1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603
|
import numpy as np
import shapely
from shapely.geometry.base import BaseGeometry
from . import _compat as compat
from . import array, geoseries
PREDICATES = {p.name for p in shapely.strtree.BinaryPredicate} | {None}
if compat.GEOS_GE_310:
PREDICATES.update(["dwithin"])
class SpatialIndex:
"""A simple wrapper around Shapely's STRTree.
Parameters
----------
geometry : np.array of Shapely geometries
Geometries from which to build the spatial index.
"""
def __init__(self, geometry):
# set empty geometries to None to avoid segfault on GEOS <= 3.6
# see:
# https://github.com/pygeos/pygeos/issues/146
# https://github.com/pygeos/pygeos/issues/147
non_empty = geometry.copy()
non_empty[shapely.is_empty(non_empty)] = None
# set empty geometries to None to maintain indexing
self._tree = shapely.STRtree(non_empty)
# store geometries, including empty geometries for user access
self.geometries = geometry.copy()
@property
def valid_query_predicates(self):
"""Returns valid predicates for the spatial index.
Returns
-------
set
Set of valid predicates for this spatial index.
Examples
--------
>>> from shapely.geometry import Point
>>> s = geopandas.GeoSeries([Point(0, 0), Point(1, 1)])
>>> s.sindex.valid_query_predicates # doctest: +SKIP
{None, "contains", "contains_properly", "covered_by", "covers", \
"crosses", "dwithin", "intersects", "overlaps", "touches", "within"}
"""
return PREDICATES
def query(
self,
geometry,
predicate=None,
sort=False,
distance=None,
output_format="indices",
):
"""
Return all combinations of each input geometry
and tree geometries where the bounding box of each input geometry
intersects the bounding box of a tree geometry.
The result can be returned as an array of 'indices' or a boolean 'sparse' or
'dense' array. This can be controlled using the ``output_format`` keyword.
Options are as follows.
``'indices'``
If the input geometry is a scalar, this returns an array of shape (n, ) with
the indices of the matching tree geometries. If the input geometry is an
array_like, this returns an array with shape (2,n) where the subarrays
correspond to the indices of the input geometries and indices of the
tree geometries associated with each. To generate an array of pairs of
input geometry index and tree geometry index, simply transpose the
result.
``'sparse'``
If the input geometry is a scalar, this returns a boolean scipy.sparse COO
array of shape (len(tree), ) with boolean values marking whether the
bounding box of a geometry in the tree intersects a bounding box of a given
scalar. If the input geometry is an array_like, this returns a boolean
scipy.sparse COO array with shape (len(tree), n) with boolean values marking
whether the bounding box of a geometry in the tree intersects a bounding box
of a given scalar.
``'dense'``
If the input geometry is a scalar, this returns a boolean numpy
array of shape (len(tree), ) with boolean values marking whether the
bounding box of a geometry in the tree intersects a bounding box of a given
scalar. If the input geometry is an array_like, this returns a boolean
numpy array with shape (len(tree), n) with boolean values marking
whether the bounding box of a geometry in the tree intersects a bounding box
of a given scalar.
If a predicate is provided, the tree geometries are first queried based
on the bounding box of the input geometry and then are further filtered
to those that meet the predicate when comparing the input geometry to
the tree geometry: ``predicate(geometry, tree_geometry)``.
The 'dwithin' predicate requires GEOS >= 3.10.
Bounding boxes are limited to two dimensions and are axis-aligned
(equivalent to the ``bounds`` property of a geometry); any Z values
present in input geometries are ignored when querying the tree.
Any input geometry that is None or empty will never match geometries in
the tree.
See the User Guide page :doc:`../../user_guide/spatial_indexing` for more.
Parameters
----------
geometry : shapely.Geometry or array-like of geometries \
(numpy.ndarray, GeoSeries, GeometryArray)
A single shapely geometry or array of geometries to query against
the spatial index. For array-like, accepts both GeoPandas geometry
iterables (GeoSeries, GeometryArray) or a numpy array of Shapely
geometries.
predicate : {None, "contains", "contains_properly", "covered_by", "covers", \
"crosses", "intersects", "overlaps", "touches", "within", "dwithin"}, optional
If predicate is provided, the input geometries are tested
using the predicate function against each item in the tree
whose extent intersects the envelope of the input geometry:
``predicate(input_geometry, tree_geometry)``.
