1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971
|
import warnings
import numpy as np
import pandas as pd
from pandas import CategoricalDtype
from pandas.plotting import PlotAccessor
import geopandas
from ._decorator import doc
def _sanitize_geoms(geoms, prefix="Multi"):
"""Return Series like geoms and index, except that any Multi geometries
are split into their components and indices are repeated for all component
in the same Multi geometry. At the same time, empty or missing geometries are
filtered out. Maintains 1:1 matching of geometry to value.
Prefix specifies type of geometry to be flatten. 'Multi' for MultiPoint and similar,
"Geom" for GeometryCollection.
Returns
-------
components : list of geometry
component_index : index array
indices are repeated for all components in the same Multi geometry
"""
# TODO(shapely) look into simplifying this with
# shapely.get_parts(geoms, return_index=True) from shapely 2.0
geoms = geoms.normalize()
components, component_index = [], []
if (
not geoms.geom_type.str.startswith(prefix).any()
and not geoms.is_empty.any()
and not geoms.isna().any()
):
return geoms, np.arange(len(geoms))
for ix, geom in enumerate(geoms):
if geom is not None and geom.geom_type.startswith(prefix) and not geom.is_empty:
for poly in geom.geoms:
components.append(poly)
component_index.append(ix)
elif geom is None or geom.is_empty:
continue
else:
components.append(geom)
component_index.append(ix)
return components, np.array(component_index)
def _expand_kwargs(kwargs, multiindex):
"""
Most arguments to the plot functions must be a (single) value, or a sequence
of values. This function checks each key-value pair in 'kwargs' and expands
it (in place) to the correct length/formats with help of 'multiindex', unless
the value appears to already be a valid (single) value for the key.
"""
from collections.abc import Iterable
from matplotlib.colors import is_color_like
scalar_kwargs = ["marker", "path_effects"]
for att, value in kwargs.items():
if "color" in att: # color(s), edgecolor(s), facecolor(s)
if is_color_like(value):
continue
elif "linestyle" in att: # linestyle(s)
# A single linestyle can be 2-tuple of a number and an iterable.
if (
isinstance(value, tuple)
and len(value) == 2
and isinstance(value[1], Iterable)
):
continue
elif att in scalar_kwargs:
# For these attributes, only a single value is allowed, so never expand.
continue
if pd.api.types.is_list_like(value):
kwargs[att] = np.take(value, multiindex, axis=0)
def _PolygonPatch(polygon, **kwargs):
"""Construct a matplotlib patch from a Polygon geometry.
The `kwargs` are those supported by the matplotlib.patches.PathPatch class
constructor. Returns an instance of matplotlib.patches.PathPatch.
Example (using Shapely Point and a matplotlib axes)::
b = shapely.geometry.Point(0, 0).buffer(1.0)
patch = _PolygonPatch(b, fc='blue', ec='blue', alpha=0.5)
ax.add_patch(patch)
GeoPandas originally relied on the descartes package by Sean Gillies
(BSD license, https://pypi.org/project/descartes) for PolygonPatch, but
this dependency was removed in favor of the below matplotlib code.
"""
from matplotlib.patches import PathPatch
from matplotlib.path import Path
path = Path.make_compound_path(
Path(np.asarray(polygon.exterior.coords)[:, :2], closed=True),
*[
Path(np.asarray(ring.coords)[:, :2], closed=True)
for ring in polygon.interiors
],
)
return PathPatch(path, **kwargs)
def _plot_polygon_collection(
ax,
geoms,
values=None,
color=None,
cmap=None,
vmin=None,
vmax=None,
autolim=True,
**kwargs,
):
"""Plot a collection of Polygon and MultiPolygon geometries to `ax`.
Parameters
----------
ax : matplotlib.axes.Axes
where shapes will be plotted
geoms : a sequence of `N` Polygons and/or MultiPolygons (can be mixed)
values : a sequence of `N` values, optional
Values will be mapped to colors using vmin/vmax/cmap. They should
have 1:1 correspondence with the geometries (not their components).
Otherwise follows `color` / `facecolor` kwargs.
edgecolor : single color or sequence of `N` colors
Color for the edge of the polygons
facecolor : single color or sequence of `N` colors
Color to fill the polygons. Cannot be used together with `values`.
color : single color or sequence of `N` colors
Sets both `edgecolor` and `facecolor`
autolim : bool (default True)
Update axes data limits to contain the new geometries.
