1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423
|
import warnings
from functools import reduce
import numpy as np
import pandas as pd
from geopandas import GeoDataFrame, GeoSeries
from geopandas._compat import PANDAS_GE_30
from geopandas.array import (
LINE_GEOM_TYPES,
POINT_GEOM_TYPES,
POLYGON_GEOM_TYPES,
_check_crs,
_crs_mismatch_warn,
)
def _ensure_geometry_column(df):
"""Ensure that the geometry column is called 'geometry'.
If another column with that name exists, it will be dropped.
"""
if not df._geometry_column_name == "geometry":
if PANDAS_GE_30:
if "geometry" in df.columns:
df = df.drop("geometry", axis=1)
df = df.rename_geometry("geometry")
else:
if "geometry" in df.columns:
df.drop("geometry", axis=1, inplace=True)
df.rename_geometry("geometry", inplace=True)
return df
def _overlay_intersection(df1, df2):
"""Overlay Intersection operation used in overlay function."""
# Spatial Index to create intersections
idx1, idx2 = df2.sindex.query(df1.geometry, predicate="intersects", sort=True)
# Create pairs of geometries in both dataframes to be intersected
if idx1.size > 0 and idx2.size > 0:
left = df1.geometry.take(idx1)
left.reset_index(drop=True, inplace=True)
right = df2.geometry.take(idx2)
right.reset_index(drop=True, inplace=True)
intersections = left.intersection(right)
poly_ix = intersections.geom_type.isin(POLYGON_GEOM_TYPES)
intersections.loc[poly_ix] = intersections[poly_ix].make_valid()
# only keep actual intersecting geometries
pairs_intersect = pd.DataFrame({"__idx1": idx1, "__idx2": idx2})
geom_intersect = intersections
# merge data for intersecting geometries
df1 = df1.reset_index(drop=True)
df2 = df2.reset_index(drop=True)
dfinter = pairs_intersect.merge(
df1.drop(df1._geometry_column_name, axis=1),
left_on="__idx1",
right_index=True,
)
dfinter = dfinter.merge(
df2.drop(df2._geometry_column_name, axis=1),
left_on="__idx2",
right_index=True,
suffixes=("_1", "_2"),
)
return GeoDataFrame(dfinter, geometry=geom_intersect, crs=df1.crs)
else:
result = df1.iloc[:0].merge(
df2.iloc[:0].drop(df2.geometry.name, axis=1),
left_index=True,
right_index=True,
suffixes=("_1", "_2"),
)
result["__idx1"] = np.nan
result["__idx2"] = np.nan
return result[
result.columns.drop(df1.geometry.name).tolist() + [df1.geometry.name]
]
def _overlay_difference(df1, df2):
"""Overlay Difference operation used in overlay function."""
# spatial index query to find intersections
idx1, idx2 = df2.sindex.query(df1.geometry, predicate="intersects", sort=True)
idx1_unique, idx1_unique_indices = np.unique(idx1, return_index=True)
idx2_split = np.split(idx2, idx1_unique_indices[1:])
sidx = [
idx2_split.pop(0) if idx in idx1_unique else []
for idx in range(df1.geometry.size)
]
# Create differences
new_g = []
for geom, neighbours in zip(df1.geometry, sidx):
new = reduce(
lambda x, y: x.difference(y), [geom] + list(df2.geometry.iloc[neighbours])
)
new_g.append(new)
differences = GeoSeries(new_g, index=df1.index, crs=df1.crs)
poly_ix = differences.geom_type.isin(POLYGON_GEOM_TYPES)
differences.loc[poly_ix] = differences[poly_ix].make_valid()
geom_diff = differences[~differences.is_empty].copy()
dfdiff = df1[~differences.is_empty].copy()
dfdiff[dfdiff._geometry_column_name] = geom_diff
return dfdiff
def _overlay_identity(df1, df2):
"""Overlay Identity operation used in overlay function."""
