File: create.py

package info (click to toggle)
python-gffutils 0.13-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,164 kB
  • sloc: python: 5,557; makefile: 57; sh: 13
file content (1419 lines) | stat: -rw-r--r-- 54,302 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
import copy
import warnings
import collections
import tempfile
import sys
import os
import sqlite3
from textwrap import dedent
from gffutils import constants
from gffutils import version
from gffutils import bins
from gffutils import helpers
from gffutils import feature
from gffutils import interface
from gffutils import iterators
from gffutils.exceptions import EmptyInputError

import logging

formatter = logging.Formatter("%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)
ch = logging.StreamHandler()
ch.setLevel(logging.DEBUG)
ch.setFormatter(formatter)
logger.addHandler(ch)


def deprecation_handler(kwargs):
    """
    As things change from version to version, deal with them here.
    """
    # After reconsidering, let's leave `infer_gene_extent` for another release.
    # But when it's time to deprecate it, use this code:
    if 0:
        if "infer_gene_extent" in kwargs:
            raise ValueError(
                "'infer_gene_extent' is deprecated as of version 0.8.4 in "
                "favor of more granular control over inferring genes and/or "
                "transcripts.  The previous default was "
                "'infer_gene_extent=True`, which corresponds to the new "
                "defaults "
                "'disable_infer_genes=False' and "
                "'disable_infer_transcripts=False'. Please see the docstring "
                "for gffutils.create_db for details."
            )
    if len(kwargs) > 0:
        raise TypeError("unhandled kwarg in %s" % kwargs)


class _DBCreator(object):
    def __init__(
        self,
        data,
        dbfn,
        force=False,
        verbose=False,
        id_spec=None,
        merge_strategy="error",
        checklines=10,
        transform=None,
        force_dialect_check=False,
        from_string=False,
        dialect=None,
        default_encoding="utf-8",
        disable_infer_genes=False,
        disable_infer_transcripts=False,
        infer_gene_extent=True,
        force_merge_fields=None,
        text_factory=str,
        pragmas=constants.default_pragmas,
        _keep_tempfiles=False,
        directives=None,
        **kwargs
    ):
        """
        Base class for _GFFDBCreator and _GTFDBCreator; see create_db()
        function for docs
        """
        self._keep_tempfiles = _keep_tempfiles
        if force_merge_fields is None:
            force_merge_fields = []
        if merge_strategy == "merge":
            if set(["start", "end"]).intersection(force_merge_fields):
                raise ValueError(
                    "Can't merge start/end fields since " "they must be integers"
                )
            warn = set(force_merge_fields).intersection(["frame", "strand"])
            for w in warn:
                warnings.warn(
                    "%s field will be merged for features with the same ID; "
                    "this may result in unusable features." % w
                )

        self.force_merge_fields = force_merge_fields
        self.pragmas = pragmas
        self.merge_strategy = merge_strategy
        self.default_encoding = default_encoding
        if directives is None:
            directives = []
        self.directives = directives

        if not infer_gene_extent:
            warnings.warn(
                "'infer_gene_extent' will be deprecated. For now, "
                "the following equivalent values were automatically "
                "set: 'disable_infer_genes=True', "
                "'disable_infer_transcripts=True'. Please use these "
                "instead in the future."
            )
            disable_infer_genes = True
            disable_infer_transcripts = True

        self.disable_infer_genes = disable_infer_genes
        self.disable_infer_transcripts = disable_infer_transcripts

        if force:
            if os.path.exists(dbfn):
                os.unlink(dbfn)
        self.dbfn = dbfn
        self.id_spec = id_spec
        if isinstance(dbfn, str):
            conn = sqlite3.connect(dbfn)
        else:
            conn = dbfn
        self.conn = conn
        self.conn.row_factory = sqlite3.Row
        self.set_verbose(verbose)

        if text_factory is not None:
            logger.debug("setting text factory to %s" % text_factory)
            self.conn.text_factory = text_factory
        self._data = data

        self._orig_logger_level = logger.level

        self.iterator = iterators.DataIterator(
            data=data,
            checklines=checklines,
            transform=transform,
            force_dialect_check=force_dialect_check,
            from_string=from_string,
            dialect=dialect,
        )

