File: arrow.py

package info (click to toggle)
python-geopandas 1.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,752 kB
  • sloc: python: 26,021; makefile: 147; sh: 25
file content (926 lines) | stat: -rw-r--r-- 32,547 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
import json
import warnings
from packaging.version import Version
from typing import Literal, get_args

import numpy as np
from pandas import DataFrame, Series

import shapely

import geopandas
from geopandas import GeoDataFrame
from geopandas._compat import import_optional_dependency
from geopandas.array import from_shapely, from_wkb

from .file import _expand_user

METADATA_VERSION = "1.0.0"
SUPPORTED_VERSIONS_LITERAL = Literal["0.1.0", "0.4.0", "1.0.0-beta.1", "1.0.0", "1.1.0"]
SUPPORTED_VERSIONS = list(get_args(SUPPORTED_VERSIONS_LITERAL))
GEOARROW_ENCODINGS = [
    "point",
    "linestring",
    "polygon",
    "multipoint",
    "multilinestring",
    "multipolygon",
]
SUPPORTED_ENCODINGS = ["WKB"] + GEOARROW_ENCODINGS
PARQUET_GEOMETRY_ENCODINGS = Literal["WKB", "geoarrow"]

# reference: https://github.com/opengeospatial/geoparquet

# Metadata structure:
# {
#     "geo": {
#         "columns": {
#             "<name>": {
#                 "encoding": "WKB"
#                 "geometry_types": <list of str: REQUIRED>
#                 "crs": "<PROJJSON or None: OPTIONAL>",
#                 "orientation": "<'counterclockwise' or None: OPTIONAL>"
#                 "edges": "planar"
#                 "bbox": <list of [xmin, ymin, xmax, ymax]: OPTIONAL>
#                 "epoch": <float: OPTIONAL>
#             }
#         },
#         "primary_column": "<str: REQUIRED>",
#         "version": "<METADATA_VERSION>",
#
#         # Additional GeoPandas specific metadata (not in metadata spec)
#         "creator": {
#             "library": "geopandas",
#             "version": "<geopandas.__version__>"
#         }
#     }
# }


def _is_fsspec_url(url):
    return (
        isinstance(url, str)
        and "://" in url
        and not url.startswith(("http://", "https://"))
    )


def _remove_id_from_member_of_ensembles(json_dict):
    """
    Older PROJ versions will not recognize IDs of datum ensemble members that
    were added in more recent PROJ database versions.

    Cf https://github.com/opengeospatial/geoparquet/discussions/110
    and https://github.com/OSGeo/PROJ/pull/3221

    Mimicking the patch to GDAL from https://github.com/OSGeo/gdal/pull/5872
    """
    for key, value in json_dict.items():
        if isinstance(value, dict):
            _remove_id_from_member_of_ensembles(value)
        elif key == "members" and isinstance(value, list):
            for member in value:
                member.pop("id", None)


# type ids 0 to 7
_geometry_type_names = [
    "Point",
    "LineString",
    "LineString",
    "Polygon",
    "MultiPoint",
    "MultiLineString",
    "MultiPolygon",
    "GeometryCollection",
]
_geometry_type_names += [geom_type + " Z" for geom_type in _geometry_type_names]


def _get_geometry_types(series):
    """Get unique geometry types from a GeoSeries."""
    arr_geometry_types = shapely.get_type_id(series.array._data)
    # ensure to include "... Z" for 3D geometries
    has_z = shapely.has_z(series.array._data)
    arr_geometry_types[has_z] += 8

    geometry_types = Series(arr_geometry_types).unique().tolist()
    # drop missing values (shapely.get_type_id returns -1 for those)
    if -1 in geometry_types:
        geometry_types.remove(-1)

    return sorted([_geometry_type_names[idx] for idx in geometry_types])


def _create_metadata(
    df, schema_version=None, geometry_encoding=None, write_covering_bbox=False
):
    """Create and encode geo metadata dict.

