1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
|
import warnings
from functools import partial
import numpy as np
import pandas as pd
from geopandas import GeoDataFrame
from geopandas._compat import PANDAS_GE_30
from geopandas.array import _check_crs, _crs_mismatch_warn
def sjoin(
left_df,
right_df,
how="inner",
predicate="intersects",
lsuffix="left",
rsuffix="right",
distance=None,
on_attribute=None,
**kwargs,
):
"""Spatial join of two GeoDataFrames.
See the User Guide page :doc:`../../user_guide/mergingdata` for details.
Parameters
----------
left_df, right_df : GeoDataFrames
how : string, default 'inner'
The type of join:
* 'left': use keys from left_df; retain only left_df geometry column
* 'right': use keys from right_df; retain only right_df geometry column
* 'inner': use intersection of keys from both dfs; retain only
left_df geometry column
predicate : string, default 'intersects'
Binary predicate. Valid values are determined by the spatial index used.
You can check the valid values in left_df or right_df as
``left_df.sindex.valid_query_predicates`` or
``right_df.sindex.valid_query_predicates``
Replaces deprecated ``op`` parameter.
lsuffix : string, default 'left'
Suffix to apply to overlapping column names (left GeoDataFrame).
rsuffix : string, default 'right'
Suffix to apply to overlapping column names (right GeoDataFrame).
distance : number or array_like, optional
Distance(s) around each input geometry within which to query the tree
for the 'dwithin' predicate. If array_like, must be
one-dimesional with length equal to length of left GeoDataFrame.
Required if ``predicate='dwithin'``.
on_attribute : string, list or tuple
Column name(s) to join on as an additional join restriction on top
of the spatial predicate. These must be found in both DataFrames.
If set, observations are joined only if the predicate applies
and values in specified columns match.
Examples
--------
>>> import geodatasets
>>> chicago = geopandas.read_file(
... geodatasets.get_path("geoda.chicago_health")
... )
>>> groceries = geopandas.read_file(
... geodatasets.get_path("geoda.groceries")
... ).to_crs(chicago.crs)
>>> chicago.head() # doctest: +SKIP
ComAreaID ... geometry
0 35 ... POLYGON ((-87.60914 41.84469, -87.60915 41.844...
1 36 ... POLYGON ((-87.59215 41.81693, -87.59231 41.816...
2 37 ... POLYGON ((-87.62880 41.80189, -87.62879 41.801...
3 38 ... POLYGON ((-87.60671 41.81681, -87.60670 41.816...
4 39 ... POLYGON ((-87.59215 41.81693, -87.59215 41.816...
[5 rows x 87 columns]
>>> groceries.head() # doctest: +SKIP
OBJECTID Ycoord ... Category geometry
0 16 41.973266 ... NaN MULTIPOINT (-87.65661 41.97321)
1 18 41.696367 ... NaN MULTIPOINT (-87.68136 41.69713)
2 22 41.868634 ... NaN MULTIPOINT (-87.63918 41.86847)
3 23 41.877590 ... new MULTIPOINT (-87.65495 41.87783)
4 27 41.737696 ... NaN MULTIPOINT (-87.62715 41.73623)
[5 rows x 8 columns]
>>> groceries_w_communities = geopandas.sjoin(groceries, chicago)
>>> groceries_w_communities.head() # doctest: +SKIP
OBJECTID community geometry
0 16 UPTOWN MULTIPOINT ((-87.65661 41.97321))
1 18 MORGAN PARK MULTIPOINT ((-87.68136 41.69713))
2 22 NEAR WEST SIDE MULTIPOINT ((-87.63918 41.86847))
3 23 NEAR WEST SIDE MULTIPOINT ((-87.65495 41.87783))
4 27 CHATHAM MULTIPOINT ((-87.62715 41.73623))
[5 rows x 95 columns]
See Also
--------
overlay : overlay operation resulting in a new geometry
GeoDataFrame.sjoin : equivalent method
Notes
-----
Every operation in GeoPandas is planar, i.e. the potential third
dimension is not taken into account.