        # keys are featuretypes, values are integers. Results in unique,
        # derived feature IDs like "exon_94".
        if "_autoincrements" in kwargs:
            self._autoincrements = kwargs["_autoincrements"]
        else:
            self._autoincrements = collections.defaultdict(int)

    def set_verbose(self, verbose=None):
        if verbose == "debug":
            logger.setLevel(logging.DEBUG)
        elif verbose:
            logger.setLevel(logging.INFO)
        else:
            logger.setLevel(logging.ERROR)
        self.verbose = verbose

    def _increment_featuretype_autoid(self, key):
        self._autoincrements[key] += 1
        return "%s_%s" % (key, self._autoincrements[key])

    def _id_handler(self, f):
        """
        Given a Feature from self.iterator, figure out what the ID should be.

        This uses `self.id_spec` to identify the ID.
        """

        # If id_spec is a string or callable, convert to iterable for later
        if isinstance(self.id_spec, str):
            id_key = [self.id_spec]
        elif hasattr(self.id_spec, "__call__"):
            id_key = [self.id_spec]

        # If dict, then assume it's a feature -> attribute mapping, e.g.,
        # {'gene': 'gene_id'} for GTF
        elif isinstance(self.id_spec, dict):
            try:
                id_key = self.id_spec[f.featuretype]
                if isinstance(id_key, str):
                    id_key = [id_key]

            # Otherwise, use default auto-increment.
            except KeyError:
                return self._increment_featuretype_autoid(f.featuretype)

        # Otherwise assume it's an iterable.
        else:
            id_key = self.id_spec

        # Then try them in order, returning the first one that works:
        for k in id_key:

            if hasattr(k, "__call__"):
                _id = k(f)
                if _id:
                    if _id.startswith("autoincrement:"):
                        return self._increment_featuretype_autoid(_id[14:])
                    return _id
            else:
                # use GFF fields rather than attributes for cases like :seqid:
                # or :strand:
                if (len(k) > 3) and (k[0] == ":") and (k[-1] == ":"):
                    # No trailing [0] here to get first item -- only attributes
                    # key/vals are forced into lists, not standard GFF fields
                    # like seqid or strand.
                    return getattr(f, k[1:-1])
                else:
                    try:
                        if len(f.attributes[k]) > 1:
                            raise ValueError(
                                "The ID field {} has more than one value but "
                                "a single value is required for a primary key in the "
                                "database. Consider using a custom id_spec to "
                                "convert these multiple values into a single "
                                "value".format(k)
                            )
                    except KeyError:
                        pass
                    try:
                        return f.attributes[k][0]
                    except (KeyError, IndexError):
                        pass
        # If we get here, then default autoincrement
        return self._increment_featuretype_autoid(f.featuretype)

    def _get_feature(self, ID):
        c = self.conn.cursor()
        results = c.execute(constants._SELECT + " WHERE id = ?", (ID,)).fetchone()
        return feature.Feature(dialect=self.iterator.dialect, **results)

    def _do_merge(self, f, merge_strategy, add_duplicate=False):
        """
        Different merge strategies upon name conflicts.

        "error":
            Raise error

        "warning"
            Log a warning, which indicates that all future instances of the
            same ID will be ignored

        "merge":
            Combine old and new attributes -- but only if everything else
            matches; otherwise error. This can be slow, but is thorough.

        "create_unique":
            Autoincrement based on the ID, always creating a new ID.

        "replace":
            Replaces existing database feature with `f`.
        """
        if merge_strategy == "error":
            raise ValueError("Duplicate ID {0.id}".format(f))

        if merge_strategy == "warning":
            logger.warning(
                "Duplicate lines in file for id '{0.id}'; "
                "ignoring all but the first".format(f)
            )
            return None, merge_strategy

        elif merge_strategy == "replace":
            return f, merge_strategy

        # This is by far the most complicated strategy.
        elif merge_strategy == "merge":

            # Recall that if we made it to this method, there was at least one
            # ID collision.

            # This will eventually contain the features that match ID AND that
            # match non-attribute fields like start, stop, strand, etc.
            features_to_merge = []

            # Iterate through all features that have the same ID according to
            # the id_spec provided.
            if self.verbose == "debug":
                logger.debug(
                    "candidates with same idspec: %s"
                    % ([i.id for i in self._candidate_merges(f)])
                )