**kwargs
Additional keyword arguments passed to the collection
Returns
-------
collection : matplotlib.collections.Collection that was plotted
"""
from matplotlib.collections import PatchCollection
geoms, multiindex = _sanitize_geoms(geoms)
if values is not None:
values = np.take(values, multiindex, axis=0)
# PatchCollection does not accept some kwargs.
kwargs = {
att: value
for att, value in kwargs.items()
if att not in ["markersize", "marker"]
}
# Add to kwargs for easier checking below.
if color is not None:
kwargs["color"] = color
_expand_kwargs(kwargs, multiindex)
collection = PatchCollection([_PolygonPatch(poly) for poly in geoms], **kwargs)
if values is not None:
collection.set_array(np.asarray(values))
collection.set_cmap(cmap)
if "norm" not in kwargs:
collection.set_clim(vmin, vmax)
ax.add_collection(collection, autolim=autolim)
ax.autoscale_view()
return collection
def _plot_linestring_collection(
ax,
geoms,
values=None,
color=None,
cmap=None,
vmin=None,
vmax=None,
autolim=True,
**kwargs,
):
"""Plot a collection of LineString and MultiLineString geometries to `ax`.
Parameters
----------
ax : matplotlib.axes.Axes
where shapes will be plotted
geoms : a sequence of `N` LineStrings and/or MultiLineStrings (can be
mixed)
values : a sequence of `N` values, optional
Values will be mapped to colors using vmin/vmax/cmap. They should
have 1:1 correspondence with the geometries (not their components).
color : single color or sequence of `N` colors
Cannot be used together with `values`.
autolim : bool (default True)
Update axes data limits to contain the new geometries.
Returns
-------
collection : matplotlib.collections.Collection that was plotted
"""
from matplotlib.collections import LineCollection
geoms, multiindex = _sanitize_geoms(geoms)
if values is not None:
values = np.take(values, multiindex, axis=0)
# LineCollection does not accept some kwargs.
kwargs = {
att: value
for att, value in kwargs.items()
if att not in ["markersize", "marker"]
}
# Add to kwargs for easier checking below.
if color is not None:
kwargs["color"] = color
_expand_kwargs(kwargs, multiindex)
segments = [np.array(linestring.coords)[:, :2] for linestring in geoms]
collection = LineCollection(segments, **kwargs)
if values is not None:
collection.set_array(np.asarray(values))
collection.set_cmap(cmap)
if "norm" not in kwargs:
collection.set_clim(vmin, vmax)
ax.add_collection(collection, autolim=autolim)
ax.autoscale_view()
return collection
def _plot_point_collection(
ax,
geoms,
values=None,
color=None,
cmap=None,
vmin=None,
vmax=None,
marker="o",
markersize=None,
**kwargs,
):
"""Plot a collection of Point and MultiPoint geometries to `ax`.
Parameters
----------
ax : matplotlib.axes.Axes
where shapes will be plotted
geoms : sequence of `N` Points or MultiPoints
values : a sequence of `N` values, optional
Values mapped to colors using vmin, vmax, and cmap.
Cannot be specified together with `color`.
markersize : scalar or array-like, optional
Size of the markers. Note that under the hood ``scatter`` is
used, so the specified value will be proportional to the
area of the marker (size in points^2).
Returns
-------
collection : matplotlib.collections.Collection that was plotted
"""
if values is not None and color is not None:
raise ValueError("Can only specify one of 'values' and 'color' kwargs")
geoms, multiindex = _sanitize_geoms(geoms)
# values are expanded below as kwargs["c"]
x = [p.x if not p.is_empty else None for p in geoms]
y = [p.y if not p.is_empty else None for p in geoms]
# matplotlib 1.4 does not support c=None, and < 2.0 does not support s=None
if values is not None:
kwargs["c"] = values
if markersize is not None:
kwargs["s"] = markersize
# Add to kwargs for easier checking below.
if color is not None:
kwargs["color"] = color
if marker is not None:
kwargs["marker"] = marker
_expand_kwargs(kwargs, multiindex)
if "norm" not in kwargs:
collection = ax.scatter(x, y, vmin=vmin, vmax=vmax, cmap=cmap, **kwargs)
else:
collection = ax.scatter(x, y, cmap=cmap, **kwargs)
return collection
def plot_series(
s,
cmap=None,
color=None,
ax=None,
figsize=None,
aspect="auto",
autolim=True,
**style_kwds,
):
"""
Plot a GeoSeries.