dfintersection = _overlay_intersection(df1, df2)
dfdifference = _overlay_difference(df1, df2)
dfdifference = _ensure_geometry_column(dfdifference)
# Columns that were suffixed in dfintersection need to be suffixed in dfdifference
# as well so they can be matched properly in concat.
new_columns = [
col if col in dfintersection.columns else f"{col}_1"
for col in dfdifference.columns
]
dfdifference.columns = new_columns
# Now we can concatenate the two dataframes
result = pd.concat([dfintersection, dfdifference], ignore_index=True, sort=False)
# keep geometry column last
columns = list(dfintersection.columns)
columns.remove("geometry")
columns.append("geometry")
return result.reindex(columns=columns)
def _overlay_symmetric_diff(df1, df2):
"""Overlay Symmetric Difference operation used in overlay function."""
dfdiff1 = _overlay_difference(df1, df2)
dfdiff2 = _overlay_difference(df2, df1)
dfdiff1["__idx1"] = range(len(dfdiff1))
dfdiff2["__idx2"] = range(len(dfdiff2))
dfdiff1["__idx2"] = np.nan
dfdiff2["__idx1"] = np.nan
# ensure geometry name (otherwise merge goes wrong)
dfdiff1 = _ensure_geometry_column(dfdiff1)
dfdiff2 = _ensure_geometry_column(dfdiff2)
# combine both 'difference' dataframes
dfsym = dfdiff1.merge(
dfdiff2, on=["__idx1", "__idx2"], how="outer", suffixes=("_1", "_2")
)
geometry = dfsym.geometry_1.copy()
geometry.name = "geometry"
# https://github.com/pandas-dev/pandas/issues/26468 use loc for now
geometry.loc[dfsym.geometry_1.isnull()] = dfsym.loc[
dfsym.geometry_1.isnull(), "geometry_2"
]
dfsym.drop(["geometry_1", "geometry_2"], axis=1, inplace=True)
dfsym.reset_index(drop=True, inplace=True)
dfsym = GeoDataFrame(dfsym, geometry=geometry, crs=df1.crs)
return dfsym
def _overlay_union(df1, df2):
"""Overlay Union operation used in overlay function."""
dfinter = _overlay_intersection(df1, df2)
dfsym = _overlay_symmetric_diff(df1, df2)
dfunion = pd.concat([dfinter, dfsym], ignore_index=True, sort=False)
# keep geometry column last
columns = list(dfunion.columns)
columns.remove("geometry")
columns.append("geometry")
return dfunion.reindex(columns=columns)
def overlay(df1, df2, how="intersection", keep_geom_type=None, make_valid=True):
"""Perform spatial overlay between two GeoDataFrames.
Currently only supports data GeoDataFrames with uniform geometry types,
i.e. containing only (Multi)Polygons, or only (Multi)Points, or a
combination of (Multi)LineString and LinearRing shapes.
Implements several methods that are all effectively subsets of the union.
See the User Guide page :doc:`../../user_guide/set_operations` for details.
Parameters
----------
df1 : GeoDataFrame
df2 : GeoDataFrame
how : string
Method of spatial overlay: 'intersection', 'union',
'identity', 'symmetric_difference' or 'difference'.
keep_geom_type : bool
If True, return only geometries of the same geometry type as df1 has,
if False, return all resulting geometries. Default is None,
which will set keep_geom_type to True but warn upon dropping
geometries.
make_valid : bool, default True
If True, any invalid input geometries are corrected with a call to make_valid(),
if False, a `ValueError` is raised if any input geometries are invalid.
Returns
-------
df : GeoDataFrame
GeoDataFrame with new set of polygons and attributes
resulting from the overlay
Examples
--------
>>> from shapely.geometry import Polygon
>>> polys1 = geopandas.GeoSeries([Polygon([(0,0), (2,0), (2,2), (0,2)]),
... Polygon([(2,2), (4,2), (4,4), (2,4)])])
>>> polys2 = geopandas.GeoSeries([Polygon([(1,1), (3,1), (3,3), (1,3)]),
... Polygon([(3,3), (5,3), (5,5), (3,5)])])
>>> df1 = geopandas.GeoDataFrame({'geometry': polys1, 'df1_data':[1,2]})
>>> df2 = geopandas.GeoDataFrame({'geometry': polys2, 'df2_data':[1,2]})
>>> geopandas.overlay(df1, df2, how='union')
df1_data df2_data geometry
0 1.0 1.0 POLYGON ((2 2, 2 1, 1 1, 1 2, 2 2))
1 2.0 1.0 POLYGON ((2 2, 2 3, 3 3, 3 2, 2 2))
2 2.0 2.0 POLYGON ((4 4, 4 3, 3 3, 3 4, 4 4))
3 1.0 NaN POLYGON ((2 0, 0 0, 0 2, 1 2, 1 1, 2 1, 2 0))
4 2.0 NaN MULTIPOLYGON (((3 4, 3 3, 2 3, 2 4, 3 4)), ((4...
