1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988
|
from math import sqrt
import numpy as np
import shapely
from shapely.geometry import (
GeometryCollection,
LineString,
MultiPolygon,
Point,
Polygon,
box,
)
import geopandas
from geopandas import GeoDataFrame, GeoSeries, read_file
from geopandas import _compat as compat
import pytest
from numpy.testing import assert_array_equal
try:
from scipy.sparse import coo_array # noqa: F401
HAS_SCIPY = True
except ImportError:
HAS_SCIPY = False
SCIPY_MARK = pytest.mark.skipif(not HAS_SCIPY, reason="scipy not installed")
class TestSeriesSindex:
def test_has_sindex(self):
"""Test the has_sindex method."""
t1 = Polygon([(0, 0), (1, 0), (1, 1)])
t2 = Polygon([(0, 0), (1, 1), (0, 1)])
d = GeoDataFrame({"geom": [t1, t2]}, geometry="geom")
assert not d.has_sindex
d.sindex
assert d.has_sindex
d.geometry.values._sindex = None
assert not d.has_sindex
d.sindex
assert d.has_sindex
s = GeoSeries([t1, t2])
assert not s.has_sindex
s.sindex
assert s.has_sindex
s.values._sindex = None
assert not s.has_sindex
s.sindex
assert s.has_sindex
def test_empty_geoseries(self):
"""Tests creating a spatial index from an empty GeoSeries."""
s = GeoSeries(dtype=object)
assert not s.sindex
assert len(s.sindex) == 0
def test_point(self):
s = GeoSeries([Point(0, 0)])
assert s.sindex.size == 1
hits = s.sindex.intersection((-1, -1, 1, 1))
assert len(list(hits)) == 1
hits = s.sindex.intersection((-2, -2, -1, -1))
assert len(list(hits)) == 0
def test_empty_point(self):
"""Tests that a single empty Point results in an empty tree."""
s = GeoSeries([Point()])
assert not s.sindex
assert len(s.sindex) == 0
def test_polygons(self):
t1 = Polygon([(0, 0), (1, 0), (1, 1)])
t2 = Polygon([(0, 0), (1, 1), (0, 1)])
sq = Polygon([(0, 0), (1, 0), (1, 1), (0, 1)])
s = GeoSeries([t1, t2, sq])
assert s.sindex.size == 3
def test_lazy_build(self):
s = GeoSeries([Point(0, 0)])
assert s.values._sindex is None
assert s.sindex.size == 1
assert s.values._sindex is not None
def test_rebuild_on_item_change(self):
s = GeoSeries([Point(0, 0)])
original_index = s.sindex
s.iloc[0] = Point(0, 0)
assert s.sindex is not original_index
def test_rebuild_on_slice(self):
s = GeoSeries([Point(0, 0), Point(0, 0)])
original_index = s.sindex
# Select a couple of rows
sliced = s.iloc[:1]
assert sliced.sindex is not original_index
# Select all rows
sliced = s.iloc[:]
assert sliced.sindex is original_index
# Select all rows and flip
sliced = s.iloc[::-1]
assert sliced.sindex is not original_index
class TestFrameSindex:
def setup_method(self):
data = {
"A": range(5),
"B": range(-5, 0),
"geom": [Point(x, y) for x, y in zip(range(5), range(5))],
}
self.df = GeoDataFrame(data, geometry="geom")
def test_sindex(self):
self.df.crs = "epsg:4326"
assert self.df.sindex.size == 5
hits = list(self.df.sindex.intersection((2.5, 2.5, 4, 4)))
assert len(hits) == 2
assert hits[0] == 3
def test_lazy_build(self):
assert self.df.geometry.values._sindex is None
assert self.df.sindex.size == 5
assert self.df.geometry.values._sindex is not None
def test_sindex_rebuild_on_set_geometry(self):
# First build the sindex
assert self.df.sindex is not None
original_index = self.df.sindex
self.df.set_geometry(
[Point(x, y) for x, y in zip(range(5, 10), range(5, 10))], inplace=True
)
assert self.df.sindex is not original_index
def test_rebuild_on_row_slice(self):
# Select a subset of rows rebuilds
original_index = self.df.sindex
sliced = self.df.iloc[:1]
assert sliced.sindex is not original_index
# Slicing all does not rebuild
original_index = self.df.sindex
sliced = self.df.iloc[:]
assert sliced.sindex is original_index
# Re-ordering rebuilds
sliced = self.df.iloc[::-1]
assert sliced.sindex is not original_index
def test_rebuild_on_single_col_selection(self):
"""Selecting a single column should not rebuild the spatial index."""