If possible, prepared geometries are used to help speed up the
predicate operation.
sort : bool, default False
If True, the results will be sorted in ascending order. In case
of 2D array, the result is sorted lexicographically using the
geometries' indexes as the primary key and the sindex's indexes
as the secondary key.
If False, no additional sorting is applied (results are often
sorted but there is no guarantee).
Applicable only if output_format="indices".
distance : number or array_like, optional
Distances around each input geometry within which to query the tree for
the 'dwithin' predicate. If array_like, shape must be broadcastable to shape
of geometry. Required if ``predicate='dwithin'``.
output_format : {"indices", "sparse", "dense"}, default "indices"
Type of the output format representing the result of the query.
Returns
-------
`If geometry is a scalar:`
ndarray with shape (n,)
Integer indices for matching geometries from the spatial index
tree geometries. If ``output_format="indices"``.
OR
scipy.sparse COO array with shape (len(tree), )
Boolean array aligned with array of geometries in the tree.
If ``output_format="sparse"``.
OR
ndarray with shape (len(tree), )
Boolean array aligned with array of geometries in the tree.
If ``output_format="dense"``.
`If geometry is an array_like:`
ndarray with shape (2, n)
The first subarray contains input geometry integer indices.
The second subarray contains tree geometry integer indices.
If ``output_format="indices"``.
OR
scipy.sparse COO array with shape (len(tree), n)
Boolean array aligned with array of geometries in the tree along axis 0 and
with ``geometry`` along axis 1.
If ``output_format="sparse"``.
OR
ndarray with shape (len(tree), n)
Boolean array aligned with array of geometries in the tree along axis 0 and
with ``geometry`` along axis 1.
If ``output_format="dense"``.
Examples
--------
>>> from shapely.geometry import Point, box
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0 POINT (0 0)
1 POINT (1 1)
2 POINT (2 2)
3 POINT (3 3)
4 POINT (4 4)
5 POINT (5 5)
6 POINT (6 6)
7 POINT (7 7)
8 POINT (8 8)
9 POINT (9 9)
dtype: geometry
Querying the tree with a scalar geometry:
>>> s.sindex.query(box(1, 1, 3, 3))
array([1, 2, 3])
>>> s.sindex.query(box(1, 1, 3, 3), predicate="contains")
array([2])
Querying the tree with an array of geometries:
>>> s2 = geopandas.GeoSeries([box(2, 2, 4, 4), box(5, 5, 6, 6)])
>>> s2
0 POLYGON ((4 2, 4 4, 2 4, 2 2, 4 2))
1 POLYGON ((6 5, 6 6, 5 6, 5 5, 6 5))
dtype: geometry
>>> s.sindex.query(s2)
array([[0, 0, 0, 1, 1],
[2, 3, 4, 5, 6]])
>>> s.sindex.query(s2, predicate="contains")
array([[0],
[3]])
>>> s.sindex.query(box(1, 1, 3, 3), predicate="dwithin", distance=0)
array([1, 2, 3])
>>> s.sindex.query(box(1, 1, 3, 3), predicate="dwithin", distance=2)
array([0, 1, 2, 3, 4])
Returning boolean arrays:
>>> s.sindex.query(box(1, 1, 3, 3), output_format="sparse")
<COOrdinate sparse array of dtype 'bool'
with 3 stored elements and shape (10,)>
>>> s.sindex.query(box(1, 1, 3, 3), output_format="dense")
array([False, True, True, True, False, False, False, False, False,
False])
>>> s.sindex.query(s2, output_format="sparse")
<COOrdinate sparse array of dtype 'bool'
with 5 stored elements and shape (10, 2)>
>>> s.sindex.query(s2, output_format="dense")
array([[False, False],
[False, False],
[ True, False],
[ True, False],
[ True, False],
[False, True],
[False, True],
[False, False],
[False, False],
[False, False]])
Notes
-----
In the context of a spatial join, input geometries are the "left"
geometries that determine the order of the results, and tree geometries
are "right" geometries that are joined against the left geometries. This
effectively performs an inner join, where only those combinations of
geometries that can be joined based on overlapping bounding boxes or
optional predicate are returned.