    Parameters
    ----------
    df : GeoDataFrame
    schema_version : {'0.1.0', '0.4.0', '1.0.0-beta.1', '1.0.0', '1.1.0', None}
        GeoParquet specification version; if not provided will default to
        latest supported version.
    geometry_encoding : dict, default None
        GeoParquet encoding per geometry column.
        Defaults to "WKB" for columns that are not present in the dictionary.
    write_covering_bbox : bool, default False
        Writes the bounding box column for each row entry with column
        name 'bbox'. Writing a bbox column can be computationally
        expensive, hence is default setting is False.

    Returns
    -------
    dict
    """
    if schema_version is None:
        if geometry_encoding and any(
            encoding != "WKB" for encoding in geometry_encoding.values()
        ):
            schema_version = "1.1.0"
        else:
            schema_version = METADATA_VERSION

    if schema_version not in SUPPORTED_VERSIONS:
        raise ValueError(
            f"schema_version must be one of: {', '.join(SUPPORTED_VERSIONS)}"
        )

    # Construct metadata for each geometry
    column_metadata = {}
    for col in df.columns[df.dtypes == "geometry"]:
        series = df[col]

        geometry_types = _get_geometry_types(series)
        if schema_version[0] == "0":
            geometry_types_name = "geometry_type"
            if len(geometry_types) == 1:
                geometry_types = geometry_types[0]
        else:
            geometry_types_name = "geometry_types"

        crs = None
        if series.crs:
            if schema_version == "0.1.0":
                crs = series.crs.to_wkt()
            else:  # version >= 0.4.0
                crs = series.crs.to_json_dict()
                _remove_id_from_member_of_ensembles(crs)

        column_metadata[col] = {
            "encoding": (
                geometry_encoding[col]
                if geometry_encoding and col in geometry_encoding
                else "WKB"
            ),
            "crs": crs,
            geometry_types_name: geometry_types,
        }

        bbox = series.total_bounds.tolist()
        if np.isfinite(bbox).all():
            # don't add bbox with NaNs for empty / all-NA geometry column
            column_metadata[col]["bbox"] = bbox

        if write_covering_bbox:
            column_metadata[col]["covering"] = {
                "bbox": {
                    "xmin": ["bbox", "xmin"],
                    "ymin": ["bbox", "ymin"],
                    "xmax": ["bbox", "xmax"],
                    "ymax": ["bbox", "ymax"],
                },
            }

    return {
        "primary_column": df._geometry_column_name,
        "columns": column_metadata,
        "version": schema_version,
        "creator": {"library": "geopandas", "version": geopandas.__version__},
    }


def _encode_metadata(metadata):
    """Encode metadata dict to UTF-8 JSON string.

    Parameters
    ----------
    metadata : dict

    Returns
    -------
    UTF-8 encoded JSON string
    """
    return json.dumps(metadata).encode("utf-8")


def _decode_metadata(metadata_str):
    """Decode a UTF-8 encoded JSON string to dict.

    Parameters
    ----------
    metadata_str : string (UTF-8 encoded)

    Returns
    -------
    dict
    """
    if metadata_str is None:
        return None

    return json.loads(metadata_str.decode("utf-8"))


def _validate_dataframe(df):
    """Validate that the GeoDataFrame conforms to requirements for writing
    to Parquet format.

    Raises `ValueError` if the GeoDataFrame is not valid.

    copied from `pandas.io.parquet`

    Parameters
    ----------
    df : GeoDataFrame
    """
    if not isinstance(df, DataFrame):
        raise ValueError("Writing to Parquet/Feather only supports IO with DataFrames")

    # must have value column names (strings only)
    if df.columns.inferred_type not in {"string", "unicode", "empty"}:
        raise ValueError("Writing to Parquet/Feather requires string column names")

    # index level names must be strings
    valid_names = all(
        isinstance(name, str) for name in df.index.names if name is not None
    )
    if not valid_names:
        raise ValueError("Index level names must be strings")


def _validate_geo_metadata(metadata):
    """Validate geo metadata.
    Must not be empty, and must contain the structure specified above.

