File: test_pandas_methods.py

package info (click to toggle)
python-geopandas 1.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 14,752 kB
  • sloc: python: 26,021; makefile: 147; sh: 25
file content (899 lines) | stat: -rw-r--r-- 28,736 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
import os
import warnings
from packaging.version import Version

import numpy as np
import pandas as pd

import shapely
from shapely.geometry import GeometryCollection, LinearRing, LineString, Point

import geopandas
import geopandas._compat as compat
from geopandas import GeoDataFrame, GeoSeries
from geopandas.array import from_shapely

import pytest
from geopandas.testing import assert_geodataframe_equal, assert_geoseries_equal
from numpy.testing import assert_array_equal
from pandas.testing import assert_frame_equal, assert_series_equal


@pytest.fixture
def s():
    return GeoSeries([Point(x, y) for x, y in zip(range(3), range(3))])


@pytest.fixture
def df():
    return GeoDataFrame(
        {
            "geometry": [Point(x, x) for x in range(3)],
            "value1": np.arange(3, dtype="int64"),
            "value2": np.array([1, 2, 1], dtype="int64"),
        }
    )


def test_repr(s, df):
    assert "POINT" in repr(s)
    assert "POINT" in repr(df)
    assert "POINT" in df._repr_html_()


@pytest.mark.skipif(shapely.geos_version < (3, 9, 0), reason="requires GEOS>=3.9")
def test_repr_boxed_display_precision():
    # geographic coordinates
    p1 = Point(10.123456789, 50.123456789)
    p2 = Point(4.123456789, 20.123456789)
    s1 = GeoSeries([p1, p2, None])
    assert "POINT (10.12346 50.12346)" in repr(s1)

    # geographic coordinates 4326
    s3 = GeoSeries([p1, p2], crs=4326)
    assert "POINT (10.12346 50.12346)" in repr(s3)

    # projected coordinates
    p1 = Point(3000.123456789, 3000.123456789)
    p2 = Point(4000.123456789, 4000.123456789)
    s2 = GeoSeries([p1, p2, None])
    assert "POINT (3000.123 3000.123)" in repr(s2)

    # projected geographic coordinate
    s4 = GeoSeries([p1, p2], crs=3857)
    assert "POINT (3000.123 3000.123)" in repr(s4)

    geopandas.options.display_precision = 1
    assert "POINT (10.1 50.1)" in repr(s1)

    geopandas.options.display_precision = 9
    assert "POINT (10.123456789 50.123456789)" in repr(s1)


def test_repr_all_missing():
    # https://github.com/geopandas/geopandas/issues/1195
    s = GeoSeries([None, None, None])
    assert "None" in repr(s)
    df = GeoDataFrame({"a": [1, 2, 3], "geometry": s})
    assert "None" in repr(df)
    assert "geometry" in df._repr_html_()


def test_repr_empty():
    # https://github.com/geopandas/geopandas/issues/1195
    s = GeoSeries([])
    assert repr(s) == "GeoSeries([], dtype: geometry)"
    df = GeoDataFrame({"a": [], "geometry": s})
    assert "Empty GeoDataFrame" in repr(df)
    # https://github.com/geopandas/geopandas/issues/1184
    assert "geometry" in df._repr_html_()


def test_repr_linearring():
    # https://github.com/geopandas/geopandas/pull/2689
    # specifically, checking internal shapely/wkt/wkb conversions
    # preserve LinearRing
    s = GeoSeries([LinearRing([(0, 0), (1, 1), (1, -1)])])
    assert "LINEARRING" in str(s.iloc[0])  # shapely scalar repr
    assert "LINEARRING" in str(s)  # GeoSeries repr

    # check something coercible to linearring is not converted
    s2 = GeoSeries(
        [
            LineString([(0, 0), (1, 1), (1, -1)]),
            LineString([(0, 0), (1, 1), (1, -1), (0, 0)]),
        ]
    )
    assert "LINEARRING" not in str(s2)


def test_indexing(s, df):
    # accessing scalar from the geometry (column)
    exp = Point(1, 1)
    assert s[1] == exp
    assert s.loc[1] == exp
    assert s.iloc[1] == exp
    assert df.loc[1, "geometry"] == exp
    assert df.iloc[1, 0] == exp