Generate a plot of a GeoSeries geometry with matplotlib.
Parameters
----------
s : Series
The GeoSeries to be plotted. Currently Polygon,
MultiPolygon, LineString, MultiLineString, Point and MultiPoint
geometries can be plotted.
cmap : str (default None)
The name of a colormap recognized by matplotlib. Any
colormap will work, but categorical colormaps are
generally recommended. Examples of useful discrete
colormaps include:
tab10, tab20, Accent, Dark2, Paired, Pastel1, Set1, Set2
color : str, np.array, pd.Series, List (default None)
If specified, all objects will be colored uniformly.
ax : matplotlib.pyplot.Artist (default None)
axes on which to draw the plot
figsize : pair of floats (default None)
Size of the resulting matplotlib.figure.Figure. If the argument
ax is given explicitly, figsize is ignored.
aspect : 'auto', 'equal', None or float (default 'auto')
Set aspect of axis. If 'auto', the default aspect for map plots is 'equal'; if
however data are not projected (coordinates are long/lat), the aspect is by
default set to 1/cos(s_y * pi/180) with s_y the y coordinate of the middle of
the GeoSeries (the mean of the y range of bounding box) so that a long/lat
square appears square in the middle of the plot. This implies an
Equirectangular projection. If None, the aspect of `ax` won't be changed. It can
also be set manually (float) as the ratio of y-unit to x-unit.
autolim : bool (default True)
Update axes data limits to contain the new geometries.
**style_kwds : dict
Color options to be passed on to the actual plot function, such
as ``edgecolor``, ``facecolor``, ``linewidth``, ``markersize``,
``alpha``.
Returns
-------
ax : matplotlib axes instance
"""
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError(
"The matplotlib package is required for plotting in geopandas. "
"You can install it using 'conda install -c conda-forge matplotlib' or "
"'pip install matplotlib'."
)
if ax is None:
fig, ax = plt.subplots(figsize=figsize)
if aspect == "auto":
if s.crs and s.crs.is_geographic:
bounds = s.total_bounds
y_coord = np.mean([bounds[1], bounds[3]])
ax.set_aspect(1 / np.cos(y_coord * np.pi / 180))
# formula ported from R package sp
# https://github.com/edzer/sp/blob/master/R/mapasp.R
else:
ax.set_aspect("equal")
elif aspect is not None:
ax.set_aspect(aspect)
if s.empty:
warnings.warn(
"The GeoSeries you are attempting to plot is "
"empty. Nothing has been displayed.",
UserWarning,
stacklevel=3,
)
return ax
if s.is_empty.all():
warnings.warn(
"The GeoSeries you are attempting to plot is "
"composed of empty geometries. Nothing has been displayed.",
UserWarning,
stacklevel=3,
)