# Selecting geometry column preserves the index
original_index = self.df.sindex
geometry_col = self.df["geom"]
assert geometry_col.sindex is original_index
geometry_col = self.df.geometry
assert geometry_col.sindex is original_index
def test_rebuild_on_multiple_col_selection(self):
"""Selecting a subset of columns preserves the index."""
original_index = self.df.sindex
# Selecting a subset of columns preserves the index for pandas < 2.0
# with pandas 2.0, the column is now copied, losing the index. But
# with pandas >= 3.0 and Copy-on-Write this is preserved again
subset1 = self.df[["geom", "A"]]
if not compat.PANDAS_GE_30:
assert subset1.sindex is not original_index
else:
assert subset1.sindex is original_index
subset2 = self.df[["A", "geom"]]
if not compat.PANDAS_GE_30:
assert subset2.sindex is not original_index
else:
assert subset2.sindex is original_index
def test_rebuild_on_update_inplace(self):
gdf = self.df.copy()
old_sindex = gdf.sindex
# sorting in place
gdf.sort_values("A", ascending=False, inplace=True)
# spatial index should be invalidated
assert not gdf.has_sindex
new_sindex = gdf.sindex
# and should be different
assert new_sindex is not old_sindex
# sorting should still have happened though
assert gdf.index.tolist() == [4, 3, 2, 1, 0]
def test_update_inplace_no_rebuild(self):
gdf = self.df.copy()
old_sindex = gdf.sindex
gdf.rename(columns={"A": "AA"}, inplace=True)
# a rename shouldn't invalidate the index
assert gdf.has_sindex
# and the "new" should be the same
new_sindex = gdf.sindex
assert old_sindex is new_sindex
# Skip to accommodate Shapely geometries being unhashable # TODO unskip?
@pytest.mark.skip
@pytest.mark.usefixtures("_setup_class_nybb_filename")
class TestJoinSindex:
def setup_method(self):
self.boros = read_file(self.nybb_filename)
def test_merge_geo(self):
# First check that we gets hits from the boros frame.
tree = self.boros.sindex
hits = tree.intersection((1012821.80, 229228.26))
res = [self.boros.iloc[hit]["BoroName"] for hit in hits]
assert res == ["Bronx", "Queens"]
# Check that we only get the Bronx from this view.
first = self.boros[self.boros["BoroCode"] < 3]
tree = first.sindex
hits = tree.intersection((1012821.80, 229228.26))
res = [first.iloc[hit]["BoroName"] for hit in hits]
assert res == ["Bronx"]
# Check that we only get Queens from this view.
second = self.boros[self.boros["BoroCode"] >= 3]
tree = second.sindex
hits = tree.intersection((1012821.80, 229228.26))
res = ([second.iloc[hit]["BoroName"] for hit in hits],)
assert res == ["Queens"]
# Get both the Bronx and Queens again.
merged = first.merge(second, how="outer")
assert len(merged) == 5
assert merged.sindex.size == 5
tree = merged.sindex
hits = tree.intersection((1012821.80, 229228.26))
res = [merged.iloc[hit]["BoroName"] for hit in hits]
assert res == ["Bronx", "Queens"]
class TestShapelyInterface:
def setup_method(self):
data = {
"geom": [Point(x, y) for x, y in zip(range(5), range(5))]
+ [box(10, 10, 20, 20)] # include a box geometry
}
self.df = GeoDataFrame(data, geometry="geom")
self.expected_size = len(data["geom"])
# --------------------------- `intersection` tests -------------------------- #
@pytest.mark.parametrize(
"test_geom, expected",
(
((-1, -1, -0.5, -0.5), []),
((-0.5, -0.5, 0.5, 0.5), [0]),
((0, 0, 1, 1), [0, 1]),
((0, 0), [0]),
),
)
def test_intersection_bounds_tuple(self, test_geom, expected):
"""Tests the `intersection` method with valid inputs."""