    # multiple values
    exp = GeoSeries([Point(2, 2), Point(0, 0)], index=[2, 0])
    assert_geoseries_equal(s.loc[[2, 0]], exp)
    assert_geoseries_equal(s.iloc[[2, 0]], exp)
    assert_geoseries_equal(s.reindex([2, 0]), exp)
    assert_geoseries_equal(df.loc[[2, 0], "geometry"], exp)
    # TODO here iloc does not return a GeoSeries
    assert_series_equal(
        df.iloc[[2, 0], 0], exp, check_series_type=False, check_names=False
    )

    # boolean indexing
    exp = GeoSeries([Point(0, 0), Point(2, 2)], index=[0, 2])
    mask = np.array([True, False, True])
    assert_geoseries_equal(s[mask], exp)
    assert_geoseries_equal(s.loc[mask], exp)
    assert_geoseries_equal(df[mask]["geometry"], exp)
    assert_geoseries_equal(df.loc[mask, "geometry"], exp)

    # slices
    s.index = [1, 2, 3]
    exp = GeoSeries([Point(1, 1), Point(2, 2)], index=[2, 3])
    assert_series_equal(s[1:], exp)
    assert_series_equal(s.iloc[1:], exp)
    assert_series_equal(s.loc[2:], exp)


def test_reindex(s, df):
    # GeoSeries reindex
    res = s.reindex([1, 2, 3])
    exp = GeoSeries([Point(1, 1), Point(2, 2), None], index=[1, 2, 3])
    assert_geoseries_equal(res, exp)

    # GeoDataFrame reindex index
    res = df.reindex(index=[1, 2, 3])
    assert_geoseries_equal(res.geometry, exp)

    # GeoDataFrame reindex columns
    res = df.reindex(columns=["value1", "geometry"])
    assert isinstance(res, GeoDataFrame)
    assert isinstance(res.geometry, GeoSeries)
    assert_frame_equal(res, df[["value1", "geometry"]])

    res = df.reindex(columns=["value1", "value2"])
    assert type(res) is pd.DataFrame
    assert_frame_equal(res, df[["value1", "value2"]])


def test_take(s, df):
    inds = np.array([0, 2])

    # GeoSeries take
    result = s.take(inds)
    expected = s.iloc[[0, 2]]
    assert isinstance(result, GeoSeries)
    assert_geoseries_equal(result, expected)

    # GeoDataFrame take axis 0
    result = df.take(inds, axis=0)
    expected = df.iloc[[0, 2], :]
    assert isinstance(result, GeoDataFrame)
    assert_geodataframe_equal(result, expected)

    # GeoDataFrame take axis 1
    df = df.reindex(columns=["value1", "value2", "geometry"])  # ensure consistent order
    result = df.take(inds, axis=1)
    expected = df[["value1", "geometry"]]
    assert isinstance(result, GeoDataFrame)
    assert_geodataframe_equal(result, expected)

    result = df.take(np.array([0, 1]), axis=1)
    expected = df[["value1", "value2"]]
    assert isinstance(result, pd.DataFrame)
    assert_frame_equal(result, expected)


def test_take_empty(s, df):
    # ensure that index type is preserved in an empty take
    # https://github.com/geopandas/geopandas/issues/1190
    inds = np.array([], dtype="int64")

    # use non-default index
    df.index = pd.date_range("2012-01-01", periods=len(df))

    result = df.take(inds, axis=0)
    assert isinstance(result, GeoDataFrame)
    assert result.shape == (0, 3)
    assert isinstance(result.index, pd.DatetimeIndex)

