1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463
|
import warnings
from contextlib import contextmanager
from functools import lru_cache
import pandas as pd
import shapely
import shapely.wkb
from geopandas import GeoDataFrame
@contextmanager
def _get_conn(conn_or_engine):
"""
Yield a connection within a transaction context.
Engine.begin() returns a Connection with an implicit Transaction while
Connection.begin() returns the Transaction. This helper will always return a
Connection with an implicit (possibly nested) Transaction.
Parameters
----------
conn_or_engine : Connection or Engine
A sqlalchemy Connection or Engine instance
Returns
-------
Connection
"""
from sqlalchemy.engine.base import Connection, Engine
if isinstance(conn_or_engine, Connection):
if not conn_or_engine.in_transaction():
with conn_or_engine.begin():
yield conn_or_engine
else:
yield conn_or_engine
elif isinstance(conn_or_engine, Engine):
with conn_or_engine.begin() as conn:
yield conn
else:
raise ValueError(f"Unknown Connectable: {conn_or_engine}")
def _df_to_geodf(df, geom_col="geom", crs=None, con=None):
"""Transform a pandas DataFrame into a GeoDataFrame.
The column 'geom_col' must be a geometry column in WKB representation.
To be used to convert df based on pd.read_sql to gdf.
Parameters
----------
df : DataFrame
pandas DataFrame with geometry column in WKB representation.
geom_col : string, default 'geom'
column name to convert to shapely geometries
crs : pyproj.CRS, optional
CRS to use for the returned GeoDataFrame. The value can be anything accepted
by :meth:`pyproj.CRS.from_user_input() <pyproj.crs.CRS.from_user_input>`,
such as an authority string (eg "EPSG:4326") or a WKT string.
If not set, tries to determine CRS from the SRID associated with the
first geometry in the database, and assigns that to all geometries.
con : sqlalchemy.engine.Connection or sqlalchemy.engine.Engine
Active connection to the database to query.
Returns
-------
GeoDataFrame
"""
if geom_col not in df:
raise ValueError(f"Query missing geometry column '{geom_col}'")
if df.columns.to_list().count(geom_col) > 1:
raise ValueError(
f"Duplicate geometry column '{geom_col}' detected in SQL query output. Only"
"one geometry column is allowed."
)
geoms = df[geom_col].dropna()
if not geoms.empty:
load_geom_bytes = shapely.wkb.loads
"""Load from Python 3 binary."""
def load_geom_text(x):
"""Load from binary encoded as text."""
return shapely.wkb.loads(str(x), hex=True)
if isinstance(geoms.iat[0], bytes):
load_geom = load_geom_bytes
else:
load_geom = load_geom_text
df[geom_col] = geoms = geoms.apply(load_geom)
if crs is None:
srid = shapely.get_srid(geoms.iat[0])
# if no defined SRID in geodatabase, returns SRID of 0
if srid != 0:
try:
spatial_ref_sys_df = _get_spatial_ref_sys_df(con, srid)
except pd.errors.DatabaseError:
warning_msg = (
f"Could not find the spatial reference system table "
f"(spatial_ref_sys) in PostGIS."
f"Trying epsg:{srid} as a fallback."
)
warnings.warn(warning_msg, UserWarning, stacklevel=3)
crs = f"epsg:{srid}"
else:
if not spatial_ref_sys_df.empty:
auth_name = spatial_ref_sys_df["auth_name"].item()
crs = f"{auth_name}:{srid}"
else:
warning_msg = (
f"Could not find srid {srid} in the "
f"spatial_ref_sys table. "
f"Trying epsg:{srid} as a fallback."
)
warnings.warn(warning_msg, UserWarning, stacklevel=3)
crs = f"epsg:{srid}"
return GeoDataFrame(df, crs=crs, geometry=geom_col)
def _read_postgis(
sql,
con,
geom_col="geom",
crs=None,
index_col=None,
coerce_float=True,
parse_dates=None,
params=None,
chunksize=None,
):
"""Return a GeoDataFrame corresponding to the result of the query
string, which must contain a geometry column in WKB representation.
It is also possible to use :meth:`~GeoDataFrame.read_file` to read from a database.
Especially for file geodatabases like GeoPackage or SpatiaLite this can be easier.
Parameters
----------
sql : string
SQL query to execute in selecting entries from database, or name
of the table to read from the database.
con : sqlalchemy.engine.Connection or sqlalchemy.engine.Engine
Active connection to the database to query.
geom_col : string, default 'geom'
column name to convert to shapely geometries
crs : dict or str, optional
CRS to use for the returned GeoDataFrame; if not set, tries to
determine CRS from the SRID associated with the first geometry in
the database, and assigns that to all geometries.
chunksize : int, default None
If specified, return an iterator where chunksize is the number of rows to
include in each chunk.