return ax
# have colors been given for all geometries?
color_given = pd.api.types.is_list_like(color) and len(color) == len(s)
# if cmap is specified, create range of colors based on cmap
values = None
if cmap is not None:
values = np.arange(len(s))
if hasattr(cmap, "N"):
values = values % cmap.N
style_kwds["vmin"] = style_kwds.get("vmin", values.min())
style_kwds["vmax"] = style_kwds.get("vmax", values.max())
# decompose GeometryCollections
geoms, multiindex = _sanitize_geoms(s.geometry, prefix="Geom")
values = np.take(values, multiindex, axis=0) if cmap else None
# ensure indexes are consistent
if color_given and isinstance(color, pd.Series):
color = color.reindex(s.index)
expl_color = np.take(color, multiindex, axis=0) if color_given else color
expl_series = geopandas.GeoSeries(geoms)
geom_types = expl_series.geom_type
poly_idx = np.asarray((geom_types == "Polygon") | (geom_types == "MultiPolygon"))
line_idx = np.asarray(
(geom_types == "LineString")
| (geom_types == "MultiLineString")
| (geom_types == "LinearRing")
)
point_idx = np.asarray((geom_types == "Point") | (geom_types == "MultiPoint"))
# plot all Polygons and all MultiPolygon components in the same collection
polys = expl_series[poly_idx]
if not polys.empty:
# color overrides both face and edgecolor. As we want people to be
# able to use edgecolor as well, pass color to facecolor
facecolor = style_kwds.pop("facecolor", None)
color_ = expl_color[poly_idx] if color_given else color
if color is not None:
facecolor = color_
values_ = values[poly_idx] if cmap else None
_plot_polygon_collection(
ax,
polys,
values_,
facecolor=facecolor,
cmap=cmap,
autolim=autolim,
**style_kwds,
)
# plot all LineStrings and MultiLineString components in same collection
lines = expl_series[line_idx]
if not lines.empty:
values_ = values[line_idx] if cmap else None
color_ = expl_color[line_idx] if color_given else color
_plot_linestring_collection(
ax, lines, values_, color=color_, cmap=cmap, autolim=autolim, **style_kwds
)
# plot all Points in the same collection
points = expl_series[point_idx]
if not points.empty:
values_ = values[point_idx] if cmap else None
color_ = expl_color[point_idx] if color_given else color
_plot_point_collection(
ax, points, values_, color=color_, cmap=cmap, **style_kwds
)
ax.figure.canvas.draw_idle()
return ax
def plot_dataframe(
df,
column=None,
cmap=None,
color=None,
ax=None,
cax=None,
categorical=False,
legend=False,
scheme=None,
k=5,
vmin=None,
vmax=None,
markersize=None,
figsize=None,
legend_kwds=None,
categories=None,
classification_kwds=None,
missing_kwds=None,
aspect="auto",
autolim=True,
**style_kwds,
):
"""
Plot a GeoDataFrame.
Generate a plot of a GeoDataFrame with matplotlib. If a
column is specified, the plot coloring will be based on values
in that column.
Parameters
----------
column : str, np.array, pd.Series, pd.Index (default None)
The name of the dataframe column, np.array, pd.Series, or pd.Index
to be plotted. If np.array, pd.Series, or pd.Index are used then it
must have same length as dataframe. Values are used to color the plot.
Ignored if `color` is also set.
kind: str
The kind of plots to produce. The default is to create a map ("geo").
Other supported kinds of plots from pandas:
- 'line' : line plot
- 'bar' : vertical bar plot
- 'barh' : horizontal bar plot
- 'hist' : histogram
- 'box' : BoxPlot
- 'kde' : Kernel Density Estimation plot
- 'density' : same as 'kde'
- 'area' : area plot
- 'pie' : pie plot
- 'scatter' : scatter plot
- 'hexbin' : hexbin plot.
cmap : str (default None)
The name of a colormap recognized by matplotlib.
color : str, np.array, pd.Series (default None)
If specified, all objects will be colored uniformly.
ax : matplotlib.pyplot.Artist (default None)
axes on which to draw the plot
cax : matplotlib.pyplot Artist (default None)
axes on which to draw the legend in case of color map.
categorical : bool (default False)
If False, cmap will reflect numerical values of the
column being plotted. For non-numerical columns, this
will be set to True.
legend : bool (default False)
Plot a legend. Ignored if no `column` is given, or if `color` is given.
scheme : str (default None)
Name of a choropleth classification scheme (requires mapclassify).
A mapclassify.MapClassifier object will be used
under the hood. Supported are all schemes provided by mapclassify (e.g.
'BoxPlot', 'EqualInterval', 'FisherJenks', 'FisherJenksSampled',
'HeadTailBreaks', 'JenksCaspall', 'JenksCaspallForced',
'JenksCaspallSampled', 'MaxP', 'MaximumBreaks',
'NaturalBreaks', 'Quantiles', 'Percentiles', 'StdMean',
'UserDefined'). Arguments can be passed in classification_kwds.
k : int (default 5)
Number of classes (ignored if scheme is None)
vmin : None or float (default None)
Minimum value of cmap. If None, the minimum data value
in the column to be plotted is used.
vmax : None or float (default None)
Maximum value of cmap. If None, the maximum data value
in the column to be plotted is used.
markersize : str or float or sequence (default None)
Only applies to point geometries within a frame.