    # the original bug report was an empty boolean mask
    for result in [df.loc[df["value1"] > 100], df[df["value1"] > 100]]:
        assert isinstance(result, GeoDataFrame)
        assert result.shape == (0, 3)
        assert isinstance(result.index, pd.DatetimeIndex)


def test_assignment(s, df):
    exp = GeoSeries([Point(10, 10), Point(1, 1), Point(2, 2)])

    s2 = s.copy()
    s2[0] = Point(10, 10)
    assert_geoseries_equal(s2, exp)

    s2 = s.copy()
    s2.loc[0] = Point(10, 10)
    assert_geoseries_equal(s2, exp)

    s2 = s.copy()
    s2.iloc[0] = Point(10, 10)
    assert_geoseries_equal(s2, exp)

    df2 = df.copy()
    df2.loc[0, "geometry"] = Point(10, 10)
    assert_geoseries_equal(df2["geometry"], exp)

    df2 = df.copy()
    df2.iloc[0, 0] = Point(10, 10)
    assert_geoseries_equal(df2["geometry"], exp)


def test_assign(df):
    res = df.assign(new=1)
    exp = df.copy()
    exp["new"] = 1
    assert isinstance(res, GeoDataFrame)
    assert_frame_equal(res, exp)


def test_astype(s, df):
    # check geoseries functionality
    with pytest.raises(TypeError):
        s.astype(int)

    assert s.astype(str)[0] == "POINT (0 0)"

    res = s.astype(object)
    if not (
        (Version(pd.__version__) == Version("2.1.0"))
        or (Version(pd.__version__) == Version("2.1.1"))
    ):
        # https://github.com/geopandas/geopandas/issues/2948 - bug in pandas 2.1.0
        assert isinstance(res, pd.Series) and not isinstance(res, GeoSeries)
        assert res.dtype == object

    df = df.rename_geometry("geom_list")

    # check whether returned object is a geodataframe
    res = df.astype({"value1": float})
    assert isinstance(res, GeoDataFrame)

    # check whether returned object is a dataframe
    res = df.astype(str)
    assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)

    res = df.astype({"geom_list": str})
    assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)

    res = df.astype(object)
    assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)
    assert res["geom_list"].dtype == object


def test_astype_invalid_geodataframe():
    # https://github.com/geopandas/geopandas/issues/1144
    # a GeoDataFrame without geometry column should not error in astype
    df = GeoDataFrame({"a": [1, 2, 3], "b": [4, 5, 6]})
    res = df.astype(object)
    assert isinstance(res, pd.DataFrame) and not isinstance(res, GeoDataFrame)
    assert res["a"].dtype == object


def test_convert_dtypes(df):
    # https://github.com/geopandas/geopandas/issues/1870

    # Test geometry col is first col, first, geom_col_name=geometry
    # (order is important in concat, used internally)
    res1 = df.convert_dtypes()

    expected1 = GeoDataFrame(
        pd.DataFrame(df).convert_dtypes(), crs=df.crs, geometry=df.geometry.name
    )

    # Checking type and metadata are right
    assert_geodataframe_equal(expected1, res1)

    # Test geom last, geom_col_name=geometry
    res2 = df[["value1", "value2", "geometry"]].convert_dtypes()
    assert_geodataframe_equal(expected1[["value1", "value2", "geometry"]], res2)

    if compat.HAS_PYPROJ:
        # Test again with crs set and custom geom col name
        df2 = df.set_crs(epsg=4326).rename_geometry("points")
        expected2 = GeoDataFrame(
            pd.DataFrame(df2).convert_dtypes(), crs=df2.crs, geometry=df2.geometry.name
        )
        res3 = df2.convert_dtypes()
        assert_geodataframe_equal(expected2, res3)

        # Test geom last, geom_col=geometry
        res4 = df2[["value1", "value2", "points"]].convert_dtypes()
        assert_geodataframe_equal(expected2[["value1", "value2", "points"]], res4)


def test_to_csv(df):
    exp = (
        "geometry,value1,value2\nPOINT (0 0),0,1\nPOINT (1 1),1,2\nPOINT (2 2),2,1\n"
    ).replace("\n", os.linesep)
    assert df.to_csv(index=False) == exp


@pytest.mark.filterwarnings(
    "ignore:Dropping of nuisance columns in DataFrame reductions"
)
def test_numerical_operations(s, df):
    # df methods ignore the geometry column
    exp = pd.Series([3, 4], index=["value1", "value2"])
    res = df.sum(numeric_only=True)
    assert_series_equal(res, exp)