res = list(self.df.sindex.intersection(test_geom))
assert_array_equal(res, expected)
@pytest.mark.parametrize("test_geom", ((-1, -1, -0.5), -0.5, None, Point(0, 0)))
def test_intersection_invalid_bounds_tuple(self, test_geom):
"""Tests the `intersection` method with invalid inputs."""
with pytest.raises(TypeError):
# we raise a useful TypeError
self.df.sindex.intersection(test_geom)
# ------------------------------ `query` tests ------------------------------ #
@pytest.mark.parametrize(
"output_format", ("indices", pytest.param("sparse", marks=SCIPY_MARK), "dense")
)
@pytest.mark.parametrize(
"predicate, test_geom, expected",
(
(None, box(-1, -1, -0.5, -0.5), []), # bbox does not intersect
(None, box(-0.5, -0.5, 0.5, 0.5), [0]), # bbox intersects
(None, box(0, 0, 1, 1), [0, 1]), # bbox intersects multiple
(
None,
LineString([(0, 1), (1, 0)]),
[0, 1],
), # bbox intersects but not geometry
("intersects", box(-1, -1, -0.5, -0.5), []), # bbox does not intersect
(
"intersects",
box(-0.5, -0.5, 0.5, 0.5),
[0],
), # bbox and geometry intersect
(
"intersects",
box(0, 0, 1, 1),
[0, 1],
), # bbox and geometry intersect multiple
(
"intersects",
LineString([(0, 1), (1, 0)]),
[],
), # bbox intersects but not geometry
("within", box(0.25, 0.28, 0.75, 0.75), []), # does not intersect
("within", box(0, 0, 10, 10), []), # intersects but is not within
("within", box(11, 11, 12, 12), [5]), # intersects and is within
("within", LineString([(0, 1), (1, 0)]), []), # intersects but not within
("contains", box(0, 0, 1, 1), []), # intersects but does not contain
("contains", box(0, 0, 1.001, 1.001), [1]), # intersects and contains
("contains", box(0.5, 0.5, 1.5, 1.5), [1]), # intersects and contains
("contains", box(-1, -1, 2, 2), [0, 1]), # intersects and contains multiple
(
"contains",
LineString([(0, 1), (1, 0)]),
[],
), # intersects but not contains
("touches", box(-1, -1, 0, 0), [0]), # bbox intersects and touches
(
"touches",
box(-0.5, -0.5, 1.5, 1.5),
[],
), # bbox intersects but geom does not touch
(
"contains",
box(10, 10, 20, 20),
[5],
), # contains but does not contains_properly
(
"covers",
box(-0.5, -0.5, 1, 1),
[0, 1],
), # covers (0, 0) and (1, 1)
(
"covers",
box(0.001, 0.001, 0.99, 0.99),
[],
), # does not cover any
(
"covers",
box(0, 0, 1, 1),
[0, 1],
), # covers but does not contain
(
"contains_properly",
box(0, 0, 1, 1),
[],
), # intersects but does not contain
(
"contains_properly",
box(0, 0, 1.001, 1.001),
[1],
), # intersects 2 and contains 1
(
"contains_properly",
box(0.5, 0.5, 1.001, 1.001),
[1],
), # intersects 1 and contains 1
(
"contains_properly",
box(0.5, 0.5, 1.5, 1.5),
[1],
), # intersects and contains
(
"contains_properly",
box(-1, -1, 2, 2),
[0, 1],
), # intersects and contains multiple
(
"contains_properly",
box(10, 10, 20, 20),
[],
), # contains but does not contains_properly
),
)
def test_query(self, predicate, test_geom, expected, output_format):
"""Tests the `query` method with valid inputs and valid predicates."""