If a str, will use the values in the column of the frame specified
by markersize to set the size of markers. Otherwise can be a value
to apply to all points, or a sequence of the same length as the
number of points.
figsize : tuple of integers (default None)
Size of the resulting matplotlib.figure.Figure. If the argument
axes is given explicitly, figsize is ignored.
legend_kwds : dict (default None)
Keyword arguments to pass to :func:`matplotlib.pyplot.legend` or
:func:`matplotlib.pyplot.colorbar`.
Additional accepted keywords when `scheme` is specified:
fmt : string
A formatting specification for the bin edges of the classes in the
legend. For example, to have no decimals: ``{"fmt": "{:.0f}"}``.
labels : list-like
A list of legend labels to override the auto-generated labels.
Needs to have the same number of elements as the number of
classes (`k`).
interval : boolean (default False)
An option to control brackets from mapclassify legend.
If True, open/closed interval brackets are shown in the legend.
categories : list-like
Ordered list-like object of categories to be used for categorical plot.
classification_kwds : dict (default None)
Keyword arguments to pass to mapclassify
missing_kwds : dict (default None)
Keyword arguments specifying color options (as style_kwds)
to be passed on to geometries with missing values in addition to
or overwriting other style kwds. If None, geometries with missing
values are not plotted.
aspect : 'auto', 'equal', None or float (default 'auto')
Set aspect of axis. If 'auto', the default aspect for map plots is 'equal'; if
however data are not projected (coordinates are long/lat), the aspect is by
default set to 1/cos(df_y * pi/180) with df_y the y coordinate of the middle of
the GeoDataFrame (the mean of the y range of bounding box) so that a long/lat
square appears square in the middle of the plot. This implies an
Equirectangular projection. If None, the aspect of `ax` won't be changed. It can
also be set manually (float) as the ratio of y-unit to x-unit.
autolim : bool (default True)
Update axes data limits to contain the new geometries.
**style_kwds : dict
Style options to be passed on to the actual plot function, such
as ``edgecolor``, ``facecolor``, ``linewidth``, ``markersize``,
``alpha``.
Returns
-------
ax : matplotlib axes instance
Examples
--------
>>> import geodatasets
>>> df = geopandas.read_file(geodatasets.get_path("nybb"))
>>> df.head() # doctest: +SKIP
BoroCode ... geometry
0 5 ... MULTIPOLYGON (((970217.022 145643.332, 970227....
1 4 ... MULTIPOLYGON (((1029606.077 156073.814, 102957...
2 3 ... MULTIPOLYGON (((1021176.479 151374.797, 102100...
3 1 ... MULTIPOLYGON (((981219.056 188655.316, 980940....
4 2 ... MULTIPOLYGON (((1012821.806 229228.265, 101278...
>>> df.plot("BoroName", cmap="Set1") # doctest: +SKIP
See the User Guide page :doc:`../../user_guide/mapping` for details.
"""
if column is not None and color is not None:
warnings.warn(
"Only specify one of 'column' or 'color'. Using 'color'.",
UserWarning,
stacklevel=3,
)
column = None
try:
import matplotlib.pyplot as plt
except ImportError:
raise ImportError(
"The matplotlib package is required for plotting in geopandas. "
"You can install it using 'conda install -c conda-forge matplotlib' or "
"'pip install matplotlib'."
)
if ax is None:
if cax is not None:
raise ValueError("'ax' can not be None if 'cax' is not.")
fig, ax = plt.subplots(figsize=figsize)
if aspect == "auto":
if df.crs and df.crs.is_geographic:
bounds = df.total_bounds
y_coord = np.mean([bounds[1], bounds[3]])
ax.set_aspect(1 / np.cos(y_coord * np.pi / 180))
# formula ported from R package sp
# https://github.com/edzer/sp/blob/master/R/mapasp.R
else:
ax.set_aspect("equal")
elif aspect is not None:
ax.set_aspect(aspect)
# GH 1555
# if legend_kwds set, copy so we don't update it in place
if legend_kwds is not None:
legend_kwds = legend_kwds.copy()
if df.empty:
warnings.warn(
"The GeoDataFrame you are attempting to plot is "
"empty. Nothing has been displayed.",
UserWarning,
stacklevel=3,
)
return ax
if isinstance(markersize, str):
markersize = df[markersize].values
if column is None:
return plot_series(
df.geometry,
cmap=cmap,
color=color,
ax=ax,
figsize=figsize,
markersize=markersize,
aspect=aspect,
autolim=autolim,
**style_kwds,
)
# To accept pd.Series and np.arrays as column
if isinstance(column, np.ndarray | pd.Series | pd.Index):
if column.shape[0] != df.shape[0]:
raise ValueError(
"The dataframe and given column have different number of rows."