            # If force_merge_fields was provided, don't check them even if
            # they're different. We are assuming the attributes field will be
            # different, hence the [:-1]
            _gffkeys_to_check = list(
                set(constants._gffkeys[:-1]).difference(self.force_merge_fields)
            )

            for existing_feature in self._candidate_merges(f):
                # Check other GFF fields (if not specified in
                # self.force_merge_fields) to make sure they match.
                other_attributes_same = True
                for k in _gffkeys_to_check:
                    if getattr(existing_feature, k) != getattr(f, k):
                        other_attributes_same = False
                        break

                if other_attributes_same:
                    # All the other GFF fields match. So this existing feature
                    # should be merged.
                    features_to_merge.append(existing_feature)
                    logger.debug(
                        "same attributes between:\nexisting: %s"
                        "\nthis    : %s" % (existing_feature, f)
                    )
                else:
                    # The existing feature's GFF fields don't match, so don't
                    # append anything.
                    logger.debug(
                        "different attributes between:\nexisting: %s\n"
                        "this    : %s" % (existing_feature, f)
                    )

            if len(features_to_merge) == 0:
                # No merge candidates found, so we should make a new ID for
                # this feature. This can happen when idspecs match, but other
                # fields (like start/stop) are different.  Call this method
                # again, but using the "create_unique" strategy, and then
                # record the newly-created ID in the duplicates table.
                orig_id = f.id
                uniqued_feature, merge_strategy = self._do_merge(
                    f, merge_strategy="create_unique"
                )
                self._add_duplicate(orig_id, uniqued_feature.id)
                return uniqued_feature, merge_strategy

            # Whoo! Found some candidates to merge.
            else:
                logger.debug("num candidates: %s" % len(features_to_merge))

                # This is the attributes dictionary we'll be modifying.
                merged_attributes = copy.deepcopy(f.attributes)

                # Keep track of non-attribute fields (this will be an empty
                # dict if no force_merge_fields)
                final_fields = dict(
                    [
                        (field, set([getattr(f, field)]))
                        for field in self.force_merge_fields
                    ]
                )

                # Update the attributes
                for existing_feature in features_to_merge:
                    logger.debug("\nmerging\n\n%s\n%s\n" % (f, existing_feature))
                    for k in existing_feature.attributes.keys():
                        v = merged_attributes.setdefault(k, [])
                        v.extend(existing_feature[k])
                        merged_attributes[k] = v

                    # Update the set of non-attribute fields found so far
                    for field in self.force_merge_fields:
                        final_fields[field].update([getattr(existing_feature, field)])

                # Set the merged attributes
                for k, v in merged_attributes.items():
                    merged_attributes[k] = list(set(v))
                existing_feature.attributes = merged_attributes

                # Set the final merged non-attributes
                for k, v in final_fields.items():
                    setattr(existing_feature, k, ",".join(sorted(map(str, v))))

                logger.debug("\nMERGED:\n%s" % existing_feature)
                return existing_feature, merge_strategy

        elif merge_strategy == "create_unique":
            f.id = self._increment_featuretype_autoid(f.id)
            return f, merge_strategy
        else:
            raise ValueError("Invalid merge strategy '%s'" % (merge_strategy))

    def _add_duplicate(self, idspecid, newid):
        """
        Adds a duplicate ID (as identified by id_spec) and its new ID to the
        duplicates table so that they can be later searched for merging.

        Parameters
        ----------
        newid : str
            The primary key used in the features table

        idspecid : str
            The ID identified by id_spec
        """
        c = self.conn.cursor()
        try:
            c.execute(
                """
                INSERT INTO duplicates
                (idspecid, newid)
                VALUES (?, ?)""",
                (idspecid, newid),
            )
        except sqlite3.ProgrammingError:
            c.execute(
                """
                INSERT INTO duplicates
                (idspecid, newid)
                VALUES (?, ?)""",
                (
                    idspecid.decode(self.default_encoding),
                    newid.decode(self.default_encoding),
                ),
            )
        logger.debug("added id=%s; new=%s" % (idspecid, newid))
        self.conn.commit()