    Raises ValueError if metadata is not valid.

    Parameters
    ----------
    metadata : dict
    """
    if not metadata:
        raise ValueError("Missing or malformed geo metadata in Parquet/Feather file")

    # version was schema_version in 0.1.0
    version = metadata.get("version", metadata.get("schema_version"))
    if not version:
        raise ValueError(
            "'geo' metadata in Parquet/Feather file is missing required key: 'version'"
        )

    required_keys = ("primary_column", "columns")
    for key in required_keys:
        if metadata.get(key, None) is None:
            raise ValueError(
                "'geo' metadata in Parquet/Feather file is missing required key: "
                f"'{key}'"
            )

    if not isinstance(metadata["columns"], dict):
        raise ValueError("'columns' in 'geo' metadata must be a dict")

    # Validate that geometry columns have required metadata and values
    # leaving out "geometry_type" for compatibility with 0.1
    required_col_keys = ("encoding",)
    for col, column_metadata in metadata["columns"].items():
        for key in required_col_keys:
            if key not in column_metadata:
                raise ValueError(
                    "'geo' metadata in Parquet/Feather file is missing required key "
                    f"'{key}' for column '{col}'"
                )

        if column_metadata["encoding"] not in SUPPORTED_ENCODINGS:
            raise ValueError(
                "Only WKB geometry encoding or one of the native encodings "
                f"({GEOARROW_ENCODINGS!r}) are supported, "
                f"got: {column_metadata['encoding']}"
            )

        if column_metadata.get("edges", "planar") == "spherical":
            warnings.warn(
                f"The geo metadata indicate that column '{col}' has spherical edges, "
                "but because GeoPandas currently does not support spherical "
                "geometry, it ignores this metadata and will interpret the edges of "
                "the geometries as planar.",
                UserWarning,
                stacklevel=4,
            )

        if "covering" in column_metadata:
            covering = column_metadata["covering"]
            if "bbox" in covering:
                bbox = covering["bbox"]
                for var in ["xmin", "ymin", "xmax", "ymax"]:
                    if var not in bbox.keys():
                        raise ValueError("Metadata for bbox column is malformed.")


def _geopandas_to_arrow(
    df,
    index=None,
    geometry_encoding="WKB",
    schema_version=None,
    write_covering_bbox=None,
):
    """Convert a GeoDataFrame to a pyarrow Table.

    Helper function with main, shared logic for to_parquet/to_feather.
    """
    from pyarrow import StructArray

    from geopandas.io._geoarrow import geopandas_to_arrow

    _validate_dataframe(df)

    if schema_version is not None:
        if geometry_encoding != "WKB" and schema_version != "1.1.0":
            raise ValueError(
                "'geoarrow' encoding is only supported with schema version >= 1.1.0"
            )

    table, geometry_encoding_dict = geopandas_to_arrow(
        df, geometry_encoding=geometry_encoding, index=index, interleaved=False
    )
    geo_metadata = _create_metadata(
        df,
        schema_version=schema_version,
        geometry_encoding=geometry_encoding_dict,
        write_covering_bbox=write_covering_bbox,
    )

    if write_covering_bbox:
        if "bbox" in df.columns:
            raise ValueError(
                "An existing column 'bbox' already exists in the dataframe. "
                "Please rename to write covering bbox."
            )
        bounds = df.bounds
        bbox_array = StructArray.from_arrays(
            [bounds["minx"], bounds["miny"], bounds["maxx"], bounds["maxy"]],
            names=["xmin", "ymin", "xmax", "ymax"],
        )
        table = table.append_column("bbox", bbox_array)

    # Store geopandas specific file-level metadata
    # This must be done AFTER creating the table or it is not persisted
    metadata = table.schema.metadata
    metadata.update({b"geo": _encode_metadata(geo_metadata)})

    return table.replace_schema_metadata(metadata)


def _to_parquet(
    df,
    path,
    index=None,
    compression="snappy",
    geometry_encoding="WKB",
    schema_version=None,
    write_covering_bbox=False,
    **kwargs,
):
    """
    Write a GeoDataFrame to the Parquet format.