)
elif isinstance(column, pd.Index):
values = column.values
else:
values = column
# Make sure index of a Series matches index of df
if isinstance(values, pd.Series):
values = values.reindex(df.index)
else:
values = df[column]
if isinstance(values.dtype, CategoricalDtype):
if categories is not None:
raise ValueError(
"Cannot specify 'categories' when column has categorical dtype"
)
categorical = True
elif (
pd.api.types.is_object_dtype(values.dtype)
or pd.api.types.is_bool_dtype(values.dtype)
or pd.api.types.is_string_dtype(values.dtype)
or categories
):
categorical = True
nan_idx = np.asarray(pd.isna(values), dtype="bool")
if scheme is not None:
mc_err = "The 'mapclassify' package is required to use the 'scheme' keyword."
try:
import mapclassify
except ImportError:
raise ImportError(mc_err)
if classification_kwds is None:
classification_kwds = {}
if "k" not in classification_kwds:
classification_kwds["k"] = k
binning = mapclassify.classify(
np.asarray(values[~nan_idx]), scheme, **classification_kwds
)
# set categorical to True for creating the legend
categorical = True
if legend_kwds is not None and "labels" in legend_kwds:
if len(legend_kwds["labels"]) != binning.k:
raise ValueError(
"Number of labels must match number of bins, "
"received {} labels for {} bins".format(
len(legend_kwds["labels"]), binning.k
)
)
else:
labels = list(legend_kwds.pop("labels"))
else:
fmt = "{:.2f}"
if legend_kwds is not None and "fmt" in legend_kwds:
fmt = legend_kwds.pop("fmt")
labels = binning.get_legend_classes(fmt)
if legend_kwds is not None:
show_interval = legend_kwds.pop("interval", False)
else:
show_interval = False
if not show_interval:
labels = [c[1:-1] for c in labels]
values = pd.Categorical(
[np.nan] * len(values), categories=binning.bins, ordered=True
)
values[~nan_idx] = pd.Categorical.from_codes(
binning.yb, categories=binning.bins, ordered=True
)
if cmap is None:
cmap = "viridis"
# Define `values` as a Series
if categorical:
if cmap is None:
cmap = "tab10"
cat = pd.Categorical(values, categories=categories)
categories = list(cat.categories)
# values missing in the Categorical but not in original values
missing = list(np.unique(values[~nan_idx & cat.isna()]))
if missing:
raise ValueError(
"Column contains values not listed in categories. "
f"Missing categories: {missing}."