"""
if kwargs:
first = next(iter(kwargs.keys()))
raise TypeError(f"sjoin() got an unexpected keyword argument '{first}'")
on_attribute = _maybe_make_list(on_attribute)
_basic_checks(left_df, right_df, how, lsuffix, rsuffix, on_attribute=on_attribute)
indices = _geom_predicate_query(
left_df, right_df, predicate, distance, on_attribute=on_attribute
)
joined, _ = _frame_join(
left_df,
right_df,
indices,
None,
how,
lsuffix,
rsuffix,
predicate,
on_attribute=on_attribute,
)
return joined
def _maybe_make_list(obj):
if isinstance(obj, tuple):
return list(obj)
if obj is not None and not isinstance(obj, list):
return [obj]
return obj
def _basic_checks(left_df, right_df, how, lsuffix, rsuffix, on_attribute=None):
"""Check the validity of join input parameters.
`how` must be one of the valid options.
`'index_'` concatenated with `lsuffix` or `rsuffix` must not already
exist as columns in the left or right data frames.
Parameters
----------
left_df : GeoDataFrame
right_df : GeoData Frame
how : str, one of 'left', 'right', 'inner'
join type
lsuffix : str
left index suffix
rsuffix : str
right index suffix
on_attribute : list, default None
list of column names to merge on along with geometry
"""
if not isinstance(left_df, GeoDataFrame):
raise ValueError(f"'left_df' should be GeoDataFrame, got {type(left_df)}")
if not isinstance(right_df, GeoDataFrame):
raise ValueError(f"'right_df' should be GeoDataFrame, got {type(right_df)}")
allowed_hows = ["left", "right", "inner"]
if how not in allowed_hows:
raise ValueError(f'`how` was "{how}" but is expected to be in {allowed_hows}')
if not _check_crs(left_df, right_df):
_crs_mismatch_warn(left_df, right_df, stacklevel=4)
if on_attribute:
for attr in on_attribute:
if (attr not in left_df) and (attr not in right_df):
raise ValueError(
f"Expected column {attr} is missing from both of the dataframes."
)
if attr not in left_df:
raise ValueError(
f"Expected column {attr} is missing from the left dataframe."
)
if attr not in right_df:
raise ValueError(
f"Expected column {attr} is missing from the right dataframe."
)
if attr in (left_df.geometry.name, right_df.geometry.name):
raise ValueError(
"Active geometry column cannot be used as an input "
"for on_attribute parameter."
)
def _geom_predicate_query(left_df, right_df, predicate, distance, on_attribute=None):
"""Compute geometric comparisons and get matching indices.
Parameters
----------
left_df : GeoDataFrame
right_df : GeoDataFrame
predicate : string
Binary predicate to query.
on_attribute: list, default None
list of column names to merge on along with geometry
Returns
-------
DataFrame
DataFrame with matching indices in
columns named `_key_left` and `_key_right`.
"""
original_predicate = predicate
if predicate == "within":
# within is implemented as the inverse of contains
# contains is a faster predicate
# see discussion at https://github.com/geopandas/geopandas/pull/1421
predicate = "contains"
sindex = left_df.sindex
input_geoms = right_df.geometry
else:
# all other predicates are symmetric
# keep them the same
sindex = right_df.sindex
input_geoms = left_df.geometry
if sindex:
l_idx, r_idx = sindex.query(
input_geoms, predicate=predicate, sort=False, distance=distance
)
else:
# when sindex is empty / has no valid geometries
l_idx, r_idx = np.array([], dtype=np.intp), np.array([], dtype=np.intp)
if original_predicate == "within":
# within is implemented as the inverse of contains
# flip back the results
r_idx, l_idx = l_idx, r_idx
indexer = np.lexsort((r_idx, l_idx))
l_idx = l_idx[indexer]
r_idx = r_idx[indexer]
if on_attribute:
for attr in on_attribute:
(l_idx, r_idx), _ = _filter_shared_attribute(
left_df, right_df, l_idx, r_idx, attr
)
return l_idx, r_idx
def _reset_index_with_suffix(df, suffix, other):
"""
Equivalent of df.reset_index(), but with adding 'suffix' to auto-generated
column names.