    Any geometry columns present are serialized to WKB format in the file.

    Requires 'pyarrow'.

    This is tracking version 1.0.0 of the GeoParquet specification at:
    https://github.com/opengeospatial/geoparquet. Writing older versions is
    supported using the `schema_version` keyword.

    .. versionadded:: 0.8

    Parameters
    ----------
    path : str, path object
    index : bool, default None
        If ``True``, always include the dataframe's index(es) as columns
        in the file output.
        If ``False``, the index(es) will not be written to the file.
        If ``None``, the index(ex) will be included as columns in the file
        output except `RangeIndex` which is stored as metadata only.
    compression : {'snappy', 'gzip', 'brotli', None}, default 'snappy'
        Name of the compression to use. Use ``None`` for no compression.
    geometry_encoding : {'WKB', 'geoarrow'}, default 'WKB'
        The encoding to use for the geometry columns. Defaults to "WKB"
        for maximum interoperability. Specify "geoarrow" to use one of the
        native GeoArrow-based single-geometry type encodings.
    schema_version : {'0.1.0', '0.4.0', '1.0.0', '1.1.0', None}
        GeoParquet specification version; if not provided will default to
        latest supported version.
    write_covering_bbox : bool, default False
        Writes the bounding box column for each row entry with column
        name 'bbox'. Writing a bbox column can be computationally
        expensive, hence is default setting is False.
    **kwargs
        Additional keyword arguments passed to pyarrow.parquet.write_table().
    """
    parquet = import_optional_dependency(
        "pyarrow.parquet", extra="pyarrow is required for Parquet support."
    )

    path = _expand_user(path)
    table = _geopandas_to_arrow(
        df,
        index=index,
        geometry_encoding=geometry_encoding,
        schema_version=schema_version,
        write_covering_bbox=write_covering_bbox,
    )
    parquet.write_table(table, path, compression=compression, **kwargs)


def _to_feather(df, path, index=None, compression=None, schema_version=None, **kwargs):
    """
    Write a GeoDataFrame to the Feather format.

    Any geometry columns present are serialized to WKB format in the file.

    Requires 'pyarrow' >= 0.17.

    This is tracking version 1.0.0 of the GeoParquet specification for
    the metadata at: https://github.com/opengeospatial/geoparquet. Writing
    older versions is supported using the `schema_version` keyword.

    .. versionadded:: 0.8

    Parameters
    ----------
    path : str, path object
    index : bool, default None
        If ``True``, always include the dataframe's index(es) as columns
        in the file output.
        If ``False``, the index(es) will not be written to the file.
        If ``None``, the index(ex) will be included as columns in the file
        output except `RangeIndex` which is stored as metadata only.
    compression : {'zstd', 'lz4', 'uncompressed'}, optional
        Name of the compression to use. Use ``"uncompressed"`` for no
        compression. By default uses LZ4 if available, otherwise uncompressed.
    schema_version : {'0.1.0', '0.4.0', '1.0.0', '1.1.0', None}
        GeoParquet specification version for the metadata; if not provided
        will default to latest supported version.
    kwargs
        Additional keyword arguments passed to pyarrow.feather.write_feather().
    """
    feather = import_optional_dependency(
        "pyarrow.feather", extra="pyarrow is required for Feather support."
    )

    path = _expand_user(path)
    table = _geopandas_to_arrow(df, index=index, schema_version=schema_version)
    feather.write_feather(table, path, compression=compression, **kwargs)


def _arrow_to_geopandas(table, geo_metadata=None, to_pandas_kwargs=None):
    """Convert a pyarrow Table to a GeoDataFrame.

