1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
import warnings
import numpy as np
import pandas as pd
from shapely import MultiPolygon, Polygon
import geopandas
from geopandas import GeoDataFrame, read_file
from geopandas._compat import GEOS_GE_312, HAS_PYPROJ, PANDAS_GE_30, SHAPELY_GE_21
import pytest
from geopandas.testing import assert_geodataframe_equal, geom_almost_equals
from pandas.testing import assert_frame_equal
@pytest.fixture
def nybb_polydf(nybb_filename):
nybb_polydf = read_file(nybb_filename)
nybb_polydf = nybb_polydf[["geometry", "BoroName", "BoroCode"]]
nybb_polydf = nybb_polydf.rename(columns={"geometry": "myshapes"})
nybb_polydf = nybb_polydf.set_geometry("myshapes")
nybb_polydf["manhattan_bronx"] = 5
nybb_polydf.loc[3:4, "manhattan_bronx"] = 6
nybb_polydf["BoroCode"] = nybb_polydf["BoroCode"].astype("int64")
return nybb_polydf
@pytest.fixture
def merged_shapes(nybb_polydf):
# Merged geometry
manhattan_bronx = nybb_polydf.loc[3:4]
others = nybb_polydf.loc[0:2]
collapsed = [others.geometry.union_all(), manhattan_bronx.geometry.union_all()]
merged_shapes = GeoDataFrame(
{"myshapes": collapsed},
geometry="myshapes",
index=pd.Index([5, 6], name="manhattan_bronx"),
crs=nybb_polydf.crs,
)
return merged_shapes
@pytest.fixture
def first(merged_shapes):
first = merged_shapes.copy()
first["BoroName"] = ["Staten Island", "Manhattan"]
first["BoroCode"] = [5, 1]
return first
@pytest.fixture
def expected_mean(merged_shapes):
test_mean = merged_shapes.copy()
test_mean["BoroCode"] = [4, 1.5]
return test_mean
def test_geom_dissolve(nybb_polydf, first):
test = nybb_polydf.dissolve("manhattan_bronx")
assert test.geometry.name == "myshapes"
assert geom_almost_equals(test, first)
@pytest.mark.skipif(not HAS_PYPROJ, reason="pyproj not installed")
def test_dissolve_retains_existing_crs(nybb_polydf):
assert nybb_polydf.crs is not None
test = nybb_polydf.dissolve("manhattan_bronx")
assert test.crs is not None
def test_dissolve_retains_nonexisting_crs(nybb_polydf):
nybb_polydf.geometry.array.crs = None
test = nybb_polydf.dissolve("manhattan_bronx")
assert test.crs is None
def test_first_dissolve(nybb_polydf, first):
test = nybb_polydf.dissolve("manhattan_bronx")
assert_frame_equal(first, test, check_column_type=False)
def test_mean_dissolve(nybb_polydf, first, expected_mean):
test = nybb_polydf.dissolve("manhattan_bronx", aggfunc="mean", numeric_only=True)
# for non pandas "mean", numeric only cannot be applied. Drop columns manually
test2 = nybb_polydf.drop(columns=["BoroName"]).dissolve(
"manhattan_bronx", aggfunc="mean"
)
assert_frame_equal(expected_mean, test, check_column_type=False)
assert_frame_equal(expected_mean, test2, check_column_type=False)
def test_dissolve_emits_other_warnings(nybb_polydf):
# we only do something special for pandas 1.5.x, but expect this
# test to be true on any version
def sum_and_warn(group):
warnings.warn("foo") # noqa: B028
return group.sum(numeric_only=False)
with pytest.warns(UserWarning, match="foo"):
nybb_polydf.dissolve("manhattan_bronx", aggfunc=sum_and_warn)
def test_multicolumn_dissolve(nybb_polydf, first):
multi = nybb_polydf.copy()
multi["dup_col"] = multi.manhattan_bronx
multi_test = multi.dissolve(["manhattan_bronx", "dup_col"], aggfunc="first")