"""
index_original = df.index.names
if PANDAS_GE_30:
df_reset = df.reset_index()
else:
# we already made a copy of the dataframe in _frame_join before getting here
df_reset = df
df_reset.reset_index(inplace=True)
column_names = df_reset.columns.to_numpy(copy=True)
for i, label in enumerate(index_original):
# if the original label was None, add suffix to auto-generated name
if label is None:
new_label = column_names[i]
if "level" in new_label:
# reset_index of MultiIndex gives "level_i" names, preserve the "i"
lev = new_label.split("_")[1]
new_label = f"index_{suffix}{lev}"
else:
new_label = f"index_{suffix}"
# check new label will not be in other dataframe
if new_label in df.columns or new_label in other.columns:
raise ValueError(
f"'{new_label}' cannot be a column name in the frames being joined"
)
column_names[i] = new_label
return df_reset, pd.Index(column_names)
def _process_column_names_with_suffix(
left: pd.Index, right: pd.Index, suffixes, left_df, right_df
):
"""
Add suffixes to overlapping labels (ignoring the geometry column).
This is based on pandas' merge logic at https://github.com/pandas-dev/pandas/blob/
a0779adb183345a8eb4be58b3ad00c223da58768/pandas/core/reshape/merge.py#L2300-L2370
"""
to_rename = left.intersection(right)
if len(to_rename) == 0:
return left, right
lsuffix, rsuffix = suffixes
if not lsuffix and not rsuffix:
raise ValueError(f"columns overlap but no suffix specified: {to_rename}")
def renamer(x, suffix, geometry):
if x in to_rename and x != geometry and suffix is not None:
return f"{x}_{suffix}"
return x
lrenamer = partial(
renamer,
suffix=lsuffix,
geometry=getattr(left_df, "_geometry_column_name", None),
)
rrenamer = partial(
renamer,
suffix=rsuffix,
geometry=getattr(right_df, "_geometry_column_name", None),
)
# TODO retain index name?
left_renamed = pd.Index([lrenamer(lab) for lab in left])
right_renamed = pd.Index([rrenamer(lab) for lab in right])
dups = []
if not left_renamed.is_unique:
# Only warn when duplicates are caused because of suffixes, already duplicated
# columns in origin should not warn
dups = left_renamed[(left_renamed.duplicated()) & (~left.duplicated())].tolist()
if not right_renamed.is_unique:
dups.extend(
right_renamed[(right_renamed.duplicated()) & (~right.duplicated())].tolist()
)
# TODO turn this into an error (pandas has done so as well)
if dups:
warnings.warn(
f"Passing 'suffixes' which cause duplicate columns {set(dups)} in the "
f"result is deprecated and will raise a MergeError in a future version.",
FutureWarning,
stacklevel=4,
)
return left_renamed, right_renamed
def _restore_index(joined, index_names, index_names_original):
"""
Set back the the original index columns, and restoring their name as `None`
if they didn't have a name originally.
"""
if PANDAS_GE_30:
joined = joined.set_index(list(index_names))
else:
joined.set_index(list(index_names), inplace=True)
# restore the fact that the index didn't have a name
joined_index_names = list(joined.index.names)
for i, label in enumerate(index_names_original):
if label is None:
joined_index_names[i] = None
joined.index.names = joined_index_names
return joined
def _adjust_indexers(indices, distances, original_length, how, predicate):
"""Adjust the indexers for the join based on the `how` parameter.