    Helper function with main, shared logic for read_parquet/read_feather.
    """
    if geo_metadata is None:
        # Note: this path of not passing metadata is also used by dask-geopandas
        geo_metadata = _validate_and_decode_metadata(table.schema.metadata)

    # Find all geometry columns that were read from the file.  May
    # be a subset if 'columns' parameter is used.
    geometry_columns = [
        col for col in geo_metadata["columns"] if col in table.column_names
    ]
    result_column_names = list(table.slice(0, 0).to_pandas().columns)
    geometry_columns.sort(key=result_column_names.index)

    if not len(geometry_columns):
        raise ValueError(
            """No geometry columns are included in the columns read from
            the Parquet/Feather file.  To read this file without geometry columns,
            use pandas.read_parquet/read_feather() instead."""
        )

    geometry = geo_metadata["primary_column"]

    # Missing geometry likely indicates a subset of columns was read;
    # promote the first available geometry to the primary geometry.
    if len(geometry_columns) and geometry not in geometry_columns:
        geometry = geometry_columns[0]

        # if there are multiple non-primary geometry columns, raise a warning
        if len(geometry_columns) > 1:
            warnings.warn(
                "Multiple non-primary geometry columns read from Parquet/Feather "
                "file. The first column read was promoted to the primary geometry.",
                stacklevel=3,
            )

    table_attr = table.drop(geometry_columns)
    if to_pandas_kwargs is None:
        to_pandas_kwargs = {}
    df = table_attr.to_pandas(**to_pandas_kwargs)

    # Convert the WKB columns that are present back to geometry.
    for col in geometry_columns:
        col_metadata = geo_metadata["columns"][col]
        if "crs" in col_metadata:
            crs = col_metadata["crs"]
            if isinstance(crs, dict):
                _remove_id_from_member_of_ensembles(crs)
        else:
            # per the GeoParquet spec, missing CRS is to be interpreted as
            # OGC:CRS84
            crs = "OGC:CRS84"

        if col_metadata["encoding"] == "WKB":
            geom_arr = from_wkb(np.array(table[col]), crs=crs)
        else:
            from geopandas.io._geoarrow import construct_shapely_array

            geom_arr = from_shapely(
                construct_shapely_array(
                    table[col].combine_chunks(), "geoarrow." + col_metadata["encoding"]
                ),
                crs=crs,
            )

        df.insert(result_column_names.index(col), col, geom_arr)

    return GeoDataFrame(df, geometry=geometry)


def _get_filesystem_path(path, filesystem=None, storage_options=None):
    """
    Get the filesystem and path for a given filesystem and path.

    If the filesystem is not None then it's just returned as is.
    """
    if isinstance(path, str) and storage_options is None and filesystem is None:
        # Use the native pyarrow filesystem if possible.
        try:
            from pyarrow.fs import FileSystem

            filesystem, path = FileSystem.from_uri(path)
        except Exception:
            # fallback to use get_handle / fsspec for filesystems
            # that pyarrow doesn't support
            pass

    if _is_fsspec_url(path) and filesystem is None:
        fsspec = import_optional_dependency(
            "fsspec", extra="fsspec is requred for 'storage_options'."
        )
        filesystem, path = fsspec.core.url_to_fs(path, **(storage_options or {}))

    if filesystem is None and storage_options:
        raise ValueError(
            f"Cannot provide 'storage_options' with non-fsspec path '{path}'"
        )

    return filesystem, path


def _ensure_arrow_fs(filesystem):
    """Check if ``filesystem`` is a valid filesystem.

