapely.from_ragged_array(GeometryType.POLYGON, coords, offsets)
elif extension_name == "geoarrow.multipoint":
coords = _get_inner_coords(arr.values)
offsets1 = np.asarray(arr.offsets)
offsets = (offsets1,)
result = shapely.from_ragged_array(GeometryType.MULTIPOINT, coords, offsets)
elif extension_name == "geoarrow.multilinestring":
coords = _get_inner_coords(arr.values.values)
offsets2 = np.asarray(arr.offsets)
offsets1 = np.asarray(arr.values.offsets)
offsets = (offsets1, offsets2)
result = shapely.from_ragged_array(
GeometryType.MULTILINESTRING, coords, offsets
)
elif extension_name == "geoarrow.multipolygon":
coords = _get_inner_coords(arr.values.values.values)
offsets3 = np.asarray(arr.offsets)
offsets2 = np.asarray(arr.values.offsets)
offsets1 = np.asarray(arr.values.values.offsets)
offsets = (offsets1, offsets2, offsets3)
result = shapely.from_ragged_array(GeometryType.MULTIPOLYGON, coords, offsets)
else:
raise ValueError(extension_name)
# apply validity mask
if arr.null_count:
mask = np.asarray(arr.is_null())
result = np.where(mask, None, result)
return result
|