"""
if predicate not in self.valid_query_predicates:
if predicate == "dwithin":
raise ValueError("predicate = 'dwithin' requires GEOS >= 3.10.0")
raise ValueError(
f"Got predicate='{predicate}'; "
f"`predicate` must be one of {self.valid_query_predicates}"
)
# distance argument requirement of predicate `dwithin`
# and only valid for predicate `dwithin`
kwargs = {}
if predicate == "dwithin":
if distance is None:
# the distance parameter is needed
raise ValueError(
"'distance' parameter is required for 'dwithin' predicate"
)
# add distance to kwargs
kwargs["distance"] = distance
elif distance is not None:
# distance parameter is invalid
raise ValueError(
"'distance' parameter is only supported in combination with "
"'dwithin' predicate"
)
geometry = self._as_geometry_array(geometry)
indices = self._tree.query(geometry, predicate=predicate, **kwargs)
if output_format == "indices" and sort:
if indices.ndim == 1:
indices = np.sort(indices)
else:
# sort by first array (geometry) and then second (tree)
geo_idx, tree_idx = indices
sort_indexer = np.lexsort((tree_idx, geo_idx))
indices = np.vstack((geo_idx[sort_indexer], tree_idx[sort_indexer]))
if output_format == "sparse":
scipy = compat.import_optional_dependency("scipy")
if indices.ndim == 1:
return scipy.sparse.coo_array(
(np.ones(len(indices), dtype=np.bool_), indices.reshape(1, -1)),
shape=(len(self.geometries),),
dtype=np.bool_,
)
return scipy.sparse.coo_array(
(np.ones(len(indices[0]), dtype=np.bool_), indices[::-1]),
shape=(len(self.geometries), len(geometry)),
dtype=np.bool_,
)
if output_format == "dense":
if indices.ndim == 1:
dense = np.zeros(len(self.geometries), dtype=bool)
dense[indices] = True
else:
dense = np.zeros((len(self.geometries), len(geometry)), dtype=bool)
tree, other = indices[::-1]
dense[tree, other] = True
return dense
if output_format == "indices":
return indices
raise ValueError(
f"Invalid output_format: '{output_format}'. "
"Use one of 'indices', 'sparse', 'dense'."
)
@staticmethod
def _as_geometry_array(geometry):
"""Convert geometry into a numpy array of Shapely geometries.
Parameters
----------
geometry
An array-like of Shapely geometries, a GeoPandas GeoSeries/GeometryArray,
shapely.geometry or list of shapely geometries.
Returns
-------
np.ndarray
A numpy array of Shapely geometries.
"""
if isinstance(geometry, np.ndarray):
return array.from_shapely(geometry)._data
elif isinstance(geometry, geoseries.GeoSeries):
return geometry.values._data
elif isinstance(geometry, array.GeometryArray):
return geometry._data
elif isinstance(geometry, BaseGeometry):
return geometry
elif geometry is None:
return None
else:
return np.asarray(geometry)
def nearest(
self,
geometry,
return_all=True,
max_distance=None,
return_distance=False,
exclusive=False,
):
"""
Return the nearest geometry in the tree for each input geometry in
``geometry``.
If multiple tree geometries have the same distance from an input geometry,
multiple results will be returned for that input geometry by default.
Specify ``return_all=False`` to only get a single nearest geometry
(non-deterministic which nearest is returned).
In the context of a spatial join, input geometries are the "left"
geometries that determine the order of the results, and tree geometries
are "right" geometries that are joined against the left geometries.
If ``max_distance`` is not set, this will effectively be a left join
because every geometry in ``geometry`` will have a nearest geometry in
the tree. However, if ``max_distance`` is used, this becomes an
inner join, since some geometries in ``geometry`` may not have a match
in the tree.
For performance reasons, it is highly recommended that you set
the ``max_distance`` parameter.
Parameters
----------
geometry : {shapely.geometry, GeoSeries, GeometryArray, numpy.array of Shapely \
geometries}
A single shapely geometry, one of the GeoPandas geometry iterables
(GeoSeries, GeometryArray), or a numpy array of Shapely geometries to query
against the spatial index.
return_all : bool, default True
If there are multiple equidistant or intersecting nearest
geometries, return all those geometries instead of a single
nearest geometry.
max_distance : float, optional
Maximum distance within which to query for nearest items in tree.
Must be greater than 0. By default None, indicating no distance limit.
return_distance : bool, optional
If True, will return distances in addition to indexes. By default False
exclusive : bool, optional
if True, the nearest geometries that are equal to the input geometry
will not be returned. By default False. Requires Shapely >= 2.0.
Returns
-------
Indices or tuple of (indices, distances)
Indices is an ndarray of shape (2,n) and distances (if present) an
ndarray of shape (n).