    Simplified version of pyarrow.fs._ensure_filesystem. This is only needed
    below because `pyarrow.parquet.read_metadata` does not yet accept a
    filesystem keyword (https://issues.apache.org/jira/browse/ARROW-16719)
    """
    from pyarrow import fs

    if isinstance(filesystem, fs.FileSystem):
        return filesystem

    # handle fsspec-compatible filesystems
    try:
        import fsspec
    except ImportError:
        pass
    else:
        if isinstance(filesystem, fsspec.AbstractFileSystem):
            return fs.PyFileSystem(fs.FSSpecHandler(filesystem))

    return filesystem


def _validate_and_decode_metadata(metadata):
    if metadata is None or b"geo" not in metadata:
        raise ValueError(
            """Missing geo metadata in Parquet/Feather file.
            Use pandas.read_parquet/read_feather() instead."""
        )

    # check for malformed metadata
    try:
        decoded_geo_metadata = _decode_metadata(metadata.get(b"geo", b""))
    except (TypeError, json.decoder.JSONDecodeError):
        raise ValueError("Missing or malformed geo metadata in Parquet/Feather file")

    _validate_geo_metadata(decoded_geo_metadata)
    return decoded_geo_metadata


def _read_parquet_schema_and_metadata(path, filesystem):
    """Open the Parquet file/dataset a first time to get the schema and metadata.

    TODO: we should look into how we can reuse opened dataset for reading the
    actual data, to avoid discovering the dataset twice (problem right now is
    that the ParquetDataset interface doesn't allow passing the filters on read)

    """
    import pyarrow
    from pyarrow import parquet

    kwargs = {}
    if Version(pyarrow.__version__) < Version("15.0.0"):
        kwargs = dict(use_legacy_dataset=False)

    try:
        schema = parquet.ParquetDataset(path, filesystem=filesystem, **kwargs).schema
    except Exception:
        schema = parquet.read_schema(path, filesystem=filesystem)

    metadata = schema.metadata

    # read metadata separately to get the raw Parquet FileMetaData metadata
    # (pyarrow doesn't properly exposes those in schema.metadata for files
    # created by GDAL - https://issues.apache.org/jira/browse/ARROW-16688)
    if metadata is None or b"geo" not in metadata:
        try:
            metadata = parquet.read_metadata(path, filesystem=filesystem).metadata
        except Exception:
            pass

    return schema, metadata


def _read_parquet(
    path,
    columns=None,
    storage_options=None,
    bbox=None,
    to_pandas_kwargs=None,
    **kwargs,
):
    """
    Load a Parquet object from the file path, returning a GeoDataFrame.

    You can read a subset of columns in the file using the ``columns`` parameter.
    However, the structure of the returned GeoDataFrame will depend on which
    columns you read:

    * if no geometry columns are read, this will raise a ``ValueError`` - you
      should use the pandas `read_parquet` method instead.
    * if the primary geometry column saved to this file is not included in
      columns, the first available geometry column will be set as the geometry
      column of the returned GeoDataFrame.

    Supports versions 0.1.0, 0.4.0 and 1.0.0 of the GeoParquet
    specification at: https://github.com/opengeospatial/geoparquet

    If 'crs' key is not present in the GeoParquet metadata associated with the
    Parquet object, it will default to "OGC:CRS84" according to the specification.

    Requires 'pyarrow'.

    .. versionadded:: 0.8

    Parameters
    ----------
    path : str, path object
    columns : list-like of strings, default=None
        If not None, only these columns will be read from the file.  If
        the primary geometry column is not included, the first secondary
        geometry read from the file will be set as the geometry column
        of the returned GeoDataFrame.  If no geometry columns are present,
        a ``ValueError`` will be raised.
    storage_options : dict, optional
        Extra options that make sense for a particular storage connection, e.g. host,
        port, username, password, etc. For HTTP(S) URLs the key-value pairs are
        forwarded to urllib as header options. For other URLs (e.g. starting with
        "s3://", and "gcs://") the key-value pairs are forwarded to fsspec. Please
        see fsspec and urllib for more details.

