File: test_extension_array.py

package info (click to toggle)
python-geopandas 1.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,752 kB
  • sloc: python: 26,021; makefile: 147; sh: 25
file content (642 lines) | stat: -rw-r--r-- 18,452 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
"""
This file contains a minimal set of tests for compliance with the extension
array interface test suite (by inheriting the pandas test suite), and should
contain no other tests.
Other tests (eg related to the spatial functionality or integration
with GeoSeries/GeoDataFrame) should be added to test_array.py and others.

The tests in this file are inherited from the BaseExtensionTests, and only
minimal tweaks should be applied to get the tests passing (by overwriting a
parent method).

A set of fixtures are defined to provide data for the tests (the fixtures
expected to be available to pytest by the inherited pandas tests).

"""

import itertools
import operator

import numpy as np
import pandas as pd
from pandas.api.types import is_object_dtype
from pandas.tests.extension import base as extension_tests

import shapely.geometry
from shapely.geometry import Point

from geopandas._compat import PANDAS_GE_21, PANDAS_GE_22
from geopandas.array import GeometryArray, GeometryDtype, from_shapely

import pytest
from pandas.testing import assert_frame_equal, assert_series_equal

# -----------------------------------------------------------------------------
# Compat with extension tests in older pandas versions
# -----------------------------------------------------------------------------


not_yet_implemented = pytest.mark.skip(reason="Not yet implemented")
no_minmax = pytest.mark.skip(reason="Min/max not supported")


# -----------------------------------------------------------------------------
# Required fixtures
# -----------------------------------------------------------------------------


@pytest.fixture
def dtype():
    """A fixture providing the ExtensionDtype to validate."""
    return GeometryDtype()


def make_data():
    a = np.empty(100, dtype=object)
    a[:] = [shapely.geometry.Point(i, i) for i in range(100)]
    ga = from_shapely(a)
    return ga


@pytest.fixture
def data():
    """Length-100 array for this type.

    * data[0] and data[1] should both be non missing
    * data[0] and data[1] should not be equal
    """
    return make_data()


@pytest.fixture
def data_for_twos():
    """Length-100 array in which all the elements are two."""
    raise NotImplementedError


@pytest.fixture
def data_missing():
    """Length-2 array with [NA, Valid]"""
    return from_shapely([None, shapely.geometry.Point(1, 1)])


@pytest.fixture(params=["data", "data_missing"])
def all_data(request, data, data_missing):
    """Parametrized fixture giving 'data' and 'data_missing'"""
    if request.param == "data":
        return data
    elif request.param == "data_missing":
        return data_missing


@pytest.fixture
def data_repeated(data):
    """
    Generate many datasets.

    Parameters
    ----------
    data : fixture implementing `data`

    Returns
    -------
    Callable[[int], Generator]:
        A callable that takes a `count` argument and
        returns a generator yielding `count` datasets.
    """

    def gen(count):
        for _ in range(count):
            yield data

    return gen


@pytest.fixture
def data_for_sorting():
    """Length-3 array with a known sort order.

    This should be three items [B, C, A] with
    A < B < C
    """
    return from_shapely([Point(0, 1), Point(1, 1), Point(0, 0)])


@pytest.fixture
def data_missing_for_sorting():
    """Length-3 array with a known sort order.

    This should be three items [B, NA, A] with
    A < B and NA missing.
    """
    return from_shapely([Point(1, 2), None, Point(0, 0)])


@pytest.fixture
def na_cmp():
    """Binary operator for comparing NA values.
    Should return a function of two arguments that returns
    True if both arguments are (scalar) NA for your type.
    By default, uses ``operator.or``
    """
    return lambda x, y: x is None and y is None


@pytest.fixture
def na_value():
    """The scalar missing value for this type. Default 'None'"""
    return None


@pytest.fixture
def data_for_grouping():
    """Data for factorization, grouping, and unique tests.