    def _candidate_merges(self, f):
        """
        Identifies those features that originally had the same ID as `f`
        (according to the id_spec), but were modified because of duplicate
        IDs.
        """
        candidates = [self._get_feature(f.id)]
        c = self.conn.cursor()
        results = c.execute(
            constants._SELECT
            + """
            JOIN duplicates ON
            duplicates.newid = features.id WHERE duplicates.idspecid = ?""",
            (f.id,),
        )
        for i in results:
            candidates.append(feature.Feature(dialect=self.iterator.dialect, **i))
        return list(set(candidates))

    def _populate_from_lines(self, lines):
        raise NotImplementedError

    def _update_relations(self):
        raise NotImplementedError

    def _drop_indexes(self):
        c = self.conn.cursor()
        for index in constants.INDEXES:
            c.execute("DROP INDEX IF EXISTS ?", (index,))
        self.conn.commit()

    def set_pragmas(self, pragmas):
        """
        Set pragmas for the current database connection.

        Parameters
        ----------
        pragmas : dict
            Dictionary of pragmas; see constants.default_pragmas for a template
            and http://www.sqlite.org/pragma.html for a full list.
        """
        self.pragmas = pragmas
        c = self.conn.cursor()
        c.executescript(";\n".join(["PRAGMA %s=%s" % i for i in self.pragmas.items()]))
        self.conn.commit()

    def _init_tables(self):
        """
        Table creation
        """
        c = self.conn.cursor()
        v = sqlite3.sqlite_version_info
        self.set_pragmas(self.pragmas)
        c.executescript(constants.SCHEMA)
        self.conn.commit()

    def _finalize(self):
        """
        Various last-minute stuff to perform after file has been parsed and
        imported.

        In general, if you'll be adding stuff to the meta table, do it here.
        """
        c = self.conn.cursor()
        directives = self.directives
        c.executemany(
            """
                      INSERT INTO directives VALUES (?)
                      """,
            ((i,) for i in directives),
        )
        c.execute(
            """
            INSERT INTO meta (version, dialect)
            VALUES (:version, :dialect)""",
            dict(
                version=version.version, dialect=helpers._jsonify(self.iterator.dialect)
            ),
        )

        c.executemany(
            """
            INSERT OR REPLACE INTO autoincrements VALUES (?, ?)
            """,
            list(self._autoincrements.items()),
        )

        # These indexes are *well* worth the effort and extra storage: over
        # 500x speedup on code like this:
        #
        #   genes = []
        #   for i in db.features_of_type('snoRNA'):
        #       for k in db.parents(i, level=1, featuretype='gene'):
        #           genes.append(k.id)
        #
        logger.info("Creating relations(parent) index")
        c.execute("DROP INDEX IF EXISTS relationsparent")
        c.execute("CREATE INDEX relationsparent ON relations (parent)")
        logger.info("Creating relations(child) index")
        c.execute("DROP INDEX IF EXISTS relationschild")
        c.execute("CREATE INDEX relationschild ON relations (child)")
        logger.info("Creating features(featuretype) index")
        c.execute("DROP INDEX IF EXISTS featuretype")
        c.execute("CREATE INDEX featuretype ON features (featuretype)")
        logger.info("Creating features (seqid, start, end) index")
        c.execute("DROP INDEX IF EXISTS seqidstartend")
        c.execute("CREATE INDEX seqidstartend ON features (seqid, start, end)")
        logger.info("Creating features (seqid, start, end, strand) index")
        c.execute("DROP INDEX IF EXISTS seqidstartendstrand")
        c.execute(
            "CREATE INDEX seqidstartendstrand ON features (seqid, start, end, strand)"
        )

        # speeds computation 1000x in some cases
        logger.info("Running ANALYZE features")
        c.execute("ANALYZE features")

        self.conn.commit()

        self.warnings = self.iterator.warnings

    def create(self):
        """
        Calls various methods sequentially in order to fully build the
        database.
        """
        # Calls each of these methods in order.  _populate_from_lines and
        # _update_relations must be implemented in subclasses.
        self._init_tables()
        self._populate_from_lines(self.iterator)
        self._update_relations()
        self._finalize()