first_copy = first.copy()
first_copy["dup_col"] = first_copy.index
first_copy = first_copy.set_index([first_copy.index, "dup_col"])
assert_frame_equal(multi_test, first_copy, check_column_type=False)
def test_reset_index(nybb_polydf, first):
test = nybb_polydf.dissolve("manhattan_bronx", as_index=False)
comparison = first.reset_index()
assert_frame_equal(comparison, test, check_column_type=False)
@pytest.mark.parametrize(
"grid_size, expected",
[
(
None,
MultiPolygon(
[
Polygon([(0, 0), (10, 0), (10, 9)]),
Polygon([(0, 0.4), (4.6, 5), (0, 5)]),
]
),
),
(1, Polygon([(0, 5), (5, 5), (10, 9), (10, 0), (0, 0)])),
],
)
def test_dissolve_grid_size(grid_size, expected):
gdf = geopandas.GeoDataFrame(
geometry=[
Polygon([(0, 0), (10, 0), (10, 9)]),
Polygon([(0, 0.4), (4.6, 5), (0, 5)]),
]
)
dissolved_gdf = gdf.dissolve(grid_size=grid_size)
assert dissolved_gdf.geometry[0].equals(expected)
def test_dissolve_none(nybb_polydf):
test = nybb_polydf.dissolve(by=None)
expected = GeoDataFrame(
{
nybb_polydf.geometry.name: [nybb_polydf.geometry.union_all()],
"BoroName": ["Staten Island"],
"BoroCode": [5],
"manhattan_bronx": [5],
},
geometry=nybb_polydf.geometry.name,
crs=nybb_polydf.crs,
)
assert_frame_equal(expected, test, check_column_type=False)
def test_dissolve_none_mean(nybb_polydf):
test = nybb_polydf.dissolve(aggfunc="mean", numeric_only=True)
expected = GeoDataFrame(
{
nybb_polydf.geometry.name: [nybb_polydf.geometry.union_all()],
"BoroCode": [3.0],
"manhattan_bronx": [5.4],
},
geometry=nybb_polydf.geometry.name,
crs=nybb_polydf.crs,
)
assert_frame_equal(expected, test, check_column_type=False)
def test_dissolve_level():
gdf = geopandas.GeoDataFrame(
{
"a": [1, 1, 2, 2],
"b": [3, 4, 4, 4],
"c": [3, 4, 5, 6],
"geometry": geopandas.array.from_wkt(
["POINT (0 0)", "POINT (1 1)", "POINT (2 2)", "POINT (3 3)"]
),
}
).set_index(["a", "b", "c"])
expected_a = geopandas.GeoDataFrame(
{
"a": [1, 2],
"geometry": geopandas.array.from_wkt(
["MULTIPOINT (0 0, 1 1)", "MULTIPOINT (2 2, 3 3)"]
),
}
).set_index("a")
expected_b = geopandas.GeoDataFrame(
{
"b": [3, 4],
"geometry": geopandas.array.from_wkt(
["POINT (0 0)", "MULTIPOINT (1 1, 2 2, 3 3)"]
),
}
).set_index("b")
expected_ab = geopandas.GeoDataFrame(
{
"a": [1, 1, 2],
"b": [3, 4, 4],
"geometry": geopandas.array.from_wkt(
["POINT (0 0)", "POINT (1 1)", "MULTIPOINT (2 2, 3 3)"]
),
}
).set_index(["a", "b"])
assert_frame_equal(expected_a, gdf.dissolve(level=0))
assert_frame_equal(expected_a, gdf.dissolve(level="a"))
assert_frame_equal(expected_b, gdf.dissolve(level=1))
assert_frame_equal(expected_b, gdf.dissolve(level="b"))
assert_frame_equal(expected_ab, gdf.dissolve(level=[0, 1]))
assert_frame_equal(expected_ab, gdf.dissolve(level=["a", "b"]))
def test_dissolve_sort():
gdf = geopandas.GeoDataFrame(
{
"a": [2, 1, 1],
"geometry": geopandas.array.from_wkt(
["POINT (0 0)", "POINT (1 1)", "POINT (2 2)"]
),
}
)
expected_unsorted = geopandas.GeoDataFrame(
{
"a": [2, 1],
"geometry": geopandas.array.from_wkt(
["POINT (0 0)", "MULTIPOINT (1 1, 2 2)"]
),
}
).set_index("a")
expected_sorted = expected_unsorted.sort_index()
assert_frame_equal(expected_sorted, gdf.dissolve("a"))
assert_frame_equal(expected_unsorted, gdf.dissolve("a", sort=False))