The left/right indexers from the query represents an inner join.
For a left or right join, we need to adjust them to include the rows
that would not be present in an inner join.
"""
# the indices represent an inner join, no adjustment needed
if how == "inner":
return indices, distances
l_idx, r_idx = indices
if how == "right":
# re-sort so it is sorted by the right indexer
indexer = np.lexsort((l_idx, r_idx))
l_idx, r_idx = l_idx[indexer], r_idx[indexer]
if distances is not None:
distances = distances[indexer]
# switch order
r_idx, l_idx = l_idx, r_idx
# determine which indices are missing and where they would need to be inserted
idx = np.arange(original_length)
l_idx_missing = idx[~np.isin(idx, l_idx)]
insert_idx = np.searchsorted(l_idx, l_idx_missing)
# for the left indexer, insert those missing indices
l_idx = np.insert(l_idx, insert_idx, l_idx_missing)
# for the right indexer, insert -1 -> to get missing values in pandas' reindexing
r_idx = np.insert(r_idx, insert_idx, -1)
# for the indices, already insert those missing values manually
if distances is not None:
distances = np.insert(distances, insert_idx, np.nan)
if how == "right":
# switch back
l_idx, r_idx = r_idx, l_idx
return (l_idx, r_idx), distances
def _frame_join(
left_df,
right_df,
indices,
distances,
how,
lsuffix,
rsuffix,
predicate,
on_attribute=None,
):
"""Join the GeoDataFrames at the DataFrame level.
Parameters
----------
left_df : GeoDataFrame
right_df : GeoDataFrame
indices : tuple of ndarray
Indices returned by the geometric join. Tuple with with integer
indices representing the matches from `left_df` and `right_df`
respectively.
distances : ndarray, optional
Passed trough and adapted based on the indices, if needed.
how : string
The type of join to use on the DataFrame level.
lsuffix : string
Suffix to apply to overlapping column names (left GeoDataFrame).
rsuffix : string
Suffix to apply to overlapping column names (right GeoDataFrame).
on_attribute: list, default None
list of column names to merge on along with geometry
Returns
-------
GeoDataFrame
Joined GeoDataFrame.
"""
if on_attribute: # avoid renaming or duplicating shared column
right_df = right_df.drop(on_attribute, axis=1)
if how in ("inner", "left"):
right_df = right_df.drop(right_df.geometry.name, axis=1)
else: # how == 'right':
left_df = left_df.drop(left_df.geometry.name, axis=1)
left_df = left_df.copy(deep=False)
left_nlevels = left_df.index.nlevels
left_index_original = left_df.index.names
left_df, left_column_names = _reset_index_with_suffix(left_df, lsuffix, right_df)
right_df = right_df.copy(deep=False)
right_nlevels = right_df.index.nlevels
right_index_original = right_df.index.names
right_df, right_column_names = _reset_index_with_suffix(right_df, rsuffix, left_df)
# if conflicting names in left and right, add suffix
left_column_names, right_column_names = _process_column_names_with_suffix(
left_column_names,
right_column_names,
(lsuffix, rsuffix),
left_df,
right_df,
)
left_df.columns = left_column_names
right_df.columns = right_column_names
left_index = left_df.columns[:left_nlevels]
right_index = right_df.columns[:right_nlevels]
# perform join on the dataframes
original_length = len(right_df) if how == "right" else len(left_df)
(l_idx, r_idx), distances = _adjust_indexers(
indices, distances, original_length, how, predicate
)
# the `take` method doesn't allow introducing NaNs with -1 indices
# left = left_df.take(l_idx)
# therefore we are using the private _reindex_with_indexers as workaround
new_index = pd.RangeIndex(len(l_idx))
left = left_df._reindex_with_indexers({0: (new_index, l_idx)})
right = right_df._reindex_with_indexers({0: (new_index, r_idx)})
if PANDAS_GE_30:
kwargs = {}
else:
kwargs = dict(copy=False)
joined = pd.concat([left, right], axis=1, **kwargs)
if how in ("inner", "left"):
joined = _restore_index(joined, left_index, left_index_original)