res = self.df.sindex.query(test_geom, predicate=predicate)
assert_array_equal(res, expected)
if output_format != "indices":
dense = np.zeros(len(self.df), dtype=bool)
dense[expected] = True
res = self.df.sindex.query(
test_geom, predicate=predicate, output_format=output_format
)
if output_format == "sparse":
res = res.todense()
assert_array_equal(res, dense)
def test_query_invalid_geometry(self):
"""Tests the `query` method with invalid geometry."""
with pytest.raises(TypeError):
self.df.sindex.query("notavalidgeom")
@pytest.mark.skipif(not compat.GEOS_GE_310, reason="Requires GEOS 3.10")
@pytest.mark.parametrize(
"distance, test_geom, expected",
(
# bounds don't intersect and not within distance=0
(
0,
box(9.0, 9.0, 9.9, 9.9),
[],
),
# bounds don't intersect but is within distance=1
(
1,
box(9.0, 9.0, 9.9, 9.9),
[5],
),
# within 1-D absolute distance in both axes, but not euclidean distance
(
0.5,
Point(0.5, 0.5),
[],
),
# same as before but within euclidean distance
(
sqrt(2 * 0.5**2) + 1e-9,
Point(0.5, 0.5),
[0, 1],
),
# less than euclidean distance between points, multi-object
(
sqrt(2) - 1e-9,
[
Polygon([(0, 0), (1, 0), (1, 1)]),
Polygon([(1, 1), (2, 1), (2, 2)]),
], # multi-object test
[[0, 0, 1, 1], [0, 1, 1, 2]],
),
# more than euclidean distance between points, multi-object
(
sqrt(2) + 1e-9,
[
Polygon([(0, 0), (1, 0), (1, 1)]),
Polygon([(1, 1), (2, 1), (2, 2)]),
],
[[0, 0, 0, 1, 1, 1, 1], [0, 1, 2, 0, 1, 2, 3]],
),
# distance is array-like, broadcastable to geometry
(
[2, 10],
[Point(0.5, 0.5), Point(1, 1)],
[[0, 0, 1, 1, 1, 1, 1], [0, 1, 0, 1, 2, 3, 4]],
),
),
)
def test_query_dwithin(self, distance, test_geom, expected):
"""Tests the `query` method with predicates that require keyword arguments."""
res = self.df.sindex.query(test_geom, predicate="dwithin", distance=distance)
assert_array_equal(res, expected)
@pytest.mark.skipif(not compat.GEOS_GE_310, reason="Requires GEOS 3.10")
def test_dwithin_no_distance(self):
"""Tests the `query` method with keyword arguments that are
invalid for certain predicates."""
with pytest.raises(
ValueError, match="'distance' parameter is required for 'dwithin' predicate"
):
self.df.sindex.query(Point(0, 0), predicate="dwithin")
@pytest.mark.parametrize(
"predicate",
[
None,
"contains",
"contains_properly",
"covered_by",
"covers",
"crosses",
"intersects",
"overlaps",
"touches",
"within",
],
)
def test_query_distance_invalid(self, predicate):
"""Tests the `query` method with keyword arguments that are
invalid for certain predicates."""
msg = "'distance' parameter is only supported in combination with 'dwithin'"
with pytest.raises(ValueError, match=msg):
self.df.sindex.query(Point(0, 0), predicate=predicate, distance=0)
@pytest.mark.skipif(
compat.GEOS_GE_310, reason="Test for 'dwithin'-incompatible versions of GEOS"
)
def test_dwithin_requirements(self):
"""Tests whether a ValueError is raised when trying to use dwithin with
incompatible versions of shapely or pyGEOS
"""
with pytest.raises(
ValueError, match="predicate = 'dwithin' requires GEOS >= 3.10.0"
):
self.df.sindex.query(Point(0, 0), predicate="dwithin", distance=0)
@pytest.mark.parametrize(
"test_geom, expected_value",
[
(None, []),
(GeometryCollection(), []),
(Point(), []),
(MultiPolygon(), []),
(Polygon(), []),
],
)
def test_query_empty_geometry(self, test_geom, expected_value):
"""Tests the `query` method with empty geometry."""
res = self.df.sindex.query(test_geom)
assert_array_equal(res, expected_value)
def test_query_invalid_predicate(self):
"""Tests the `query` method with invalid predicates."""
test_geom = box(-1, -1, -0.5, -0.5)
with pytest.raises(ValueError):
self.df.sindex.query(test_geom, predicate="test")
@pytest.mark.parametrize(
"sort, expected",
(
(True, [[0, 0, 0], [0, 1, 2]]),
# False could be anything, at least we'll know if it changes
(False, [[0, 0, 0], [0, 1, 2]]),
),
)
def test_query_sorting(self, sort, expected):
"""Check that results from `query` don't depend on the
order of geometries.