    # series methods raise error (not supported for geometry)
    with pytest.raises(TypeError):
        s.sum()

    with pytest.raises(TypeError):
        s.max()

    with pytest.raises((TypeError, ValueError)):
        # TODO: remove ValueError after pandas-dev/pandas#32749
        s.idxmax()

    # numerical ops raise an error
    with pytest.raises(TypeError):
        df + 1

    with pytest.raises(TypeError):
        s + 1

    # boolean comparisons work
    res = df == 100
    exp = pd.DataFrame(False, index=df.index, columns=df.columns)
    assert_frame_equal(res, exp)


def test_where(s):
    res = s.where(np.array([True, False, True]))
    exp = GeoSeries([Point(0, 0), None, Point(2, 2)])
    assert_series_equal(res, exp)


def test_select_dtypes(df):
    res = df.select_dtypes(include=[np.number])
    exp = df[["value1", "value2"]]
    assert_frame_equal(res, exp)


def test_equals(s, df):
    # https://github.com/geopandas/geopandas/issues/1420
    s2 = s.copy()
    assert s.equals(s2) is True
    s2.iloc[0] = None
    assert s.equals(s2) is False

    df2 = df.copy()
    assert df.equals(df2) is True
    df2.loc[0, "geometry"] = Point(10, 10)
    assert df.equals(df2) is False
    df2 = df.copy()
    df2.loc[0, "value1"] = 10
    assert df.equals(df2) is False


# Missing values


def test_fillna_scalar(s, df):
    s2 = GeoSeries([Point(0, 0), None, Point(2, 2)])

    res = s2.fillna(Point(1, 1))
    assert_geoseries_equal(res, s)

    # allow np.nan although this does not change anything
    # https://github.com/geopandas/geopandas/issues/1149
    res = s2.fillna(np.nan)
    assert_geoseries_equal(res, s2)

    # raise exception if trying to fill missing geometry w/ non-geometry
    df2 = df.copy()
    df2["geometry"] = s2
    res = df2.fillna(Point(1, 1))
    assert_geodataframe_equal(res, df)
    with pytest.raises((NotImplementedError, TypeError)):  # GH2351
        df2.fillna(0)

    # allow non-geometry fill value if there are no missing values
    # https://github.com/geopandas/geopandas/issues/1149
    df3 = df.copy()
    df3.loc[0, "value1"] = np.nan
    res = df3.fillna(0)
    assert_geodataframe_equal(res.astype({"value1": "int64"}), df)


def test_fillna_series(s):
    # fill na with another GeoSeries
    s2 = GeoSeries([Point(0, 0), None, Point(2, 2)])

    # check na filled with the same index
    res = s2.fillna(GeoSeries([Point(1, 1)] * 3))
    assert_geoseries_equal(res, s)

    # check na filled based on index, not position
    index = [3, 2, 1]
    res = s2.fillna(GeoSeries([Point(i, i) for i in index], index=index))
    assert_geoseries_equal(res, s)

    # check na filled but the input length is different
    res = s2.fillna(GeoSeries([Point(1, 1)], index=[1]))
    assert_geoseries_equal(res, s)

    # check na filled but the inputting index is different
    res = s2.fillna(GeoSeries([Point(1, 1)], index=[9]))
    assert_geoseries_equal(res, s2)


def test_fillna_inplace(s):
    s2 = GeoSeries([Point(0, 0), None, Point(2, 2)])
    arr = s2.array
    s2.fillna(Point(1, 1), inplace=True)
    assert_geoseries_equal(s2, s)
    if compat.PANDAS_GE_21:
        # starting from pandas 2.1, there is support to do this actually inplace
        assert s2.array is arr


def test_dropna():
    s2 = GeoSeries([Point(0, 0), None, Point(2, 2)])
    res = s2.dropna()
    exp = s2.loc[[0, 2]]
    assert_geoseries_equal(res, exp)