    # TODO: not sure this is used anywhere
    def update(self, iterator):
        self._populate_from_lines(iterator)
        self._update_relations()

    def execute(self, query):
        """
        Execute a query directly on the database.
        """
        c = self.conn.cursor()
        result = c.execute(query)
        for i in result:
            yield i

    def _insert(self, feature, cursor):
        """
        Insert a feature into the database.
        """
        try:
            cursor.execute(constants._INSERT, feature.astuple())
        except sqlite3.ProgrammingError:
            cursor.execute(constants._INSERT, feature.astuple(self.default_encoding))

    def _replace(self, feature, cursor):
        """
        Insert a feature into the database.
        """
        try:
            cursor.execute(constants._UPDATE, list(feature.astuple()) + [feature.id])
        except sqlite3.ProgrammingError:
            cursor.execute(
                constants._INSERT,
                list(feature.astuple(self.default_encoding)) + [feature.id],
            )


class _GFFDBCreator(_DBCreator):
    def __init__(self, *args, **kwargs):
        """
        _DBCreator subclass specifically for working with GFF files.

        create_db() delegates to this class -- see that function for docs
        """
        super(_GFFDBCreator, self).__init__(*args, **kwargs)

    def _populate_from_lines(self, lines):
        c = self.conn.cursor()
        self._drop_indexes()
        last_perc = 0
        logger.info("Populating features")
        msg = "Populating features table and first-order relations: " "%d features\r"

        # c.executemany() was not as much of an improvement as I had expected.
        #
        # Compared to a benchmark of doing each insert separately:
        # executemany using a list of dicts to iterate over is ~15% slower
        # executemany using a list of tuples to iterate over is ~8% faster
        features_seen = None
        _features, _relations = [], []
        for i, f in enumerate(lines):
            features_seen = i

            # Percent complete

            if self.verbose:
                if i % 1000 == 0:
                    sys.stderr.write(msg % i)
                    sys.stderr.flush()

            # TODO: handle ID creation here...should be combined with the
            # INSERT below (that is, don't IGNORE below but catch the error and
            # re-try with a new ID).  However, is this doable with an
            # execute-many?
            f.id = self._id_handler(f)
            try:
                self._insert(f, c)
            except sqlite3.IntegrityError:
                fixed, final_strategy = self._do_merge(f, self.merge_strategy)
                if final_strategy == "merge":
                    c.execute(
                        """
                        UPDATE features SET attributes = ?
                        WHERE id = ?
                        """,
                        (helpers._jsonify(fixed.attributes), fixed.id),
                    )

                    # For any additional fields we're merging, update those as
                    # well.
                    if self.force_merge_fields:
                        _set_clause = ", ".join(
                            ["%s = ?" % field for field in self.force_merge_fields]
                        )
                        values = [
                            getattr(fixed, field) for field in self.force_merge_fields
                        ] + [fixed.id]
                        c.execute(
                            """
                            UPDATE features SET %s
                            WHERE id = ?
                            """
                            % _set_clause,
                            tuple(values),
                        )

                elif final_strategy == "replace":
                    self._replace(f, c)

                elif final_strategy == "create_unique":
                    self._insert(f, c)

            if "Parent" in f.attributes:
                for parent in f.attributes["Parent"]:
                    c.execute(
                        """
                        INSERT OR IGNORE INTO relations VALUES
                        (?, ?, 1)
                        """,
                        (parent, f.id),
                    )

        if features_seen is None:
            raise EmptyInputError("No lines parsed -- was an empty file provided?")

        self.conn.commit()
        if self.verbose:
            logger.info(msg % i)

    def _update_relations(self):
        logger.info("Updating relations")
        c = self.conn.cursor()
        c2 = self.conn.cursor()
        c3 = self.conn.cursor()

        # TODO: pre-compute indexes?
        # c.execute('CREATE INDEX ids ON features (id)')
        # c.execute('CREATE INDEX parentindex ON relations (parent)')
        # c.execute('CREATE INDEX childindex ON relations (child)')
        # self.conn.commit()

        if isinstance(self._keep_tempfiles, str):
            suffix = self._keep_tempfiles
        else:
            suffix = ".gffutils"
        tmp = tempfile.NamedTemporaryFile(delete=False, suffix=suffix).name
        with open(tmp, "w") as fout:

            # Here we look for "grandchildren" -- for each ID, get the child
            # (parenthetical subquery below); then for each of those get *its*
            # child (main query below).
            #
            # Results are written to temp file so that we don't read and write at
            # the same time, which would slow things down considerably.

