1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184
|
import numpy as np
def _hilbert_distance(geoms, total_bounds=None, level=16):
"""
Calculate the distance along a Hilbert curve.
The distances are calculated for the midpoints of the geometries in the
GeoDataFrame.
Parameters
----------
geoms : GeometryArray
total_bounds : 4-element array
Total bounds of geometries - array
level : int (1 - 16), default 16
Determines the precision of the curve (points on the curve will
have coordinates in the range [0, 2^level - 1]).
Returns
-------
np.ndarray
Array containing distances along the Hilbert curve
"""
if geoms.is_empty.any() | geoms.isna().any():
raise ValueError(
"Hilbert distance cannot be computed on a GeoSeries with empty or "
"missing geometries.",
)
# Calculate bounds as numpy array
bounds = geoms.bounds
# Calculate discrete coords based on total bounds and bounds
x, y = _continuous_to_discrete_coords(bounds, level, total_bounds)
# Compute distance along hilbert curve
distances = _encode(level, x, y)
return distances
def _continuous_to_discrete_coords(bounds, level, total_bounds):
"""Calculate mid points & ranges of geoms and returns as discrete coords.
Parameters
----------
bounds : Bounds of each geometry - array
p : The number of iterations used in constructing the Hilbert curve
total_bounds : Total bounds of geometries - array
Returns
-------
Discrete two-dimensional numpy array
Two-dimensional array Array of hilbert distances for each geom
"""
# Hilbert Side length
side_length = (2**level) - 1
# Calculate mid points for x and y bound coords - returns array
x_mids = (bounds[:, 0] + bounds[:, 2]) / 2.0
y_mids = (bounds[:, 1] + bounds[:, 3]) / 2.0
# Calculate x and y range of total bound coords - returns array
if total_bounds is None:
total_bounds = (
np.nanmin(x_mids),
np.nanmin(y_mids),
np.nanmax(x_mids),
np.nanmax(y_mids),
)
xmin, ymin, xmax, ymax = total_bounds
# Transform continuous value to discrete integer for each dimension
x_int = _continuous_to_discrete(x_mids, (xmin, xmax), side_length)
y_int = _continuous_to_discrete(y_mids, (ymin, ymax), side_length)
return x_int, y_int
def _continuous_to_discrete(vals, val_range, n):
"""Convert a continuous one-dimensional array to discrete integer values
based their ranges.
Parameters
----------
vals : Array of continuous values
val_range : Tuple containing range of continuous values
n : Number of discrete values
Returns
-------
One-dimensional array of discrete ints
"""
width = val_range[1] - val_range[0]
if width == 0:
return np.zeros_like(vals, dtype=np.uint32)
res = (vals - val_range[0]) * (n / width)
np.clip(res, 0, n, out=res)
return res.astype(np.uint32)
# Fast Hilbert curve algorithm by http://threadlocalmutex.com/
# From C++ https://github.com/rawrunprotected/hilbert_curves
# (public domain)
MAX_LEVEL = 16
def _interleave(x):
x = (x | (x << 8)) & 0x00FF00FF
x = (x | (x << 4)) & 0x0F0F0F0F
x = (x | (x << 2)) & 0x33333333
x = (x | (x << 1)) & 0x55555555
return x
def _encode(level, x, y):
x = np.asarray(x, dtype="uint32")
y = np.asarray(y, dtype="uint32")
if level > MAX_LEVEL:
raise ValueError("Level out of range")
x = x << (16 - level)
y = y << (16 - level)
# Initial prefix scan round, prime with x and y
a = x ^ y
b = 0xFFFF ^ a
c = 0xFFFF ^ (x | y)
d = x & (y ^ 0xFFFF)
A = a | (b >> 1)
B = (a >> 1) ^ a
C = ((c >> 1) ^ (b & (d >> 1))) ^ c
D = ((a & (c >> 1)) ^ (d >> 1)) ^ d
a = A.copy()
b = B.copy()
c = C.copy()
d = D.copy()
A = (a & (a >> 2)) ^ (b & (b >> 2))
B = (a & (b >> 2)) ^ (b & ((a ^ b) >> 2))
C ^= (a & (c >> 2)) ^ (b & (d >> 2))
D ^= (b & (c >> 2)) ^ ((a ^ b) & (d >> 2))
a = A.copy()
b = B.copy()
c = C.copy()
d = D.copy()
A = (a & (a >> 4)) ^ (b & (b >> 4))
B = (a & (b >> 4)) ^ (b & ((a ^ b) >> 4))
C ^= (a & (c >> 4)) ^ (b & (d >> 4))
D ^= (b & (c >> 4)) ^ ((a ^ b) & (d >> 4))
# Final round and projection
a = A.copy()
b = B.copy()
c = C.copy()
d = D.copy()
C ^= (a & (c >> 8)) ^ (b & (d >> 8))
D ^= (b & (c >> 8)) ^ ((a ^ b) & (d >> 8))
# Undo transformation prefix scan
a = C ^ (C >> 1)
b = D ^ (D >> 1)
# Recover index bits
i0 = x ^ y
i1 = b | (0xFFFF ^ (i0 | a))
return ((_interleave(i1) << 1) | _interleave(i0)) >> (32 - 2 * level)
|