        When no storage options are provided and a filesystem is implemented by
        both ``pyarrow.fs`` and ``fsspec`` (e.g. "s3://") then the ``pyarrow.fs``
        filesystem is preferred. Provide the instantiated fsspec filesystem using
        the ``filesystem`` keyword if you wish to use its implementation.
    bbox : tuple, optional
        Bounding box to be used to filter selection from geoparquet data. This
        is only usable if the data was saved with the bbox covering metadata.
        Input is of the tuple format (xmin, ymin, xmax, ymax).
    to_pandas_kwargs : dict, optional
        Arguments passed to the `pa.Table.to_pandas` method for non-geometry columns.
        This can be used to control the behavior of the conversion of the non-geometry
        columns to a pandas DataFrame. For example, you can use this to control the
        dtype conversion of the columns. By default, the `to_pandas` method is called
        with no additional arguments.

    **kwargs
        Any additional kwargs passed to :func:`pyarrow.parquet.read_table`.

    Returns
    -------
    GeoDataFrame

    Examples
    --------
    >>> df = geopandas.read_parquet("data.parquet")  # doctest: +SKIP

    Specifying columns to read:

    >>> df = geopandas.read_parquet(
    ...     "data.parquet",
    ...     columns=["geometry", "pop_est"]
    ... )  # doctest: +SKIP
    """
    parquet = import_optional_dependency(
        "pyarrow.parquet", extra="pyarrow is required for Parquet support."
    )
    import geopandas.io._pyarrow_hotfix  # noqa: F401

    # TODO(https://github.com/pandas-dev/pandas/pull/41194): see if pandas
    # adds filesystem as a keyword and match that.
    filesystem = kwargs.pop("filesystem", None)
    filesystem, path = _get_filesystem_path(
        path, filesystem=filesystem, storage_options=storage_options
    )
    path = _expand_user(path)
    schema, metadata = _read_parquet_schema_and_metadata(path, filesystem)

    geo_metadata = _validate_and_decode_metadata(metadata)
    if len(geo_metadata["columns"]) == 0:
        raise ValueError(
            """No geometry columns are included in the columns read from
            the Parquet/Feather file.  To read this file without geometry columns,
            use pandas.read_parquet/read_feather() instead."""
        )

    bbox_filter = (
        _get_parquet_bbox_filter(geo_metadata, bbox) if bbox is not None else None
    )

    if_bbox_column_exists = _check_if_covering_in_geo_metadata(geo_metadata)

    # by default, bbox column is not read in, so must specify which
    # columns are read in if it exists.
    if not columns and if_bbox_column_exists:
        columns = _get_non_bbox_columns(schema, geo_metadata)

    # if both bbox and filters kwargs are used, must splice together.
    if "filters" in kwargs:
        filters_kwarg = kwargs.pop("filters")
        filters = _splice_bbox_and_filters(filters_kwarg, bbox_filter)
    else:
        filters = bbox_filter

    kwargs["use_pandas_metadata"] = True

    table = parquet.read_table(
        path, columns=columns, filesystem=filesystem, filters=filters, **kwargs
    )

    return _arrow_to_geopandas(table, geo_metadata, to_pandas_kwargs)


def _read_feather(path, columns=None, to_pandas_kwargs=None, **kwargs):
    """
    Load a Feather object from the file path, returning a GeoDataFrame.

    You can read a subset of columns in the file using the ``columns`` parameter.
    However, the structure of the returned GeoDataFrame will depend on which
    columns you read:

    * if no geometry columns are read, this will raise a ``ValueError`` - you
      should use the pandas `read_feather` method instead.
    * if the primary geometry column saved to this file is not included in
      columns, the first available geometry column will be set as the geometry
      column of the returned GeoDataFrame.

    Supports versions 0.1.0, 0.4.0, 1.0.0 and 1.1.0 of the GeoParquet
    specification at: https://github.com/opengeospatial/geoparquet

    If 'crs' key is not present in the Feather metadata associated with the
    Parquet object, it will default to "OGC:CRS84" according to the specification.