            c.execute("SELECT id FROM features")
            for parent in c:
                c2.execute(
                    """
                           SELECT child FROM relations WHERE parent IN
                           (SELECT child FROM relations WHERE parent = ?)
                           """,
                    tuple(parent),
                )
                for grandchild in c2:
                    fout.write("\t".join((parent[0], grandchild[0])) + "\n")

        def relations_generator():
            with open(fout.name) as fin:
                for line in fin:
                    parent, child = line.strip().split("\t")
                    yield dict(parent=parent, child=child, level=2)

        c.executemany(
            """
            INSERT OR IGNORE INTO relations VALUES
            (:parent, :child, :level)
            """,
            relations_generator(),
        )

        # TODO: Index creation.  Which ones affect performance?
        c.execute("DROP INDEX IF EXISTS binindex")
        c.execute("CREATE INDEX binindex ON features (bin)")

        self.conn.commit()

        if not self._keep_tempfiles:
            os.unlink(fout.name)


class _GTFDBCreator(_DBCreator):
    def __init__(self, *args, **kwargs):
        """
        create_db() delegates to this class -- see that function for docs
        """
        self.transcript_key = kwargs.pop("transcript_key", "transcript_id")
        self.gene_key = kwargs.pop("gene_key", "gene_id")
        self.subfeature = kwargs.pop("subfeature", "exon")
        super(_GTFDBCreator, self).__init__(*args, **kwargs)

    def _populate_from_lines(self, lines):
        msg = "Populating features table and first-order relations: %d " "features\r"

        c = self.conn.cursor()

        # Only check this many features to see if it's a gene or transcript and
        # issue the appropriate warning.
        gene_and_transcript_check_limit = 1000

        last_perc = 0
        lines_seen = 0
        for i, f in enumerate(lines):

            # See issues #48 and #20.
            if lines_seen < gene_and_transcript_check_limit:
                if f.featuretype == "transcript" and not self.disable_infer_transcripts:
                    warnings.warn(
                        "It appears you have a transcript feature in your GTF "
                        "file. You may want to use the "
                        "`disable_infer_transcripts=True` "
                        "option to speed up database creation"
                    )
                elif f.featuretype == "gene" and not self.disable_infer_genes:
                    warnings.warn(
                        "It appears you have a gene feature in your GTF "
                        "file. You may want to use the "
                        "`disable_infer_genes=True` "
                        "option to speed up database creation"
                    )

            lines_seen = i + 1

            # Percent complete
            if self.verbose:

                if i % 1000 == 0:
                    sys.stderr.write(msg % i)
                    sys.stderr.flush()

            f.id = self._id_handler(f)

            # Insert the feature itself...
            try:
                self._insert(f, c)
            except sqlite3.IntegrityError:
                fixed, final_strategy = self._do_merge(f, self.merge_strategy)
                if final_strategy == "merge":
                    c.execute(
                        """
                        UPDATE features SET attributes = ?
                        WHERE id = ?
                        """,
                        (helpers._jsonify(fixed.attributes), fixed.id),
                    )
                    # For any additional fields we're merging, update those as
                    # well.
                    if self.force_merge_fields:
                        _set_clause = ", ".join(
                            ["%s = ?" % field for field in self.force_merge_fields]
                        )
                        values = [
                            getattr(fixed, field) for field in self.force_merge_fields
                        ] + [fixed.id]
                        c.execute(
                            """
                            UPDATE features SET %s
                            WHERE id = ?
                            """
                            % _set_clause,
                            values,
                        )
                elif final_strategy == "replace":
                    self._replace(f, c)
                elif final_strategy == "create_unique":
                    self._insert(f, c)

            # For an on-spec GTF file,
            # self.transcript_key = "transcript_id"
            # self.gene_key = "gene_id"
            relations = []
            parent = None
            grandparent = None
            if (
                self.transcript_key in f.attributes
                and f.attributes[self.transcript_key]
            ):
                parent = f.attributes[self.transcript_key][0]
                relations.append((parent, f.id, 1))

            if self.gene_key in f.attributes:
                grandparent = f.attributes[self.gene_key]
                if len(grandparent) > 0:
                    grandparent = grandparent[0]
                    relations.append((grandparent, f.id, 2))
                    if parent is not None:
                        relations.append((grandparent, parent, 1))