    Expected to be like [B, B, NA, NA, A, A, B, C]

    Where A < B < C and NA is missing
    """
    return from_shapely(
        [
            shapely.geometry.Point(1, 1),
            shapely.geometry.Point(1, 1),
            None,
            None,
            shapely.geometry.Point(0, 0),
            shapely.geometry.Point(0, 0),
            shapely.geometry.Point(1, 1),
            shapely.geometry.Point(2, 2),
        ]
    )


@pytest.fixture(params=[True, False])
def box_in_series(request):
    """Whether to box the data in a Series"""
    return request.param


@pytest.fixture(
    params=[
        lambda x: 1,
        lambda x: [1] * len(x),
        lambda x: pd.Series([1] * len(x)),
        lambda x: x,
    ],
    ids=["scalar", "list", "series", "object"],
)
def groupby_apply_op(request):
    """
    Functions to test groupby.apply().
    """
    return request.param


@pytest.fixture(params=[True, False])
def as_frame(request):
    """
    Boolean fixture to support Series and Series.to_frame() comparison testing.
    """
    return request.param


@pytest.fixture(params=[True, False])
def as_series(request):
    """
    Boolean fixture to support arr and Series(arr) comparison testing.
    """
    return request.param


@pytest.fixture(params=[True, False])
def use_numpy(request):
    """
    Boolean fixture to support comparison testing of ExtensionDtype array
    and numpy array.
    """
    return request.param


@pytest.fixture(params=["ffill", "bfill"])
def fillna_method(request):
    """
    Parametrized fixture giving method parameters 'ffill' and 'bfill' for
    Series.fillna(method=<method>) testing.
    """
    return request.param


@pytest.fixture(params=[True, False])
def as_array(request):
    """
    Boolean fixture to support ExtensionDtype _from_sequence method testing.
    """
    return request.param


@pytest.fixture
def invalid_scalar(data):
    """
    A scalar that *cannot* be held by this ExtensionArray.

    The default should work for most subclasses, but is not guaranteed.

    If the array can hold any item (i.e. object dtype), then use pytest.skip.
    """
    return object.__new__(object)


# Fixtures defined in pandas/conftest.py that are also needed: defining them
# here instead of importing for compatibility


@pytest.fixture(
    params=["sum", "max", "min", "mean", "prod", "std", "var", "median", "kurt", "skew"]
)
def all_numeric_reductions(request):
    """
    Fixture for numeric reduction names
    """
    return request.param


@pytest.fixture(params=["all", "any"])
def all_boolean_reductions(request):
    """
    Fixture for boolean reduction names
    """
    return request.param


# only == and != are support for GeometryArray
# @pytest.fixture(params=["__eq__", "__ne__", "__le__", "__lt__", "__ge__", "__gt__"])
@pytest.fixture(params=["__eq__", "__ne__"])
def all_compare_operators(request):
    """
    Fixture for dunder names for common compare operations

    * >=
    * >
    * ==
    * !=
    * <
    * <=
    """
    return request.param


@pytest.fixture(params=[None, lambda x: x])
def sort_by_key(request):
    """
    Simple fixture for testing keys in sorting methods.
    Tests None (no key) and the identity key.
    """
    return request.param


# -----------------------------------------------------------------------------
# Inherited tests
# -----------------------------------------------------------------------------


class TestDtype(extension_tests.BaseDtypeTests):
    # additional tests

    def test_array_type_with_arg(self, data, dtype):
        assert dtype.construct_array_type() is GeometryArray

    def test_registry(self, data, dtype):
        s = pd.Series(np.asarray(data), dtype=object)
        result = s.astype("geometry")
        assert isinstance(result.array, GeometryArray)
        expected = pd.Series(data)
        assert_series_equal(result, expected)


class TestInterface(extension_tests.BaseInterfaceTests):
    def test_contains(self, data, data_missing):
        # overridden due to the inconsistency between
        # GeometryDtype.na_value = np.nan
        # and None being used as NA in array

        # ensure data without missing values
        data = data[~data.isna()]

        # first elements are non-missing
        assert data[0] in data
        assert data_missing[0] in data_missing

        assert None in data_missing
        assert None not in data
        assert pd.NaT not in data_missing


class TestConstructors(extension_tests.BaseConstructorsTests):
    pass


class TestReshaping(extension_tests.BaseReshapingTests):
    # NOTE: this test is copied from pandas/tests/extension/base/reshaping.py
    # because starting with pandas 3.0 the assert_frame_equal is strict regarding
    # the exact missing value (None vs NaN)
    # Our `result` uses None, but the way the `expected` is created results in
    # NaNs (and specifying to use None as fill value in unstack also does not
    # help)
    # -> the only change compared to the upstream test is marked
    @pytest.mark.parametrize(
        "index",
        [
            # Two levels, uniform.
            pd.MultiIndex.from_product(([["A", "B"], ["a", "b"]]), names=["a", "b"]),
            # non-uniform
            pd.MultiIndex.from_tuples([("A", "a"), ("A", "b"), ("B", "b")]),
            # three levels, non-uniform
            pd.MultiIndex.from_product([("A", "B"), ("a", "b", "c"), (0, 1, 2)]),
            pd.MultiIndex.from_tuples(
                [
                    ("A", "a", 1),
                    ("A", "b", 0),
                    ("A", "a", 0),
                    ("B", "a", 0),
                    ("B", "c", 1),
                ]
            ),
        ],
    )
    @pytest.mark.parametrize("obj", ["series", "frame"])
    def test_unstack(self, data, index, obj):
        data = data[: len(index)]
        if obj == "series":
            ser = pd.Series(data, index=index)
        else:
            ser = pd.DataFrame({"A": data, "B": data}, index=index)