5 NaN 1.0 MULTIPOLYGON (((2 3, 2 2, 1 2, 1 3, 2 3)), ((3...
6 NaN 2.0 POLYGON ((3 5, 5 5, 5 3, 4 3, 4 4, 3 4, 3 5))
>>> geopandas.overlay(df1, df2, how='intersection')
df1_data df2_data geometry
0 1 1 POLYGON ((2 2, 2 1, 1 1, 1 2, 2 2))
1 2 1 POLYGON ((2 2, 2 3, 3 3, 3 2, 2 2))
2 2 2 POLYGON ((4 4, 4 3, 3 3, 3 4, 4 4))
>>> geopandas.overlay(df1, df2, how='symmetric_difference')
df1_data df2_data geometry
0 1.0 NaN POLYGON ((2 0, 0 0, 0 2, 1 2, 1 1, 2 1, 2 0))
1 2.0 NaN MULTIPOLYGON (((3 4, 3 3, 2 3, 2 4, 3 4)), ((4...
2 NaN 1.0 MULTIPOLYGON (((2 3, 2 2, 1 2, 1 3, 2 3)), ((3...
3 NaN 2.0 POLYGON ((3 5, 5 5, 5 3, 4 3, 4 4, 3 4, 3 5))
>>> geopandas.overlay(df1, df2, how='difference')
geometry df1_data
0 POLYGON ((2 0, 0 0, 0 2, 1 2, 1 1, 2 1, 2 0)) 1
1 MULTIPOLYGON (((3 4, 3 3, 2 3, 2 4, 3 4)), ((4... 2
>>> geopandas.overlay(df1, df2, how='identity')
df1_data df2_data geometry
0 1 1.0 POLYGON ((2 2, 2 1, 1 1, 1 2, 2 2))
1 2 1.0 POLYGON ((2 2, 2 3, 3 3, 3 2, 2 2))
2 2 2.0 POLYGON ((4 4, 4 3, 3 3, 3 4, 4 4))
3 1 NaN POLYGON ((2 0, 0 0, 0 2, 1 2, 1 1, 2 1, 2 0))
4 2 NaN MULTIPOLYGON (((3 4, 3 3, 2 3, 2 4, 3 4)), ((4...
See Also
--------
sjoin : spatial join
GeoDataFrame.overlay : equivalent method
Notes
-----
Every operation in GeoPandas is planar, i.e. the potential third
dimension is not taken into account.
"""
# Allowed operations
allowed_hows = [
"intersection",
"union",
"identity",
"symmetric_difference",
"difference", # aka erase
]
# Error Messages
if how not in allowed_hows:
raise ValueError(f"`how` was '{how}' but is expected to be in {allowed_hows}")
if isinstance(df1, GeoSeries) or isinstance(df2, GeoSeries):
raise NotImplementedError(
"overlay currently only implemented for GeoDataFrames"
)
if not _check_crs(df1, df2):
_crs_mismatch_warn(df1, df2, stacklevel=3)
if keep_geom_type is None:
keep_geom_type = True
keep_geom_type_warning = True
else:
keep_geom_type_warning = False
for i, df in enumerate([df1, df2]):
poly_check = df.geom_type.isin(POLYGON_GEOM_TYPES).any()
lines_check = df.geom_type.isin(LINE_GEOM_TYPES).any()
points_check = df.geom_type.isin(POINT_GEOM_TYPES).any()
if sum([poly_check, lines_check, points_check]) > 1:
raise NotImplementedError(f"df{i + 1} contains mixed geometry types.")