else: # how == 'right':
joined = joined.set_geometry(right_df.geometry.name)
joined = _restore_index(joined, right_index, right_index_original)
return joined, distances
def _nearest_query(
left_df: GeoDataFrame,
right_df: GeoDataFrame,
max_distance: float,
how: str,
return_distance: bool,
exclusive: bool,
on_attribute: list | None = None,
):
# use the opposite of the join direction for the index
use_left_as_sindex = how == "right"
if use_left_as_sindex:
sindex = left_df.sindex
query = right_df.geometry
else:
sindex = right_df.sindex
query = left_df.geometry
if sindex:
res = sindex.nearest(
query,
return_all=True,
max_distance=max_distance,
return_distance=return_distance,
exclusive=exclusive,
)
if return_distance:
(input_idx, tree_idx), distances = res
else:
(input_idx, tree_idx) = res
distances = None
if use_left_as_sindex:
l_idx, r_idx = tree_idx, input_idx
sort_order = np.argsort(l_idx, kind="stable")
l_idx, r_idx = l_idx[sort_order], r_idx[sort_order]
if distances is not None:
distances = distances[sort_order]
else:
l_idx, r_idx = input_idx, tree_idx
else:
# when sindex is empty / has no valid geometries
l_idx, r_idx = np.array([], dtype=np.intp), np.array([], dtype=np.intp)
if return_distance:
distances = np.array([], dtype=np.float64)
else:
distances = None
if on_attribute:
for attr in on_attribute:
(l_idx, r_idx), shared_attribute_rows = _filter_shared_attribute(
left_df, right_df, l_idx, r_idx, attr
)
distances = distances[shared_attribute_rows]
return (l_idx, r_idx), distances
def _filter_shared_attribute(left_df, right_df, l_idx, r_idx, attribute):
"""Return the indices for the left and right dataframe that share the same entry
in the attribute column.
Also returns a Boolean `shared_attribute_rows` for rows with the same entry.
"""
shared_attribute_rows = (
left_df[attribute].iloc[l_idx].values == right_df[attribute].iloc[r_idx].values
)
l_idx = l_idx[shared_attribute_rows]
r_idx = r_idx[shared_attribute_rows]
return (l_idx, r_idx), shared_attribute_rows
def sjoin_nearest(
left_df: GeoDataFrame,
right_df: GeoDataFrame,
how: str = "inner",
max_distance: float | None = None,
lsuffix: str = "left",
rsuffix: str = "right",
distance_col: str | None = None,
exclusive: bool = False,
) -> GeoDataFrame:
"""Spatial join of two GeoDataFrames based on the distance between their geometries.
Results will include multiple output records for a single input record
where there are multiple equidistant nearest or intersected neighbors.
Distance is calculated in CRS units and can be returned using the
`distance_col` parameter.
See the User Guide page
https://geopandas.readthedocs.io/en/latest/docs/user_guide/mergingdata.html
for more details.
Parameters
----------
left_df, right_df : GeoDataFrames
how : string, default 'inner'
The type of join:
* 'left': use keys from left_df; retain only left_df geometry column
* 'right': use keys from right_df; retain only right_df geometry column
* 'inner': use intersection of keys from both dfs; retain only
left_df geometry column
max_distance : float, default None
Maximum distance within which to query for nearest geometry.
Must be greater than 0.
The max_distance used to search for nearest items in the tree may have a
significant impact on performance by reducing the number of input
geometries that are evaluated for nearest items in the tree.
lsuffix : string, default 'left'
Suffix to apply to overlapping column names (left GeoDataFrame).
rsuffix : string, default 'right'
Suffix to apply to overlapping column names (right GeoDataFrame).
distance_col : string, default None
If set, save the distances computed between matching geometries under a
column of this name in the joined GeoDataFrame.
exclusive : bool, default False
If True, the nearest geometries that are equal to the input geometry
will not be returned, default False.