def test_dissolve_categorical():
gdf = geopandas.GeoDataFrame(
{
"cat": pd.Categorical(["a", "a", "b", "b"]),
"noncat": [1, 1, 1, 2],
"to_agg": [1, 2, 3, 4],
"geometry": geopandas.array.from_wkt(
["POINT (0 0)", "POINT (1 1)", "POINT (2 2)", "POINT (3 3)"]
),
}
)
# when observed=False we get an additional observation
# that wasn't in the original data
none_val = "GEOMETRYCOLLECTION EMPTY" if PANDAS_GE_30 else None
expected_gdf_observed_false = geopandas.GeoDataFrame(
{
"cat": pd.Categorical(["a", "a", "b", "b"]),
"noncat": [1, 2, 1, 2],
"geometry": geopandas.array.from_wkt(
[
"MULTIPOINT (0 0, 1 1)",
none_val,
"POINT (2 2)",
"POINT (3 3)",
]
),
"to_agg": [1, None, 3, 4],
}
).set_index(["cat", "noncat"])
# when observed=True we do not get any additional observations
expected_gdf_observed_true = geopandas.GeoDataFrame(
{
"cat": pd.Categorical(["a", "b", "b"]),
"noncat": [1, 1, 2],
"geometry": geopandas.array.from_wkt(
["MULTIPOINT (0 0, 1 1)", "POINT (2 2)", "POINT (3 3)"]
),
"to_agg": [1, 3, 4],
}
).set_index(["cat", "noncat"])
assert_frame_equal(expected_gdf_observed_false, gdf.dissolve(["cat", "noncat"]))
assert_frame_equal(
expected_gdf_observed_true, gdf.dissolve(["cat", "noncat"], observed=True)
)
def test_dissolve_dropna():
gdf = geopandas.GeoDataFrame(
{
"a": [1, 1, None],
"geometry": geopandas.array.from_wkt(
["POINT (0 0)", "POINT (1 1)", "POINT (2 2)"]
),
}
)
expected_with_na = geopandas.GeoDataFrame(
{
"a": [1.0, np.nan],
"geometry": geopandas.array.from_wkt(
["MULTIPOINT (0 0, 1 1)", "POINT (2 2)"]
),
}
).set_index("a")
expected_no_na = geopandas.GeoDataFrame(
{
"a": [1.0],
"geometry": geopandas.array.from_wkt(["MULTIPOINT (0 0, 1 1)"]),
}
).set_index("a")
assert_frame_equal(expected_with_na, gdf.dissolve("a", dropna=False))
assert_frame_equal(expected_no_na, gdf.dissolve("a"))
def test_dissolve_dropna_warn(nybb_polydf):
# No warning with default params
with warnings.catch_warnings(record=True) as record:
nybb_polydf.dissolve()
for r in record:
assert "dropna kwarg is not supported" not in str(r.message)
def test_dissolve_multi_agg(nybb_polydf, merged_shapes):
merged_shapes[("BoroCode", "min")] = [3, 1]
merged_shapes[("BoroCode", "max")] = [5, 2]
merged_shapes[("BoroName", "count")] = [3, 2]
with warnings.catch_warnings():
warnings.simplefilter(action="error")
test = nybb_polydf.dissolve(
by="manhattan_bronx",
aggfunc={
"BoroCode": ["min", "max"],
"BoroName": "count",
},
)
assert_geodataframe_equal(test, merged_shapes)
@pytest.mark.parametrize("method", ["coverage", "disjoint_subset"])
def test_dissolve_method(nybb_polydf, method):
if method == "disjoint_subset" and not (GEOS_GE_312 and SHAPELY_GE_21):
pytest.skip("Unsupported shapely/GEOS.")
manhattan_bronx = nybb_polydf.loc[3:4]
others = nybb_polydf.loc[0:2]
collapsed = [
others.geometry.union_all(method=method),
manhattan_bronx.geometry.union_all(method=method),
]
merged_shapes = GeoDataFrame(
{"myshapes": collapsed},
geometry="myshapes",
index=pd.Index([5, 6], name="manhattan_bronx"),
crs=nybb_polydf.crs,
)
merged_shapes["BoroName"] = ["Staten Island", "Manhattan"]
merged_shapes["BoroCode"] = [5, 1]
test = nybb_polydf.dissolve("manhattan_bronx", method=method)
assert_frame_equal(merged_shapes, test, check_column_type=False)
|