@pytest.mark.parametrize("NA", [None, np.nan])
def test_isna(NA):
    s2 = GeoSeries([Point(0, 0), NA, Point(2, 2)], index=[2, 4, 5], name="tt")
    exp = pd.Series([False, True, False], index=[2, 4, 5], name="tt")
    res = s2.isnull()
    assert type(res) is pd.Series
    assert_series_equal(res, exp)
    res = s2.isna()
    assert_series_equal(res, exp)
    res = s2.notnull()
    assert_series_equal(res, ~exp)
    res = s2.notna()
    assert_series_equal(res, ~exp)


# Any / all


def test_any_all():
    empty = GeometryCollection([])
    s = GeoSeries([empty, Point(1, 1)])
    assert not s.all()
    assert s.any()

    s = GeoSeries([Point(1, 1), Point(1, 1)])
    assert s.all()
    assert s.any()

    s = GeoSeries([empty, empty])
    assert not s.all()
    assert not s.any()


# Groupby / algos


def test_sort_values():
    s = GeoSeries([Point(0, 0), Point(2, 2), Point(0, 2)])
    res = s.sort_values()
    assert res.index.tolist() == [0, 2, 1]
    res2 = s.sort_values(ascending=False)
    assert res2.index.tolist() == [1, 2, 0]

    # empty geoseries
    assert_geoseries_equal(s.iloc[:0].sort_values(), s.iloc[:0])


def test_sort_values_empty_missing():
    s = GeoSeries([Point(0, 0), None, Point(), Point(1, 1)])
    # default: NA sorts last, empty first
    res = s.sort_values()
    assert res.index.tolist() == [2, 0, 3, 1]

    # descending: NA sorts last, empty last
    res = s.sort_values(ascending=False)
    assert res.index.tolist() == [3, 0, 2, 1]

    # NAs first, empty first after NAs
    res = s.sort_values(na_position="first")
    assert res.index.tolist() == [1, 2, 0, 3]

    # NAs first, descending with empyt last
    res = s.sort_values(ascending=False, na_position="first")
    assert res.index.tolist() == [1, 3, 0, 2]

    # all missing / empty
    s = GeoSeries([None, None, None])
    res = s.sort_values()
    assert res.index.tolist() == [0, 1, 2]

    s = GeoSeries([Point(), Point(), Point()])
    res = s.sort_values()
    assert res.index.tolist() == [0, 1, 2]

    s = GeoSeries([Point(), None, Point()])
    res = s.sort_values()
    assert res.index.tolist() == [0, 2, 1]


def test_unique():
    s = GeoSeries([Point(0, 0), Point(0, 0), Point(2, 2)])
    exp = from_shapely([Point(0, 0), Point(2, 2)])
    # TODO should have specialized GeometryArray assert method
    assert_array_equal(s.unique(), exp)


def test_value_counts():
    # each object is considered unique
    s = GeoSeries([Point(0, 0), Point(1, 1), Point(0, 0)])
    res = s.value_counts()
    name = "count"
    exp = pd.Series([2, 1], index=from_shapely([Point(0, 0), Point(1, 1)]), name=name)
    assert_series_equal(res, exp)
    # Check crs doesn't make a difference - note it is not kept in output index anyway
    s2 = GeoSeries([Point(0, 0), Point(1, 1), Point(0, 0)], crs="EPSG:4326")
    res2 = s2.value_counts()
    assert_series_equal(res2, exp)

    # TODO should/ can we fix CRS being lost
    assert s2.value_counts().index.array.crs is None

    # check mixed geometry
    s3 = GeoSeries([Point(0, 0), LineString([[1, 1], [2, 2]]), Point(0, 0)])
    res3 = s3.value_counts()
    index = from_shapely([Point(0, 0), LineString([[1, 1], [2, 2]])])
    exp3 = pd.Series([2, 1], index=index, name=name)
    assert_series_equal(res3, exp3)