The first subarray of indices contains input geometry indices.
The second subarray of indices contains tree geometry indices.
Examples
--------
>>> from shapely.geometry import Point, box
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s.head()
0 POINT (0 0)
1 POINT (1 1)
2 POINT (2 2)
3 POINT (3 3)
4 POINT (4 4)
dtype: geometry
>>> s.sindex.nearest(Point(1, 1))
array([[0],
[1]])
>>> s.sindex.nearest([box(4.9, 4.9, 5.1, 5.1)])
array([[0],
[5]])
>>> s2 = geopandas.GeoSeries(geopandas.points_from_xy([7.6, 10], [7.6, 10]))
>>> s2
0 POINT (7.6 7.6)
1 POINT (10 10)
dtype: geometry
>>> s.sindex.nearest(s2)
array([[0, 1],
[8, 9]])
"""
geometry = self._as_geometry_array(geometry)
if isinstance(geometry, BaseGeometry) or geometry is None:
geometry = [geometry]
result = self._tree.query_nearest(
geometry,
max_distance=max_distance,
return_distance=return_distance,
all_matches=return_all,
exclusive=exclusive,
)
if return_distance:
indices, distances = result
else:
indices = result
if return_distance:
return indices, distances
else:
return indices
def intersection(self, coordinates):
"""Compatibility wrapper for rtree.index.Index.intersection,
use ``query`` instead.
Parameters
----------
coordinates : sequence or array
Sequence of the form (min_x, min_y, max_x, max_y)
to query a rectangle or (x, y) to query a point.
Examples
--------
>>> from shapely.geometry import Point, box
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0 POINT (0 0)
1 POINT (1 1)
2 POINT (2 2)
3 POINT (3 3)
4 POINT (4 4)
5 POINT (5 5)
6 POINT (6 6)
7 POINT (7 7)
8 POINT (8 8)
9 POINT (9 9)
dtype: geometry
>>> s.sindex.intersection(box(1, 1, 3, 3).bounds)
array([1, 2, 3])
Alternatively, you can use ``query``:
>>> s.sindex.query(box(1, 1, 3, 3))
array([1, 2, 3])
"""
# TODO: we should deprecate this
# convert bounds to geometry
# the old API uses tuples of bound, but Shapely uses geometries
try:
iter(coordinates)
except TypeError:
# likely not an iterable
# this is a check that rtree does, we mimic it
# to ensure a useful failure message
raise TypeError(
"Invalid coordinates, must be iterable in format "
"(minx, miny, maxx, maxy) (for bounds) or (x, y) (for points). "
f"Got `coordinates` = {coordinates}."
)
# need to convert tuple of bounds to a geometry object
if len(coordinates) == 4:
indexes = self._tree.query(shapely.box(*coordinates))
elif len(coordinates) == 2:
indexes = self._tree.query(shapely.points(*coordinates))
else:
raise TypeError(
"Invalid coordinates, must be iterable in format "
"(minx, miny, maxx, maxy) (for bounds) or (x, y) (for points). "
f"Got `coordinates` = {coordinates}."
)
return indexes
@property
def size(self):
"""Size of the spatial index.
Number of leaves (input geometries) in the index.
Examples
--------
>>> from shapely.geometry import Point
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0 POINT (0 0)
1 POINT (1 1)
2 POINT (2 2)
3 POINT (3 3)
4 POINT (4 4)
5 POINT (5 5)
6 POINT (6 6)
7 POINT (7 7)
8 POINT (8 8)
9 POINT (9 9)
dtype: geometry
>>> s.sindex.size
10
"""
return len(self._tree)
@property
def is_empty(self):
"""Check if the spatial index is empty.
Examples
--------
>>> from shapely.geometry import Point
>>> s = geopandas.GeoSeries(geopandas.points_from_xy(range(10), range(10)))
>>> s
0 POINT (0 0)
1 POINT (1 1)
2 POINT (2 2)
3 POINT (3 3)
4 POINT (4 4)
5 POINT (5 5)
6 POINT (6 6)
7 POINT (7 7)
8 POINT (8 8)
9 POINT (9 9)
dtype: geometry
>>> s.sindex.is_empty
False
>>> s2 = geopandas.GeoSeries()
>>> s2.sindex.is_empty
True
"""
return len(self._tree) == 0
def __len__(self):
return len(self._tree)
|