1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
|
"""Tests for MODIS interpolators."""
import warnings
import numpy as np
from pyproj import Geod
import h5py
import os
import dask
import dask.array as da
import xarray as xr
import pytest
from .utils import CustomScheduler
from geotiepoints.modisinterpolator import (modis_1km_to_250m,
modis_1km_to_500m,
modis_5km_to_1km,
modis_5km_to_500m,
modis_5km_to_250m)
FILENAME_DATA = os.path.join(
os.path.dirname(__file__), '../../testdata/modis_test_data.h5')
def _to_dask(arr):
return da.from_array(arr, chunks=4096)
def _to_da(arr):
return xr.DataArray(_to_dask(arr), dims=['y', 'x'])
def _load_h5_geo_vars(*var_names):
h5f = h5py.File(FILENAME_DATA, 'r')
return tuple(h5f[var_name] for var_name in var_names)
def load_1km_lonlat_as_numpy():
lon1, lat1 = _load_h5_geo_vars('lon_1km', 'lat_1km')
return lon1[:], lat1[:]
def load_1km_lonlat_as_dask():
lon1, lat1 = _load_h5_geo_vars('lon_1km', 'lat_1km')
return _to_dask(lon1), _to_dask(lat1)
def load_1km_lonlat_as_xarray_dask():
lon1, lat1 = _load_h5_geo_vars('lon_1km', 'lat_1km')
return _to_da(lon1), _to_da(lat1)
def load_1km_lonlat_satz_as_xarray_dask():
lon1, lat1, satz1 = _load_h5_geo_vars('lon_1km', 'lat_1km', 'satz_1km')
return _to_da(lon1), _to_da(lat1), _to_da(satz1)
def load_5km_lonlat_satz1_as_xarray_dask():
lon1, lat1, satz1 = _load_h5_geo_vars('lon_1km', 'lat_1km', 'satz_1km')
lon5 = lon1[2::5, 2::5]
lat5 = lat1[2::5, 2::5]
satz5 = satz1[2::5, 2::5]
return _to_da(lon5), _to_da(lat5), _to_da(satz5)
def load_l2_5km_lonlat_satz1_as_xarray_dask():
lon1, lat1, satz1 = _load_h5_geo_vars('lon_1km', 'lat_1km', 'satz_1km')
lon5 = lon1[2::5, 2:-5:5]
lat5 = lat1[2::5, 2:-5:5]
satz5 = satz1[2::5, 2:-5:5]
return _to_da(lon5), _to_da(lat5), _to_da(satz5)
def load_500m_lonlat_expected_as_xarray_dask():
h5f = h5py.File(FILENAME_DATA, 'r')
lon500 = _to_da(h5f['lon_500m'])
lat500 = _to_da(h5f['lat_500m'])
return lon500, lat500
def load_250m_lonlat_expected_as_xarray_dask():
h5f = h5py.File(FILENAME_DATA, 'r')
lon250 = _to_da(h5f['lon_250m'])
lat250 = _to_da(h5f['lat_250m'])
return lon250, lat250
def assert_geodetic_distance(
lons_actual: np.ndarray,
lats_actual: np.ndarray,
lons_desired: np.ndarray,
lats_desired: np.ndarray,
max_distance_diff: float,
) -> None:
"""Check that the geodetic distance between two sets of coordinates is smaller than a threshold.
Args:
lons_actual: Longitude array produced by interpolation being tested.
lats_actual: Latitude array produced by interpolation being tested.
lons_desired: Longitude array of expected/truth coordinates.
lats_desired: Latitude array of expected/truth coordinates.
max_distance_diff: Limit of allowed distance difference in meters.
"""
g = Geod(ellps="WGS84")
_, _, dist = g.inv(lons_actual, lats_actual, lons_desired, lats_desired)
np.testing.assert_array_less(
dist, max_distance_diff,
err_msg=f"Coordinates are greater than {max_distance_diff} geodetic "
"meters from the expected coordinates.")
@pytest.mark.skipif(not os.path.isfile(FILENAME_DATA), reason='data file not available')
@pytest.mark.parametrize(
("input_func", "exp_func", "interp_func", "dist_max", "exp_5km_warning"),
[
(load_1km_lonlat_satz_as_xarray_dask, load_500m_lonlat_expected_as_xarray_dask, modis_1km_to_500m, 5, False),
(load_1km_lonlat_satz_as_xarray_dask, load_250m_lonlat_expected_as_xarray_dask, modis_1km_to_250m, 8.30, False),
(load_5km_lonlat_satz1_as_xarray_dask, load_1km_lonlat_as_xarray_dask, modis_5km_to_1km, 25, False),
(load_l2_5km_lonlat_satz1_as_xarray_dask, load_1km_lonlat_as_xarray_dask, modis_5km_to_1km, 110, False),
(load_5km_lonlat_satz1_as_xarray_dask, load_500m_lonlat_expected_as_xarray_dask, modis_5km_to_500m,
19500, True),
(load_5km_lonlat_satz1_as_xarray_dask, load_250m_lonlat_expected_as_xarray_dask, modis_5km_to_250m,
25800, True),
]
)
def test_sat_angle_based_interp(input_func, exp_func, interp_func, dist_max, exp_5km_warning):
lon1, lat1, satz1 = input_func()
lons_exp, lats_exp = exp_func()
# when working with dask arrays, we shouldn't compute anything
with dask.config.set(scheduler=CustomScheduler(0)), warnings.catch_warnings(record=True) as warns:
lons, lats = interp_func(lon1, lat1, satz1)
has_5km_warning = any("may result in poor quality" in str(w.message) for w in warns)
if exp_5km_warning:
assert has_5km_warning
else:
assert not has_5km_warning
if hasattr(lons, "compute"):
lons, lats = da.compute(lons, lats)
assert_geodetic_distance(lons, lats, lons_exp, lats_exp, dist_max)
assert not np.any(np.isnan(lons))
assert not np.any(np.isnan(lats))
@pytest.mark.skipif(not os.path.isfile(FILENAME_DATA), reason='data file not available')
def test_sat_angle_based_interp_nan_handling():
# See GH #19
lon1, lat1, satz1 = load_1km_lonlat_satz_as_xarray_dask()
satz1 = _to_da(abs(np.linspace(-65.4, 65.4, 1354, dtype=np.float32)).repeat(20).reshape(-1, 20).T)
lons, lats = modis_1km_to_500m(lon1, lat1, satz1)
assert not np.any(np.isnan(lons.compute()))
assert not np.any(np.isnan(lats.compute()))
@pytest.mark.skipif(not os.path.isfile(FILENAME_DATA), reason='data file not available')
def test_poles_datum():
orig_lon, lat1, satz1 = load_1km_lonlat_satz_as_xarray_dask()
lon1 = orig_lon + 180
lon1 = xr.where(lon1 > 180, lon1 - 360, lon1)
lat5 = lat1[2::5, 2::5]
lon5 = lon1[2::5, 2::5]
satz5 = satz1[2::5, 2::5]
lons, lats = modis_5km_to_1km(lon5, lat5, satz5)
lons = lons + 180
lons = xr.where(lons > 180, lons - 360, lons)
assert_geodetic_distance(lons, lats, orig_lon, lat1, 25.0)
|