"""
# these geometries come from a reported issue:
# https://github.com/geopandas/geopandas/issues/1337
# there is no theoretical reason they were chosen
test_polys = GeoSeries([Polygon([(1, 1), (3, 1), (3, 3), (1, 3)])])
tree_polys = GeoSeries(
[
Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]),
Polygon([(-1, 1), (1, 1), (1, 3), (-1, 3)]),
Polygon([(3, 3), (5, 3), (5, 5), (3, 5)]),
]
)
expected = [0, 1, 2]
test_geo = test_polys.values[0]
res = tree_polys.sindex.query(test_geo, sort=sort)
# asserting the same elements
assert sorted(res) == sorted(expected)
# asserting the exact array can fail if sort=False
try:
assert_array_equal(res, expected)
except AssertionError as e:
if sort is False:
pytest.xfail(
"rtree results are known to be unordered, see "
"https://github.com/geopandas/geopandas/issues/1337\n"
f"Expected:\n {expected}\n"
f"Got:\n {res.tolist()}\n"
)
raise e
def test_unsupported_output(self):
with pytest.raises(ValueError, match="Invalid output_format: 'dataarray'."):
test_geom = box(-1, -1, -0.5, -0.5)
self.df.sindex.query(test_geom, output_format="dataarray")
# ------------------------- `query_bulk` tests -------------------------- #
@pytest.mark.parametrize(
"output_format", ("indices", pytest.param("sparse", marks=SCIPY_MARK), "dense")
)
@pytest.mark.parametrize(
"predicate, test_geom, expected",
(
(None, [(-1, -1, -0.5, -0.5)], [[], []]),
(None, [(-0.5, -0.5, 0.5, 0.5)], [[0], [0]]),
(None, [(0, 0, 1, 1)], [[0, 0], [0, 1]]),
("intersects", [(-1, -1, -0.5, -0.5)], [[], []]),
("intersects", [(-0.5, -0.5, 0.5, 0.5)], [[0], [0]]),
("intersects", [(0, 0, 1, 1)], [[0, 0], [0, 1]]),
# only second geom intersects
("intersects", [(-1, -1, -0.5, -0.5), (-0.5, -0.5, 0.5, 0.5)], [[1], [0]]),
# both geoms intersect
(
"intersects",
[(-1, -1, 1, 1), (-0.5, -0.5, 0.5, 0.5)],
[[0, 0, 1], [0, 1, 0]],
),
("within", [(0.25, 0.28, 0.75, 0.75)], [[], []]), # does not intersect
("within", [(0, 0, 10, 10)], [[], []]), # intersects but is not within
("within", [(11, 11, 12, 12)], [[0], [5]]), # intersects and is within
(
"contains",
[(0, 0, 1, 1)],
[[], []],
), # intersects and covers, but does not contain
(
"contains",
[(0, 0, 1.001, 1.001)],
[[0], [1]],
), # intersects 2 and contains 1
(
"contains",
[(0.5, 0.5, 1.001, 1.001)],
[[0], [1]],
), # intersects 1 and contains 1
("contains", [(0.5, 0.5, 1.5, 1.5)], [[0], [1]]), # intersects and contains
(
"contains",
[(-1, -1, 2, 2)],
[[0, 0], [0, 1]],
), # intersects and contains multiple
(
"contains",
[(10, 10, 20, 20)],
[[0], [5]],
), # contains but does not contains_properly
("touches", [(-1, -1, 0, 0)], [[0], [0]]), # bbox intersects and touches
(
"touches",
[(-0.5, -0.5, 1.5, 1.5)],
[[], []],
), # bbox intersects but geom does not touch
(
"covers",
[(-0.5, -0.5, 1, 1)],
[[0, 0], [0, 1]],
), # covers (0, 0) and (1, 1)
(
"covers",
[(0.001, 0.001, 0.99, 0.99)],
[[], []],
), # does not cover any
(
"covers",
[(0, 0, 1, 1)],
[[0, 0], [0, 1]],
), # covers but does not contain
(
"contains_properly",
[(0, 0, 1, 1)],
[[], []],
), # intersects but does not contain
(
"contains_properly",
[(0, 0, 1.001, 1.001)],
[[0], [1]],
), # intersects 2 and contains 1
(
"contains_properly",
[(0.5, 0.5, 1.001, 1.001)],
[[0], [1]],
), # intersects 1 and contains 1
(
"contains_properly",
[(0.5, 0.5, 1.5, 1.5)],
[[0], [1]],
), # intersects and contains
(
"contains_properly",
[(-1, -1, 2, 2)],
[[0, 0], [0, 1]],
), # intersects and contains multiple
(
"contains_properly",
[(10, 10, 20, 20)],
[[], []],
), # contains but does not contains_properly
),
)
def test_query_bulk(self, predicate, test_geom, expected, output_format):
"""Tests the `query` method with valid
inputs and valid predicates.