See the documentation for pandas.read_sql for further explanation
of the following parameters:
index_col, coerce_float, parse_dates, params, chunksize
Returns
-------
GeoDataFrame
Examples
--------
PostGIS
>>> from sqlalchemy import create_engine # doctest: +SKIP
>>> db_connection_url = "postgresql://myusername:mypassword@myhost:5432/mydatabase"
>>> con = create_engine(db_connection_url) # doctest: +SKIP
>>> sql = "SELECT geom, highway FROM roads"
>>> df = geopandas.read_postgis(sql, con) # doctest: +SKIP
SpatiaLite
>>> sql = "SELECT ST_AsBinary(geom) AS geom, highway FROM roads"
>>> df = geopandas.read_postgis(sql, con) # doctest: +SKIP
"""
if chunksize is None:
# read all in one chunk and return a single GeoDataFrame
df = pd.read_sql(
sql,
con,
index_col=index_col,
coerce_float=coerce_float,
parse_dates=parse_dates,
params=params,
chunksize=chunksize,
)
return _df_to_geodf(df, geom_col=geom_col, crs=crs, con=con)
else:
# read data in chunks and return a generator
df_generator = pd.read_sql(
sql,
con,
index_col=index_col,
coerce_float=coerce_float,
parse_dates=parse_dates,
params=params,
chunksize=chunksize,
)
return (
_df_to_geodf(df, geom_col=geom_col, crs=crs, con=con) for df in df_generator
)
def _get_geometry_type(gdf):
"""Get basic geometry type of a GeoDataFrame.
See more info from:
https://geoalchemy-2.readthedocs.io/en/latest/types.html#geoalchemy2.types._GISType
Following rules apply:
- if geometries all share the same geometry-type,
geometries are inserted with the given GeometryType with following types:
- Point, LineString, Polygon, MultiPoint, MultiLineString, MultiPolygon,
GeometryCollection.
- LinearRing geometries will be converted into LineString -objects.
- in all other cases, geometries will be inserted with type GEOMETRY:
- a mix of Polygons and MultiPolygons in GeoSeries
- a mix of Points and LineStrings in GeoSeries
- geometry is of type GeometryCollection,
such as GeometryCollection([Point, LineStrings])
- if any of the geometries has Z-coordinate, all records will
be written with 3D.
"""
geom_types = list(gdf.geometry.geom_type.unique())
has_curve = False
for gt in geom_types:
if gt is None:
continue
elif "LinearRing" in gt:
has_curve = True
if len(geom_types) == 1:
if has_curve:
target_geom_type = "LINESTRING"
else:
if geom_types[0] is None:
raise ValueError("No valid geometries in the data.")
else:
target_geom_type = geom_types[0].upper()
else:
target_geom_type = "GEOMETRY"
# Check for 3D-coordinates
if any(gdf.geometry.has_z):
target_geom_type += "Z"
return target_geom_type, has_curve
def _get_srid_from_crs(gdf):
"""Get EPSG code from CRS if available. If not, return 0."""
# Use geoalchemy2 default for srid
# Note: undefined srid in PostGIS is 0
srid = None
warning_msg = (
"Could not parse CRS from the GeoDataFrame. Inserting data without defined CRS."
)
if gdf.crs is not None:
try:
for confidence in (100, 70, 25):
srid = gdf.crs.to_epsg(min_confidence=confidence)
if srid is not None:
break
auth_srid = gdf.crs.to_authority(
auth_name="ESRI", min_confidence=confidence
)
if auth_srid is not None:
srid = int(auth_srid[1])
break
except Exception:
warnings.warn(warning_msg, UserWarning, stacklevel=2)
if srid is None:
srid = 0
warnings.warn(warning_msg, UserWarning, stacklevel=2)
return srid
def _convert_linearring_to_linestring(gdf, geom_name):
from shapely.geometry import LineString
# Todo: Use shapely function once it's implemented:
# https://github.com/shapely/shapely/issues/1617
mask = gdf.geom_type == "LinearRing"
gdf.loc[mask, geom_name] = gdf.loc[mask, geom_name].apply(
lambda geom: LineString(geom)
)
return gdf
def _convert_to_ewkb(gdf, geom_name, srid):
"""Convert geometries to ewkb."""