    # check None is handled
    s4 = GeoSeries([Point(0, 0), None, Point(0, 0)])
    res4 = s4.value_counts(dropna=True)
    exp4_dropna = pd.Series([2], index=from_shapely([Point(0, 0)]), name=name)
    assert_series_equal(res4, exp4_dropna)
    exp4_keepna = pd.Series([2, 1], index=from_shapely([Point(0, 0), None]), name=name)
    res4_keepna = s4.value_counts(dropna=False)
    assert_series_equal(res4_keepna, exp4_keepna)


@pytest.mark.xfail(strict=False)
def test_drop_duplicates_series():
    # duplicated does not yet use EA machinery
    # (https://github.com/pandas-dev/pandas/issues/27264)
    # but relies on unstable hashing of unhashable objects in numpy array
    # giving flaky test (https://github.com/pandas-dev/pandas/issues/27035)
    dups = GeoSeries([Point(0, 0), Point(0, 0)])
    dropped = dups.drop_duplicates()
    assert len(dropped) == 1


@pytest.mark.xfail(strict=False)
def test_drop_duplicates_frame():
    # duplicated does not yet use EA machinery, see above
    gdf_len = 3
    dup_gdf = GeoDataFrame(
        {"geometry": [Point(0, 0) for _ in range(gdf_len)], "value1": range(gdf_len)}
    )
    dropped_geometry = dup_gdf.drop_duplicates(subset="geometry")
    assert len(dropped_geometry) == 1
    dropped_all = dup_gdf.drop_duplicates()
    assert len(dropped_all) == gdf_len


def test_groupby(df):
    # counts work fine
    res = df.groupby("value2").count()
    exp = pd.DataFrame(
        {"geometry": [2, 1], "value1": [2, 1], "value2": [1, 2]}
    ).set_index("value2")
    assert_frame_equal(res, exp)

    # reductions ignore geometry column

    res = df.groupby("value2").sum(numeric_only=True)
    exp = pd.DataFrame({"value1": [2, 1], "value2": [1, 2]}, dtype="int64").set_index(
        "value2"
    )
    assert_frame_equal(res, exp)

    # applying on the geometry column
    res = df.groupby("value2")["geometry"].apply(lambda x: x.union_all())

    exp = GeoSeries(
        [shapely.geometry.MultiPoint([(0, 0), (2, 2)]), Point(1, 1)],
        index=pd.Index([1, 2], name="value2"),
        name="geometry",
    )
    assert_series_equal(res, exp)

    # apply on geometry column not resulting in new geometry
    res = df.groupby("value2")["geometry"].apply(lambda x: x.union_all().area)
    exp = pd.Series([0.0, 0.0], index=pd.Index([1, 2], name="value2"), name="geometry")

    assert_series_equal(res, exp)


def test_groupby_agg_tuple(df):
    res_dict = (
        df.groupby("value2")
        .agg({"geometry": lambda x: x.union_all()})
        .set_geometry("geometry")  # groupby does not set active geom
    )
    res_tup = (
        df.groupby("value2")
        .agg(geometry=("geometry", lambda x: x.union_all()))
        .set_geometry("geometry")
    )
    exp = GeoDataFrame(
        geometry=[shapely.geometry.MultiPoint([(0, 0), (2, 2)]), Point(1, 1)],
        index=pd.Index([1, 2], name="value2"),
    )
    assert_geodataframe_equal(res_tup, exp)
    assert_geodataframe_equal(res_dict, res_tup)


def test_groupby_groups(df):
    g = df.groupby("value2")
    res = g.get_group(1)
    assert isinstance(res, GeoDataFrame)
    exp = df.loc[[0, 2]]
    assert_frame_equal(res, exp)


@pytest.mark.parametrize("crs", [None, "EPSG:4326"])
@pytest.mark.parametrize("geometry_name", ["geometry", "geom"])
def test_groupby_metadata(crs, geometry_name):
    if crs and not compat.HAS_PYPROJ:
        pytest.skip("requires pyproj")
    # https://github.com/geopandas/geopandas/issues/2294
    df = GeoDataFrame(
        {
            geometry_name: [Point(0, 0), Point(1, 1), Point(0, 0)],
            "value1": np.arange(3, dtype="int64"),
            "value2": np.array([1, 2, 1], dtype="int64"),
        },
        crs=crs,
        geometry=geometry_name,
    )

    kwargs = {}
    if compat.PANDAS_GE_22:
        # pandas is deprecating that the group key is present as column in the
        # dataframe passed to `func`. To suppress this warning, it introduced
        # a new include_groups keyword
        kwargs = dict(include_groups=False)