"""
test_geoms = [box(*geom) for geom in test_geom]
res = self.df.sindex.query(test_geoms, predicate=predicate)
assert_array_equal(res, expected)
if output_format != "indices":
dense = np.zeros((len(self.df), len(test_geoms)), dtype=bool)
tree, other = expected[::-1]
dense[tree, other] = True
res = self.df.sindex.query(
test_geoms, predicate=predicate, output_format=output_format
)
if output_format == "sparse":
res = res.todense()
assert_array_equal(res, dense)
@pytest.mark.parametrize(
"test_geoms, expected_value",
[
# single empty geometry
([GeometryCollection()], [[], []]),
# None should be skipped
([GeometryCollection(), None], [[], []]),
([None], [[], []]),
([None, box(-0.5, -0.5, 0.5, 0.5), None], [[1], [0]]),
],
)
def test_query_bulk_empty_geometry(self, test_geoms, expected_value):
"""Tests the `query` method with an empty geometries."""
res = self.df.sindex.query(test_geoms)
assert_array_equal(res, expected_value)
def test_query_bulk_empty_input_array(self):
"""Tests the `query` method with an empty input array."""
test_array = np.array([], dtype=object)
expected_value = [[], []]
res = self.df.sindex.query(test_array)
assert_array_equal(res, expected_value)
def test_query_bulk_invalid_input_geometry(self):
"""
Tests the `query` method with invalid input for the `geometry` parameter.
"""
test_array = "notanarray"
with pytest.raises(TypeError):
self.df.sindex.query(test_array)
def test_query_bulk_invalid_predicate(self):
"""Tests the `query` method with invalid predicates."""
test_geom_bounds = (-1, -1, -0.5, -0.5)
test_predicate = "test"
with pytest.raises(ValueError):
self.df.sindex.query([box(*test_geom_bounds)], predicate=test_predicate)
@pytest.mark.parametrize(
"predicate, test_geom, expected",
(
(None, (-1, -1, -0.5, -0.5), [[], []]),
("intersects", (-1, -1, -0.5, -0.5), [[], []]),
("contains", (-1, -1, 1, 1), [[0], [0]]),
),
)
def test_query_bulk_input_type(self, predicate, test_geom, expected):
"""Tests that query can accept a GeoSeries, GeometryArray or
numpy array.
"""
# pass through GeoSeries to test input type
test_geom = geopandas.GeoSeries([box(*test_geom)], index=["0"])
# test GeoSeries
res = self.df.sindex.query(test_geom, predicate=predicate)
assert_array_equal(res, expected)
# test GeometryArray
res = self.df.sindex.query(test_geom.geometry, predicate=predicate)
assert_array_equal(res, expected)
res = self.df.sindex.query(test_geom.geometry.values, predicate=predicate)
assert_array_equal(res, expected)
# test numpy array
res = self.df.sindex.query(
test_geom.geometry.values.to_numpy(), predicate=predicate
)
assert_array_equal(res, expected)
res = self.df.sindex.query(
test_geom.geometry.values.to_numpy(), predicate=predicate
)
assert_array_equal(res, expected)
@pytest.mark.parametrize(
"sort, expected",
(
(True, [[0, 0, 0], [0, 1, 2]]),
# False could be anything, at least we'll know if it changes
(False, [[0, 0, 0], [0, 1, 2]]),
),
)
def test_query_bulk_sorting(self, sort, expected):
"""Check that results from `query` don't depend
on the order of geometries.