if how == "intersection":
box_gdf1 = df1.total_bounds
box_gdf2 = df2.total_bounds
if not (
((box_gdf1[0] <= box_gdf2[2]) and (box_gdf2[0] <= box_gdf1[2]))
and ((box_gdf1[1] <= box_gdf2[3]) and (box_gdf2[1] <= box_gdf1[3]))
):
result = df1.iloc[:0].merge(
df2.iloc[:0].drop(df2.geometry.name, axis=1),
left_index=True,
right_index=True,
suffixes=("_1", "_2"),
)
return result[
result.columns.drop(df1.geometry.name).tolist() + [df1.geometry.name]
]
# Computations
def _make_valid(df):
df = df.copy()
if df.geom_type.isin(POLYGON_GEOM_TYPES).all():
mask = ~df.geometry.is_valid
col = df._geometry_column_name
if make_valid:
df.loc[mask, col] = df.loc[mask, col].make_valid()
# Extract only the input geometry type, as make_valid may change it
if mask.any():
df = _collection_extract(
df, geom_type="Polygon", keep_geom_type_warning=False
)
elif mask.any():
raise ValueError(
"You have passed make_valid=False along with "
f"{mask.sum()} invalid input geometries. "
"Use make_valid=True or make sure that all geometries "
"are valid before using overlay."
)
return df
# Determine the geometry type before make_valid, as make_valid may change it
if keep_geom_type:
geom_type = df1.geom_type.iloc[0]
df1 = _make_valid(df1)
df2 = _make_valid(df2)
with warnings.catch_warnings(): # CRS checked above, suppress array-level warning
warnings.filterwarnings("ignore", message="CRS mismatch between the CRS")
if how == "difference":
result = _overlay_difference(df1, df2)
elif how == "intersection":
result = _overlay_intersection(df1, df2)
elif how == "symmetric_difference":
result = _overlay_symmetric_diff(df1, df2)
elif how == "union":
result = _overlay_union(df1, df2)
elif how == "identity":
result = _overlay_identity(df1, df2)
if how in ["intersection", "symmetric_difference", "union", "identity"]:
result.drop(["__idx1", "__idx2"], axis=1, inplace=True)
if keep_geom_type:
result = _collection_extract(result, geom_type, keep_geom_type_warning)
result.reset_index(drop=True, inplace=True)
return result
def _collection_extract(df, geom_type, keep_geom_type_warning):
# Check input
if geom_type in POLYGON_GEOM_TYPES:
geom_types = POLYGON_GEOM_TYPES
elif geom_type in LINE_GEOM_TYPES:
geom_types = LINE_GEOM_TYPES
elif geom_type in POINT_GEOM_TYPES:
geom_types = POINT_GEOM_TYPES
else:
raise TypeError(f"`geom_type` does not support {geom_type}.")
result = df.copy()
# First we filter the geometry types inside GeometryCollections objects
# (e.g. GeometryCollection([polygon, point]) -> polygon)
# we do this separately on only the relevant rows, as this is an expensive
# operation (an expensive no-op for geometry types other than collections)
is_collection = result.geom_type == "GeometryCollection"
if is_collection.any():
geom_col = result._geometry_column_name
collections = result.loc[is_collection, [geom_col]]
exploded = collections.reset_index(drop=True).explode(index_parts=True)
exploded = exploded.reset_index(level=0)
orig_num_geoms_exploded = exploded.shape[0]
exploded.loc[~exploded.geom_type.isin(geom_types), geom_col] = None
num_dropped_collection = (
orig_num_geoms_exploded - exploded.geometry.isna().sum()
)
# level_0 created with above reset_index operation
# and represents the original geometry collections
# TODO avoiding dissolve to call union_all in this case could further
# improve performance (we only need to collect geometries in their
# respective Multi version)
dissolved = exploded.dissolve(by="level_0")
result.loc[is_collection, geom_col] = dissolved[geom_col].values
else:
num_dropped_collection = 0
# Now we filter all geometries (in theory we don't need to do this
# again for the rows handled above for GeometryCollections, but filtering
# them out is probably more expensive as simply including them when this
# is typically about only a few rows)
orig_num_geoms = result.shape[0]
result = result.loc[result.geom_type.isin(geom_types)]
num_dropped = orig_num_geoms - result.shape[0]
if (num_dropped > 0 or num_dropped_collection > 0) and keep_geom_type_warning:
warnings.warn(
"`keep_geom_type=True` in overlay resulted in "
f"{num_dropped + num_dropped_collection} dropped geometries of different "
"geometry types than df1 has. Set `keep_geom_type=False` to retain all "
"geometries",
UserWarning,
stacklevel=2,
)
return result
|