geoms = shapely.to_wkb(
shapely.set_srid(gdf[geom_name].values._data, srid=srid),
hex=True,
include_srid=True,
)
# The gdf will warn that the geometry column doesn't hold in-memory geometries
# now that they are EWKB, so convert back to a regular dataframe to avoid warning
# the user that the dtypes are unexpected.
df = pd.DataFrame(gdf, copy=False)
df[geom_name] = geoms
return df
def _psql_insert_copy(tbl, conn, keys, data_iter):
import csv
import io
s_buf = io.StringIO()
writer = csv.writer(s_buf)
writer.writerows(data_iter)
s_buf.seek(0)
columns = ", ".join(f'"{k}"' for k in keys)
dbapi_conn = conn.connection
sql = (
f'COPY "{tbl.table.schema}"."{tbl.table.name}" ({columns}) FROM STDIN WITH CSV'
)
with dbapi_conn.cursor() as cur:
# Use psycopg method if it's available
if hasattr(cur, "copy") and callable(cur.copy):
with cur.copy(sql) as copy:
copy.write(s_buf.read())
else: # otherwise use psycopg2 method
cur.copy_expert(sql, s_buf)
def _write_postgis(
gdf,
name,
con,
schema=None,
if_exists="fail",
index=False,
index_label=None,
chunksize=None,
dtype=None,
):
"""
Upload GeoDataFrame into PostGIS database.
This method requires SQLAlchemy and GeoAlchemy2, and a PostgreSQL
Python driver (e.g. psycopg2) to be installed.
Parameters
----------
name : str
Name of the target table.
con : sqlalchemy.engine.Connection or sqlalchemy.engine.Engine
Active connection to the PostGIS database.
if_exists : {'fail', 'replace', 'append'}, default 'fail'
How to behave if the table already exists:
- fail: Raise a ValueError.
- replace: Drop the table before inserting new values.
- append: Insert new values to the existing table.
schema : string, optional
Specify the schema. If None, use default schema: 'public'.
index : bool, default True
Write DataFrame index as a column.
Uses *index_label* as the column name in the table.
index_label : string or sequence, default None
Column label for index column(s).
If None is given (default) and index is True,
then the index names are used.
chunksize : int, optional
Rows will be written in batches of this size at a time.
By default, all rows will be written at once.
dtype : dict of column name to SQL type, default None
Specifying the datatype for columns.
The keys should be the column names and the values
should be the SQLAlchemy types.
Examples
--------
>>> from sqlalchemy import create_engine # doctest: +SKIP
>>> engine = create_engine("postgresql://myusername:mypassword@myhost:5432\
/mydatabase";) # doctest: +SKIP
>>> gdf.to_postgis("my_table", engine) # doctest: +SKIP
"""
try:
from geoalchemy2 import Geometry
from sqlalchemy import text
except ImportError:
raise ImportError("'to_postgis()' requires geoalchemy2 package.")
gdf = gdf.copy()
geom_name = gdf.geometry.name
# Get srid
srid = _get_srid_from_crs(gdf)
# Get geometry type and info whether data contains LinearRing.
geometry_type, has_curve = _get_geometry_type(gdf)
# Build dtype with Geometry
if dtype is not None:
dtype[geom_name] = Geometry(geometry_type=geometry_type, srid=srid)
else:
dtype = {geom_name: Geometry(geometry_type=geometry_type, srid=srid)}
# Convert LinearRing geometries to LineString
if has_curve:
gdf = _convert_linearring_to_linestring(gdf, geom_name)
# Convert geometries to EWKB
gdf = _convert_to_ewkb(gdf, geom_name, srid)
if schema is not None:
schema_name = schema
else:
schema_name = "public"
if if_exists == "append":
# Check that the geometry srid matches with the current GeoDataFrame
with _get_conn(con) as connection:
# Only check SRID if table exists
if connection.dialect.has_table(connection, name, schema):
target_srid = connection.execute(
text(f"SELECT Find_SRID('{schema_name}', '{name}', '{geom_name}');")
).fetchone()[0]
if target_srid != srid:
msg = (
f"The CRS of the target table (EPSG:{target_srid}) differs "
f"from the CRS of current GeoDataFrame (EPSG:{srid})."
)
raise ValueError(msg)
with _get_conn(con) as connection:
gdf.to_sql(
name,
connection,
schema=schema_name,
if_exists=if_exists,
index=index,
index_label=index_label,
chunksize=chunksize,
dtype=dtype,
method=_psql_insert_copy,
)
@lru_cache
def _get_spatial_ref_sys_df(con, srid):
spatial_ref_sys_sql = (
f"SELECT srid, auth_name FROM spatial_ref_sys WHERE srid = {srid}"
)
return pd.read_sql(spatial_ref_sys_sql, con)
|