        n = index.nlevels
        levels = list(range(n))
        # [0, 1, 2]
        # [(0,), (1,), (2,), (0, 1), (0, 2), (1, 0), (1, 2), (2, 0), (2, 1)]
        combinations = itertools.chain.from_iterable(
            itertools.permutations(levels, i) for i in range(1, n)
        )

        for level in combinations:
            result = ser.unstack(level=level)
            assert all(
                isinstance(result[col].array, type(data)) for col in result.columns
            )

            if obj == "series":
                # We should get the same result with to_frame+unstack+droplevel
                df = ser.to_frame()

                alt = df.unstack(level=level).droplevel(0, axis=1)
                assert_frame_equal(result, alt)

            obj_ser = ser.astype(object)

            expected = obj_ser.unstack(level=level, fill_value=data.dtype.na_value)
            if obj == "series":
                assert all(is_object_dtype(x) for x in expected.dtypes)
            # <------------ next line is added
            expected[expected.isna()] = None
            # ------------->

            result = result.astype(object)
            assert_frame_equal(result, expected)


class TestGetitem(extension_tests.BaseGetitemTests):
    pass


class TestSetitem(extension_tests.BaseSetitemTests):
    pass


class TestMissing(extension_tests.BaseMissingTests):
    def test_fillna_series(self, data_missing):
        fill_value = data_missing[1]
        ser = pd.Series(data_missing)

        # Fill with a scalar
        result = ser.fillna(fill_value)
        expected = pd.Series(data_missing._from_sequence([fill_value, fill_value]))
        assert_series_equal(result, expected)

        # Fill with a series
        filler = pd.Series(
            from_shapely(
                [
                    shapely.geometry.Point(1, 1),
                    shapely.geometry.Point(2, 2),
                ],
            )
        )
        result = ser.fillna(filler)
        expected = pd.Series(data_missing._from_sequence([fill_value, fill_value]))
        assert_series_equal(result, expected)

        # Fill with a series not affecting the missing values
        filler = pd.Series(
            from_shapely(
                [
                    shapely.geometry.Point(2, 2),
                    shapely.geometry.Point(1, 1),
                ]
            ),
            index=[10, 11],
        )
        result = ser.fillna(filler)
        assert_series_equal(result, ser)

        # More `GeoSeries.fillna` testcases are in
        # `geopandas\tests\test_pandas_methods.py::test_fillna_scalar`
        # and `geopandas\tests\test_pandas_methods.py::test_fillna_series`.

    @pytest.mark.skipif(
        not PANDAS_GE_21, reason="fillna method not supported with older pandas"
    )
    def test_fillna_limit_pad(self, data_missing):
        super().test_fillna_limit_pad(data_missing)

    @pytest.mark.skipif(
        not PANDAS_GE_21, reason="fillna method not supported with older pandas"
    )
    def test_fillna_limit_backfill(self, data_missing):
        super().test_fillna_limit_backfill(data_missing)

    @pytest.mark.skipif(
        not PANDAS_GE_21, reason="fillna method not supported with older pandas"
    )
    def test_fillna_series_method(self, data_missing, fillna_method):
        super().test_fillna_series_method(data_missing, fillna_method)

    @pytest.mark.skipif(
        not PANDAS_GE_21, reason="fillna method not supported with older pandas"
    )
    def test_fillna_no_op_returns_copy(self, data):
        super().test_fillna_no_op_returns_copy(data)


if PANDAS_GE_22:
    from pandas.tests.extension.base import BaseReduceTests
else:
    from pandas.tests.extension.base import BaseNoReduceTests as BaseReduceTests


class TestReduce(BaseReduceTests):
    @pytest.mark.skip("boolean reduce (any/all) tested in test_pandas_methods")
    def test_reduce_series_boolean(self):
        pass