    Requires 'pyarrow' >= 0.17.

    .. versionadded:: 0.8

    Parameters
    ----------
    path : str, path object
    columns : list-like of strings, default=None
        If not None, only these columns will be read from the file.  If
        the primary geometry column is not included, the first secondary
        geometry read from the file will be set as the geometry column
        of the returned GeoDataFrame.  If no geometry columns are present,
        a ``ValueError`` will be raised.
    to_pandas_kwargs : dict, optional
        Arguments passed to the `pa.Table.to_pandas` method for non-geometry columns.
        This can be used to control the behavior of the conversion of the non-geometry
        columns to a pandas DataFrame. For example, you can use this to control the
        dtype conversion of the columns. By default, the `to_pandas` method is called
        with no additional arguments.
    **kwargs
        Any additional kwargs passed to pyarrow.feather.read_table().

    Returns
    -------
    GeoDataFrame

    Examples
    --------
    >>> df = geopandas.read_feather("data.feather")  # doctest: +SKIP

    Specifying columns to read:

    >>> df = geopandas.read_feather(
    ...     "data.feather",
    ...     columns=["geometry", "pop_est"]
    ... )  # doctest: +SKIP
    """
    feather = import_optional_dependency(
        "pyarrow.feather", extra="pyarrow is required for Feather support."
    )
    import geopandas.io._pyarrow_hotfix  # noqa: F401

    path = _expand_user(path)

    table = feather.read_table(path, columns=columns, **kwargs)
    return _arrow_to_geopandas(table, to_pandas_kwargs=to_pandas_kwargs)


def _get_parquet_bbox_filter(geo_metadata, bbox):
    primary_column = geo_metadata["primary_column"]

    if _check_if_covering_in_geo_metadata(geo_metadata):
        bbox_column_name = _get_bbox_encoding_column_name(geo_metadata)
        return _convert_bbox_to_parquet_filter(bbox, bbox_column_name)

    elif geo_metadata["columns"][primary_column]["encoding"] == "point":
        import pyarrow.compute as pc

        return (
            (pc.field((primary_column, "x")) >= bbox[0])
            & (pc.field((primary_column, "x")) <= bbox[2])
            & (pc.field((primary_column, "y")) >= bbox[1])
            & (pc.field((primary_column, "y")) <= bbox[3])
        )

    else:
        raise ValueError(
            "Specifying 'bbox' not supported for this Parquet file (it should either "
            "have a bbox covering column or use 'point' encoding)."
        )


def _convert_bbox_to_parquet_filter(bbox, bbox_column_name):
    import pyarrow.compute as pc

    return ~(
        (pc.field((bbox_column_name, "xmin")) > bbox[2])
        | (pc.field((bbox_column_name, "ymin")) > bbox[3])
        | (pc.field((bbox_column_name, "xmax")) < bbox[0])
        | (pc.field((bbox_column_name, "ymax")) < bbox[1])
    )


def _check_if_covering_in_geo_metadata(geo_metadata):
    primary_column = geo_metadata["primary_column"]
    return "covering" in geo_metadata["columns"][primary_column].keys()


def _get_bbox_encoding_column_name(geo_metadata):
    primary_column = geo_metadata["primary_column"]
    return geo_metadata["columns"][primary_column]["covering"]["bbox"]["xmin"][0]


def _get_non_bbox_columns(schema, geo_metadata):
    bbox_column_name = _get_bbox_encoding_column_name(geo_metadata)
    columns = schema.names
    if bbox_column_name in columns:
        columns.remove(bbox_column_name)
    return columns


def _splice_bbox_and_filters(kwarg_filters, bbox_filter):
    parquet = import_optional_dependency(
        "pyarrow.parquet", extra="pyarrow is required for Parquet support."
    )
    if bbox_filter is None:
        return kwarg_filters

    filters_expression = parquet.filters_to_expression(kwarg_filters)
    return bbox_filter & filters_expression