Examples
--------
>>> import geodatasets
>>> groceries = geopandas.read_file(
... geodatasets.get_path("geoda.groceries")
... )
>>> chicago = geopandas.read_file(
... geodatasets.get_path("geoda.chicago_health")
... ).to_crs(groceries.crs)
>>> chicago.head() # doctest: +SKIP
ComAreaID ... geometry
0 35 ... POLYGON ((-87.60914 41.84469, -87.60915 41.844...
1 36 ... POLYGON ((-87.59215 41.81693, -87.59231 41.816...
2 37 ... POLYGON ((-87.62880 41.80189, -87.62879 41.801...
3 38 ... POLYGON ((-87.60671 41.81681, -87.60670 41.816...
4 39 ... POLYGON ((-87.59215 41.81693, -87.59215 41.816...
[5 rows x 87 columns]
>>> groceries.head() # doctest: +SKIP
OBJECTID Ycoord ... Category geometry
0 16 41.973266 ... NaN MULTIPOINT ((-87.65661 41.97321))
1 18 41.696367 ... NaN MULTIPOINT ((-87.68136 41.69713))
2 22 41.868634 ... NaN MULTIPOINT ((-87.63918 41.86847))
3 23 41.877590 ... new MULTIPOINT ((-87.65495 41.87783))
4 27 41.737696 ... NaN MULTIPOINT ((-87.62715 41.73623))
[5 rows x 8 columns]
>>> groceries_w_communities = geopandas.sjoin_nearest(groceries, chicago)
>>> groceries_w_communities[["Chain", "community", "geometry"]].head(2)
Chain community geometry
0 VIET HOA PLAZA UPTOWN MULTIPOINT ((1168268.672 1933554.35))
1 COUNTY FAIR FOODS MORGAN PARK MULTIPOINT ((1162302.618 1832900.224))
To include the distances:
>>> groceries_w_communities = geopandas.sjoin_nearest(groceries, chicago, \
distance_col="distances")
>>> groceries_w_communities[["Chain", "community", \
"distances"]].head(2)
Chain community distances
0 VIET HOA PLAZA UPTOWN 0.0
1 COUNTY FAIR FOODS MORGAN PARK 0.0
In the following example, we get multiple groceries for Uptown because all
results are equidistant (in this case zero because they intersect).
In fact, we get 4 results in total:
>>> chicago_w_groceries = geopandas.sjoin_nearest(groceries, chicago, \
distance_col="distances", how="right")
>>> uptown_results = \
chicago_w_groceries[chicago_w_groceries["community"] == "UPTOWN"]
>>> uptown_results[["Chain", "community"]]
Chain community
30 VIET HOA PLAZA UPTOWN
30 JEWEL OSCO UPTOWN
30 TARGET UPTOWN
30 Mariano's UPTOWN
See Also
--------
sjoin : binary predicate joins
GeoDataFrame.sjoin_nearest : equivalent method
Notes
-----
Since this join relies on distances, results will be inaccurate
if your geometries are in a geographic CRS.
Every operation in GeoPandas is planar, i.e. the potential third
dimension is not taken into account.
"""
_basic_checks(left_df, right_df, how, lsuffix, rsuffix)
left_df.geometry.values.check_geographic_crs(stacklevel=1)
right_df.geometry.values.check_geographic_crs(stacklevel=1)
return_distance = distance_col is not None
indices, distances = _nearest_query(
left_df,
right_df,
max_distance,
how,
return_distance,
exclusive,
)
joined, distances = _frame_join(
left_df,
right_df,
indices,
distances,
how,
lsuffix,
rsuffix,
None,
)
if return_distance:
joined[distance_col] = distances
return joined
|