            # Note the IGNORE, so relationships defined many times in the file
            # (e.g., the transcript-gene relation on pretty much every line in
            # a GTF) will only be included once.
            c.executemany(
                """
                INSERT OR IGNORE INTO relations (parent, child, level)
                VALUES (?, ?, ?)
                """,
                relations,
            )

        if lines_seen == 0:
            raise ValueError("No lines parsed -- was an empty file provided?")
        logger.info("Committing changes")
        self.conn.commit()
        if self.verbose:
            logger.info(msg % i)

    def _update_relations(self):

        if self.disable_infer_genes and self.disable_infer_transcripts:
            return

        # TODO: do any indexes speed this up?
        c = self.conn.cursor()
        c2 = self.conn.cursor()

        logger.info("Creating relations(parent) index")
        c.execute("DROP INDEX IF EXISTS relationsparent")
        c.execute("CREATE INDEX relationsparent ON relations (parent)")
        logger.info("Creating relations(child) index")
        c.execute("DROP INDEX IF EXISTS relationschild")
        c.execute("CREATE INDEX relationschild ON relations (child)")

        if not (self.disable_infer_genes or self.disable_infer_transcripts):
            msg = "gene and transcript"
        elif self.disable_infer_transcripts:
            msg = "gene"
        elif self.disable_infer_genes:
            msg = "transcript"
        logger.info("Inferring %s extents " "and writing to tempfile" % msg)

        if isinstance(self._keep_tempfiles, str):
            suffix = self._keep_tempfiles
        else:
            suffix = ".gffutils"

        tmp = tempfile.NamedTemporaryFile(delete=False, suffix=suffix).name
        with open(tmp, "w") as fout:
            self._tmpfile = tmp

            # This takes some explanation...
            #
            # First, the nested subquery gets the level-1 parents of
            # self.subfeature featuretypes.  For an on-spec GTF file,
            # self.subfeature = "exon". So this subquery translates to getting the
            # distinct level-1 parents of exons -- which are transcripts.
            #
            # OK, so this first subquery is now a list of transcripts; call it
            # "firstlevel".
            #
            # Then join firstlevel on relations, but the trick is to now consider
            # each transcript a *child* -- so that relations.parent (on the first
            # line of the query) will be the first-level parent of the transcript
            # (the gene).
            #
            #
            # The result is something like:
            #
            #   transcript1     gene1
            #   transcript2     gene1
            #   transcript3     gene2
            #
            # Note that genes are repeated; below we need to ensure that only one
            # is added.  To ensure this, the results are ordered by the gene ID.
            #
            # By the way, we do this even if we're only looking for transcripts or
            # only looking for genes.

            c.execute(
                """
                SELECT DISTINCT firstlevel.parent, relations.parent
                FROM (
                    SELECT DISTINCT parent
                    FROM relations
                    JOIN features ON features.id = relations.child
                    WHERE features.featuretype = ?
                    AND relations.level = 1
                )
                AS firstlevel
                JOIN relations ON firstlevel.parent = child
                WHERE relations.level = 1
                ORDER BY relations.parent
                """,
                (self.subfeature,),
            )

            # Now we iterate through those results (using a new cursor) to infer
            # the extent of transcripts and/or genes.

            last_gene_id = None
            n_features = 0
            for transcript_id, gene_id in c:

                if not self.disable_infer_transcripts:
                    # transcript extent
                    c2.execute(
                        """
                        SELECT MIN(start), MAX(end), strand, seqid
                        FROM features
                        JOIN relations ON
                        features.id = relations.child
                        WHERE parent = ? AND featuretype == ?
                        """,
                        (transcript_id, self.subfeature),
                    )
                    transcript_start, transcript_end, strand, seqid = c2.fetchone()
                    transcript_attributes = {
                        self.transcript_key: [transcript_id],
                        self.gene_key: [gene_id],
                    }
                    transcript_bin = bins.bins(
                        transcript_start, transcript_end, one=True
                    )