)
values = cat.codes[~nan_idx]
vmin = 0 if vmin is None else vmin
vmax = len(categories) - 1 if vmax is None else vmax
# fill values with placeholder where were NaNs originally to map them properly
# (after removing them in categorical or scheme)
if categorical:
for n in np.where(nan_idx)[0]:
values = np.insert(values, n, values[0])
mn = values[~np.isnan(values)].min() if vmin is None else vmin
mx = values[~np.isnan(values)].max() if vmax is None else vmax
# decompose GeometryCollections
geoms, multiindex = _sanitize_geoms(df.geometry, prefix="Geom")
values = np.take(values, multiindex, axis=0)
nan_idx = np.take(nan_idx, multiindex, axis=0)
expl_series = geopandas.GeoSeries(geoms)
geom_types = expl_series.geom_type
poly_idx = np.asarray((geom_types == "Polygon") | (geom_types == "MultiPolygon"))
line_idx = np.asarray(
(geom_types == "LineString")
| (geom_types == "MultiLineString")
| (geom_types == "LinearRing")
)
point_idx = np.asarray((geom_types == "Point") | (geom_types == "MultiPoint"))
# plot all Polygons and all MultiPolygon components in the same collection
polys = expl_series[poly_idx & np.invert(nan_idx)]
subset = values[poly_idx & np.invert(nan_idx)]
if not polys.empty:
_plot_polygon_collection(
ax,
polys,
subset,
vmin=mn,
vmax=mx,
cmap=cmap,
autolim=autolim,
**style_kwds,
)
# plot all LineStrings and MultiLineString components in same collection
lines = expl_series[line_idx & np.invert(nan_idx)]
subset = values[line_idx & np.invert(nan_idx)]
if not lines.empty:
_plot_linestring_collection(
ax,
lines,
subset,
vmin=mn,
vmax=mx,
cmap=cmap,
autolim=autolim,
**style_kwds,
)
# plot all Points in the same collection
points = expl_series[point_idx & np.invert(nan_idx)]
subset = values[point_idx & np.invert(nan_idx)]
if not points.empty:
if isinstance(markersize, np.ndarray):
markersize = np.take(markersize, multiindex, axis=0)
markersize = markersize[point_idx & np.invert(nan_idx)]
_plot_point_collection(
ax,
points,
subset,
vmin=mn,
vmax=mx,
markersize=markersize,
cmap=cmap,
**style_kwds,
)
missing_data = not expl_series[nan_idx].empty
if missing_kwds is not None and missing_data:
if color:
if "color" not in missing_kwds:
missing_kwds["color"] = color
merged_kwds = style_kwds.copy()
merged_kwds.update(missing_kwds)
plot_series(expl_series[nan_idx], ax=ax, **merged_kwds, aspect=None)
if legend and not color:
if legend_kwds is None:
legend_kwds = {}
if "fmt" in legend_kwds:
legend_kwds.pop("fmt")
from matplotlib import cm
from matplotlib.colors import Normalize
from matplotlib.lines import Line2D
norm = style_kwds.get("norm", None)
if not norm:
norm = Normalize(vmin=mn, vmax=mx)
n_cmap = cm.ScalarMappable(norm=norm, cmap=cmap)
if categorical:
if scheme is not None:
categories = labels
patches = []
for i in range(len(categories)):
patches.append(
Line2D(
[0],
[0],
linestyle="none",
marker="o",
alpha=style_kwds.get("alpha", 1),
markersize=10,
markerfacecolor=n_cmap.to_rgba(i),
markeredgewidth=0,
)
)
if missing_kwds is not None and missing_data:
if "color" in merged_kwds:
merged_kwds["facecolor"] = merged_kwds["color"]
patches.append(
Line2D(
[0],
[0],
linestyle="none",
marker="o",
alpha=merged_kwds.get("alpha", 1),
markersize=10,
markerfacecolor=merged_kwds.get("facecolor", None),
markeredgecolor=merged_kwds.get("edgecolor", None),
markeredgewidth=merged_kwds.get(
"linewidth", 1 if merged_kwds.get("edgecolor", False) else 0
),
)
)
categories.append(merged_kwds.get("label", "NaN"))
legend_kwds.setdefault("numpoints", 1)
legend_kwds.setdefault("loc", "best")
legend_kwds.setdefault("handles", patches)
legend_kwds.setdefault("labels", categories)
ax.legend(**legend_kwds)
else:
if cax is not None:
legend_kwds.setdefault("cax", cax)
else:
legend_kwds.setdefault("ax", ax)
n_cmap.set_array(np.array([]))
ax.get_figure().colorbar(n_cmap, **legend_kwds)
ax.figure.canvas.draw_idle()
return ax
@doc(plot_dataframe)
class GeoplotAccessor(PlotAccessor):
_pandas_kinds = PlotAccessor._all_kinds
def __call__(self, *args, **kwargs):
data = self._parent.copy()
kind = kwargs.pop("kind", "geo")
if kind == "geo":
return plot_dataframe(data, *args, **kwargs)
if kind in self._pandas_kinds:
# Access pandas plots
return PlotAccessor(data)(kind=kind, **kwargs)
else:
# raise error
raise ValueError(f"{kind} is not a valid plot kind")
def geo(self, *args, **kwargs):
return self(kind="geo", *args, **kwargs) # noqa: B026
|