"""
# these geometries come from a reported issue:
# https://github.com/geopandas/geopandas/issues/1337
# there is no theoretical reason they were chosen
test_polys = GeoSeries([Polygon([(1, 1), (3, 1), (3, 3), (1, 3)])])
tree_polys = GeoSeries(
[
Polygon([(1, 1), (3, 1), (3, 3), (1, 3)]),
Polygon([(-1, 1), (1, 1), (1, 3), (-1, 3)]),
Polygon([(3, 3), (5, 3), (5, 5), (3, 5)]),
]
)
res = tree_polys.sindex.query(test_polys, sort=sort)
# asserting the same elements
assert sorted(res[0]) == sorted(expected[0])
assert sorted(res[1]) == sorted(expected[1])
# asserting the exact array can fail if sort=False
try:
assert_array_equal(res, expected)
except AssertionError as e:
if sort is False:
pytest.xfail(
"rtree results are known to be unordered, see "
"https://github.com/geopandas/geopandas/issues/1337\n"
f"Expected:\n {expected}\n"
f"Got:\n {res.tolist()}\n"
)
raise e
# ------------------------- `nearest` tests ------------------------- #
@pytest.mark.parametrize("return_all", [True, False])
@pytest.mark.parametrize(
"geometry,expected",
[
([0.25, 0.25], [[0], [0]]),
([0.75, 0.75], [[0], [1]]),
],
)
def test_nearest_single(self, geometry, expected, return_all):
geoms = shapely.points(np.arange(10), np.arange(10))
df = geopandas.GeoDataFrame({"geometry": geoms})
p = Point(geometry)
res = df.sindex.nearest(p, return_all=return_all)
assert_array_equal(res, expected)
p = shapely.points(geometry)
res = df.sindex.nearest(p, return_all=return_all)
assert_array_equal(res, expected)
@pytest.mark.parametrize("return_all", [True, False])
@pytest.mark.parametrize(
"geometry,expected",
[
([(1, 1), (0, 0)], [[0, 1], [1, 0]]),
([(1, 1), (0.25, 1)], [[0, 1], [1, 1]]),
],
)
def test_nearest_multi(self, geometry, expected, return_all):
geoms = shapely.points(np.arange(10), np.arange(10))
df = geopandas.GeoDataFrame({"geometry": geoms})
ps = [Point(p) for p in geometry]
res = df.sindex.nearest(ps, return_all=return_all)
assert_array_equal(res, expected)
ps = shapely.points(geometry)
res = df.sindex.nearest(ps, return_all=return_all)
assert_array_equal(res, expected)
s = geopandas.GeoSeries(ps)
res = df.sindex.nearest(s, return_all=return_all)
assert_array_equal(res, expected)
x, y = zip(*geometry)
ga = geopandas.points_from_xy(x, y)
res = df.sindex.nearest(ga, return_all=return_all)
assert_array_equal(res, expected)
@pytest.mark.parametrize("return_all", [True, False])
@pytest.mark.parametrize(
"geometry,expected",
[
(None, [[], []]),
([None], [[], []]),
],
)
def test_nearest_none(self, geometry, expected, return_all):
geoms = shapely.points(np.arange(10), np.arange(10))
df = geopandas.GeoDataFrame({"geometry": geoms})
res = df.sindex.nearest(geometry, return_all=return_all)
assert_array_equal(res, expected)
@pytest.mark.parametrize("return_distance", [True, False])
@pytest.mark.parametrize(
"return_all,max_distance,expected",
[
(True, None, ([[0, 0, 1], [0, 1, 5]], [sqrt(0.5), sqrt(0.5), sqrt(50)])),
(False, None, ([[0, 1], [0, 5]], [sqrt(0.5), sqrt(50)])),
(True, 1, ([[0, 0], [0, 1]], [sqrt(0.5), sqrt(0.5)])),
(False, 1, ([[0], [0]], [sqrt(0.5)])),
],
)
def test_nearest_max_distance(