    # dummy test asserting we can access the crs
    def func(group):
        assert isinstance(group, GeoDataFrame)
        assert group.crs == crs

    df.groupby("value2").apply(func, **kwargs)
    # selecting the non-group columns -> no need to pass the keyword
    if compat.PANDAS_GE_22 or (geometry_name == "geometry"):
        df.groupby("value2")[[geometry_name, "value1"]].apply(func)
    else:
        # https://github.com/geopandas/geopandas/pull/2966#issuecomment-1878816712
        # with pandas 2.0 and 2.1 with geom col != geometry this is failing
        with pytest.raises(AttributeError):
            df.groupby("value2")[[geometry_name, "value1"]].apply(func)

    # actual test with functionality
    res = df.groupby("value2").apply(
        lambda x: geopandas.sjoin(x, x[[geometry_name, "value1"]], how="inner"),
        **kwargs,
    )

    expected = (
        df.take([0, 0, 2, 2, 1])
        .set_index("value2", drop=compat.PANDAS_GE_22, append=True)
        .swaplevel()
        .rename(columns={"value1": "value1_left"})
        .assign(value1_right=[0, 2, 0, 2, 1])
    )
    assert_geodataframe_equal(res.drop(columns=["index_right"]), expected)


def test_apply(s):
    # function that returns geometry preserves GeoSeries class
    def geom_func(geom):
        assert isinstance(geom, Point)
        return geom

    result = s.apply(geom_func)
    assert isinstance(result, GeoSeries)
    assert_geoseries_equal(result, s)

    # function that returns non-geometry results in Series
    def numeric_func(geom):
        assert isinstance(geom, Point)
        return geom.x

    result = s.apply(numeric_func)
    assert not isinstance(result, GeoSeries)
    assert_series_equal(result, pd.Series([0.0, 1.0, 2.0]))


def test_apply_loc_len1(df):
    # subset of len 1 with loc -> bug in pandas with inconsistent Block ndim
    # resulting in bug in apply
    # https://github.com/geopandas/geopandas/issues/1078
    subset = df.loc[[0], "geometry"]
    result = subset.apply(lambda geom: geom.is_empty)
    expected = subset.is_empty
    np.testing.assert_allclose(result, expected)


@pytest.mark.skipif(compat.PANDAS_GE_30, reason="convert_dtype is removed in pandas 3")
def test_apply_convert_dtypes_keyword(s):
    # ensure the convert_dtypes keyword is accepted
    if not compat.PANDAS_GE_21:
        recorder = warnings.catch_warnings(record=True)
    else:
        recorder = pytest.warns()

    with recorder as record:
        res = s.apply(lambda x: x, convert_dtype=True, args=())
    assert_geoseries_equal(res, s)

    if compat.PANDAS_GE_21:
        assert len(record) == 1
        assert "the convert_dtype parameter" in str(record[0].message)
    else:
        assert len(record) == 0


@pytest.mark.parametrize("crs", [None, "EPSG:4326"])
def test_apply_no_geometry_result(df, crs):
    if crs:
        if not compat.HAS_PYPROJ:
            pytest.skip("requires pyproj")
        df = df.set_crs(crs)
    result = df.apply(lambda col: col.astype(str), axis=0)
    assert type(result) is pd.DataFrame
    expected = df.astype(str)
    assert_frame_equal(result, expected)

    result = df.apply(lambda col: col.astype(str), axis=1)
    assert type(result) is pd.DataFrame
    assert_frame_equal(result, expected)


def test_apply_preserves_geom_col_name(df):
    df = df.rename_geometry("geom")
    result = df.apply(lambda col: col, axis=0)
    assert result.geometry.name == "geom"


def test_df_apply_returning_series(df):
    # https://github.com/geopandas/geopandas/issues/2283
    result = df.apply(lambda row: row.geometry, axis=1)
    assert_geoseries_equal(result, df.geometry, check_crs=False)

    result = df.apply(lambda row: row.value1, axis=1)
    assert_series_equal(result, df["value1"].rename(None))
    # https://github.com/geopandas/geopandas/issues/2480
    result = df.apply(lambda x: float("NaN"), axis=1)
    assert result.dtype == "float64"
    # assert list of nones is not promoted to GeometryDtype
    result = df.apply(lambda x: None, axis=1)
    assert result.dtype == "object"