_all_arithmetic_operators = [
    "__add__",
    "__radd__",
    # '__sub__', '__rsub__',
    "__mul__",
    "__rmul__",
    "__floordiv__",
    "__rfloordiv__",
    "__truediv__",
    "__rtruediv__",
    "__pow__",
    "__rpow__",
    "__mod__",
    "__rmod__",
]


@pytest.fixture(params=_all_arithmetic_operators)
def all_arithmetic_operators(request):
    """
    Fixture for dunder names for common arithmetic operations

    Adapted to exclude __sub__, as this is implemented as "difference".
    """
    return request.param


# an inherited test from pandas creates a Series from a list of geometries, which
# triggers the warning from Shapely, out of control of GeoPandas, so ignoring here
@pytest.mark.filterwarnings(
    "ignore:The array interface is deprecated and will no longer work in Shapely 2.0"
)
class TestArithmeticOps(extension_tests.BaseArithmeticOpsTests):
    @pytest.mark.skip(reason="not applicable")
    def test_divmod_series_array(self, data, data_for_twos):
        pass

    @pytest.mark.skip(reason="not applicable")
    def test_add_series_with_extension_array(self, data):
        pass


# an inherited test from pandas creates a Series from a list of geometries, which
# triggers the warning from Shapely, out of control of GeoPandas, so ignoring here
@pytest.mark.filterwarnings(
    "ignore:The array interface is deprecated and will no longer work in Shapely 2.0"
)
class TestComparisonOps(extension_tests.BaseComparisonOpsTests):
    def _compare_other(self, s, data, op_name, other):
        op = getattr(operator, op_name.strip("_"))
        result = op(s, other)
        expected = s.combine(other, op)
        assert_series_equal(result, expected)

    def test_compare_scalar(self, data, all_compare_operators):
        op_name = all_compare_operators
        s = pd.Series(data)
        self._compare_other(s, data, op_name, data[0])

    def test_compare_array(self, data, all_compare_operators):
        op_name = all_compare_operators
        s = pd.Series(data)
        other = pd.Series([data[0]] * len(data))
        self._compare_other(s, data, op_name, other)


class TestMethods(extension_tests.BaseMethodsTests):
    @pytest.mark.parametrize("dropna", [True, False])
    def test_value_counts(self, all_data, dropna):
        pass

    def test_value_counts_with_normalize(self, data):
        pass

    @pytest.mark.parametrize("ascending", [True, False])
    def test_sort_values_frame(self, data_for_sorting, ascending):
        super().test_sort_values_frame(data_for_sorting, ascending)

    @pytest.mark.skip(reason="searchsorted not supported")
    def test_searchsorted(self, data_for_sorting, as_series):
        pass

    @not_yet_implemented
    def test_combine_le(self):
        pass

    @pytest.mark.skip(reason="addition not supported")
    def test_combine_add(self):
        pass

    @not_yet_implemented
    def test_fillna_length_mismatch(self, data_missing):
        msg = "Length of 'value' does not match."
        with pytest.raises(ValueError, match=msg):
            data_missing.fillna(data_missing.take([1]))

    @no_minmax
    def test_argmin_argmax(self):
        pass

    @no_minmax
    def test_argmin_argmax_empty_array(self):
        pass

    @no_minmax
    def test_argmin_argmax_all_na(self):
        pass

    @no_minmax
    def test_argreduce_series(self):
        pass

    @no_minmax
    def test_argmax_argmin_no_skipna_notimplemented(self):
        pass


class TestCasting(extension_tests.BaseCastingTests):
    pass


class TestGroupby(extension_tests.BaseGroupbyTests):
    @pytest.mark.parametrize("as_index", [True, False])
    def test_groupby_extension_agg(self, as_index, data_for_grouping):
        super().test_groupby_extension_agg(as_index, data_for_grouping)

    def test_groupby_extension_transform(self, data_for_grouping):
        super().test_groupby_extension_transform(data_for_grouping)

    @pytest.mark.parametrize(
        "op",
        [
            lambda x: 1,
            lambda x: [1] * len(x),
            lambda x: pd.Series([1] * len(x)),
            lambda x: x,
        ],
        ids=["scalar", "list", "series", "object"],
    )
    def test_groupby_extension_apply(self, data_for_grouping, op):
        super().test_groupby_extension_apply(data_for_grouping, op)


class TestPrinting(extension_tests.BasePrintingTests):
    pass


@not_yet_implemented
class TestParsing(extension_tests.BaseParsingTests):
    pass