self, expected, max_distance, return_all, return_distance
):
geoms = shapely.points(np.arange(10), np.arange(10))
df = geopandas.GeoDataFrame({"geometry": geoms})
ps = [Point(0.5, 0.5), Point(0, 10)]
res = df.sindex.nearest(
ps,
return_all=return_all,
max_distance=max_distance,
return_distance=return_distance,
)
if return_distance:
assert_array_equal(res[0], expected[0])
assert_array_equal(res[1], expected[1])
else:
assert_array_equal(res, expected[0])
@pytest.mark.parametrize("return_distance", [True, False])
@pytest.mark.parametrize(
"return_all,max_distance,exclusive,expected",
[
(False, None, False, ([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], 5 * [0])),
(False, None, True, ([[0, 1, 2, 3, 4], [1, 0, 1, 2, 3]], 5 * [sqrt(2)])),
(True, None, False, ([[0, 1, 2, 3, 4], [0, 1, 2, 3, 4]], 5 * [0])),
(
True,
None,
True,
([[0, 1, 1, 2, 2, 3, 3, 4], [1, 0, 2, 1, 3, 2, 4, 3]], 8 * [sqrt(2)]),
),
(False, 1.1, True, ([[1, 2, 5], [5, 5, 1]], 3 * [1])),
(True, 1.1, True, ([[1, 2, 5, 5], [5, 5, 1, 2]], 4 * [1])),
],
)
def test_nearest_exclusive(
self, expected, max_distance, return_all, return_distance, exclusive
):
geoms = shapely.points(np.arange(5), np.arange(5))
if max_distance:
# add a non grid point
geoms = np.append(geoms, [Point(1, 2)])
df = geopandas.GeoDataFrame({"geometry": geoms})
ps = geoms
res = df.sindex.nearest(
ps,
return_all=return_all,
max_distance=max_distance,
return_distance=return_distance,
exclusive=exclusive,
)
if return_distance:
assert_array_equal(res[0], expected[0])
assert_array_equal(res[1], expected[1])
else:
assert_array_equal(res, expected[0])
# --------------------------- misc tests ---------------------------- #
def test_empty_tree_geometries(self):
"""Tests building sindex with interleaved empty geometries."""
geoms = [Point(0, 0), None, Point(), Point(1, 1), Point()]
df = geopandas.GeoDataFrame(geometry=geoms)
assert df.sindex.query(Point(1, 1))[0] == 3
def test_size(self):
"""Tests the `size` property."""
assert self.df.sindex.size == self.expected_size
def test_len(self):
"""Tests the `__len__` method of spatial indexes."""
assert len(self.df.sindex) == self.expected_size
def test_is_empty(self):
"""Tests the `is_empty` property."""
# create empty tree
empty = geopandas.GeoSeries([], dtype=object)
assert empty.sindex.is_empty
empty = geopandas.GeoSeries([None])
assert empty.sindex.is_empty
empty = geopandas.GeoSeries([Point()])
assert empty.sindex.is_empty
# create a non-empty tree
non_empty = geopandas.GeoSeries([Point(0, 0)])
assert not non_empty.sindex.is_empty
@pytest.mark.parametrize(
"predicate, expected_shape",
[
(None, (2, 471)),
("intersects", (2, 213)),
("within", (2, 213)),
("contains", (2, 0)),
("overlaps", (2, 0)),
("crosses", (2, 0)),
("touches", (2, 0)),
],
)
def test_integration_natural_earth(
self, predicate, expected_shape, naturalearth_lowres, naturalearth_cities
):
"""Tests output sizes for the naturalearth datasets."""
world = read_file(naturalearth_lowres)
capitals = read_file(naturalearth_cities)
res = world.sindex.query(capitals.geometry, predicate)
assert res.shape == expected_shape
|