    # https://github.com/geopandas/geopandas/issues/2889
    # contrived case such that `from_shapely` receives an array of geodataframes
    res = df.apply(lambda row: df.geometry.to_frame(), axis=1)
    assert res.dtype == "object"


def test_df_apply_geometry_dtypes(df):
    # https://github.com/geopandas/geopandas/issues/1852
    apply_types = []

    def get_dtypes(srs):
        apply_types.append((srs.name, type(srs)))

    df["geom2"] = df.geometry
    df.apply(get_dtypes)
    expected = [
        ("geometry", GeoSeries),
        ("value1", pd.Series),
        ("value2", pd.Series),
        ("geom2", GeoSeries),
    ]
    assert apply_types == expected


def test_pivot(df):
    # https://github.com/geopandas/geopandas/issues/2057
    # pivot failing due to creating a MultiIndex
    result = df.pivot(columns="value1")
    expected = GeoDataFrame(pd.DataFrame(df).pivot(columns="value1"))
    assert_geodataframe_equal(result, expected)


def test_isna_empty_dtypes():
    # https://github.com/geopandas/geopandas/issues/3417
    # should not auto coerce isna to geometry dtype
    expected = pd.DataFrame({"geometry": []}).isna()
    actual = GeoDataFrame({"geometry": []}).isna()
    assert_frame_equal(expected, actual)

    # different geometry col name
    expected = pd.DataFrame({"a": []}).isna()
    actual = GeoDataFrame({"a": []}, geometry="a").isna()
    assert_frame_equal(expected, actual)


def test_preserve_attrs(df):
    # https://github.com/geopandas/geopandas/issues/1654
    df.attrs["name"] = "my_name"
    attrs = {"name": "my_name"}
    assert df.attrs == attrs

    # preserve attrs in indexing operations
    for subset in [df[:2], df[df["value1"] > 2], df[["value2", "geometry"]]]:
        assert df.attrs == attrs

    # preserve attrs in methods
    df2 = df.reset_index()
    assert df2.attrs == attrs

    # https://github.com/geopandas/geopandas/issues/1875
    df3 = df2.explode(index_parts=True)
    assert df3.attrs == attrs


def test_preserve_flags(df):
    # https://github.com/geopandas/geopandas/issues/1654
    df = df.set_flags(allows_duplicate_labels=False)
    assert df.flags.allows_duplicate_labels is False

    # preserve flags in indexing operations
    for subset in [df[:2], df[df["value1"] > 2], df[["value2", "geometry"]]]:
        assert df.flags.allows_duplicate_labels is False

    # preserve attrs in methods
    df2 = df.reset_index()
    assert df2.flags.allows_duplicate_labels is False

    # it is honored for operations that introduce duplicate labels
    with pytest.raises(ValueError):
        df.reindex([0, 0, 1])

    with pytest.raises(ValueError):
        df[["value1", "value1", "geometry"]]

    with pytest.raises(ValueError):
        pd.concat([df, df])


def test_ufunc():
    # this is calling a shapely ufunc, but we currently rely on pandas' implementation
    # of `__array_ufunc__` to wrap the result back into a GeoSeries
    ser = GeoSeries([Point(1, 1), Point(2, 2), Point(3, 3)])
    result = shapely.buffer(ser, 2)
    assert isinstance(result, GeoSeries)

    # ensure the result is still writeable
    # (https://github.com/geopandas/geopandas/issues/3178)
    assert result.array._data.flags.writeable
    result.loc[0] = Point(10, 10)
    assert result.iloc[0] == Point(10, 10)