                    # Write out to file; we'll be reading it back in shortly.  Omit
                    # score, frame, source, and extra since they will always have
                    # the same default values (".", ".", "gffutils_derived", and []
                    # respectively)

                    fout.write(
                        "\t".join(
                            map(
                                str,
                                [
                                    transcript_id,
                                    seqid,
                                    transcript_start,
                                    transcript_end,
                                    strand,
                                    "transcript",
                                    transcript_bin,
                                    helpers._jsonify(transcript_attributes),
                                ],
                            )
                        )
                        + "\n"
                    )

                    n_features += 1

                if not self.disable_infer_genes:
                    # Infer gene extent, but only if we haven't done so already
                    # for this gene; recall we sorted by gene id so this check
                    # works
                    if gene_id != last_gene_id:
                        c2.execute(
                            """
                            SELECT MIN(start), MAX(end), strand, seqid
                            FROM features
                            JOIN relations ON
                            features.id = relations.child
                            WHERE parent = ? AND featuretype == ?
                            """,
                            (gene_id, self.subfeature),
                        )
                        gene_start, gene_end, strand, seqid = c2.fetchone()
                        gene_attributes = {self.gene_key: [gene_id]}
                        gene_bin = bins.bins(gene_start, gene_end, one=True)

                        fout.write(
                            "\t".join(
                                map(
                                    str,
                                    [
                                        gene_id,
                                        seqid,
                                        gene_start,
                                        gene_end,
                                        strand,
                                        "gene",
                                        gene_bin,
                                        helpers._jsonify(gene_attributes),
                                    ],
                                )
                            )
                            + "\n"
                        )

                    last_gene_id = gene_id
                    n_features += 1

        def derived_feature_generator():
            """
            Generator of items from the file that was just created...
            """
            keys = [
                "parent",
                "seqid",
                "start",
                "end",
                "strand",
                "featuretype",
                "bin",
                "attributes",
            ]
            with open(fout.name) as fin:
                for line in fin:
                    d = dict(list(zip(keys, line.strip().split("\t"))))
                    d.pop("parent")
                    d["score"] = "."
                    d["source"] = "gffutils_derived"
                    d["frame"] = "."
                    d["extra"] = []
                    d["attributes"] = helpers._unjsonify(d["attributes"])
                    f = feature.Feature(**d)
                    f.id = self._id_handler(f)
                    yield f

        # Drop the indexes so the inserts are faster
        c.execute("DROP INDEX IF EXISTS relationsparent")
        c.execute("DROP INDEX IF EXISTS relationschild")

        # Insert the just-inferred transcripts and genes.  TODO: should we
        # *always* use "merge" here for the merge_strategy?
        logger.info("Importing inferred features into db")
        last_perc = None
        for i, f in enumerate(derived_feature_generator()):
            perc = int(i / float(n_features) * 100)
            if perc != last_perc:
                sys.stderr.write("%s of %s (%s%%)\r" % (i, n_features, perc))
                sys.stderr.flush()
            last_perc = perc
            try:
                self._insert(f, c)
            except sqlite3.IntegrityError:
                fixed, final_strategy = self._do_merge(f, "merge")
                c.execute(
                    """
                    UPDATE features SET attributes = ?
                    WHERE id = ?
                    """,
                    (helpers._jsonify(fixed.attributes), fixed.id),
                )

        logger.info("Committing changes")
        self.conn.commit()
        if not self._keep_tempfiles:
            os.unlink(fout.name)

        # TODO: recreate indexes? Typically the _finalize() method will be
        # called after this one, and indexes are created in _finalize().


def create_db(
    data,
    dbfn,
    id_spec=None,
    force=False,
    verbose=False,
    checklines=10,
    merge_strategy="error",
    transform=None,
    gtf_transcript_key="transcript_id",
    gtf_gene_key="gene_id",
    gtf_subfeature="exon",
    force_gff=False,
    force_dialect_check=False,
    from_string=False,
    keep_order=False,
    text_factory=str,
    force_merge_fields=None,
    pragmas=constants.default_pragmas,
    sort_attribute_values=False,
    dialect=None,
    _keep_tempfiles=False,
    infer_gene_extent=True,
    disable_infer_genes=False,
    disable_infer_transcripts=False,
    **kwargs
):
    """
    Create a database from a GFF or GTF file.

    For more details on when and how to use the kwargs below, see the examples
    in the online documentation (:ref:`examples`).

    Parameters
    ----------
    data : string or iterable

        If a string (and `from_string` is False), then `data` is the path to
        the original GFF or GTF file.

        If a string and `from_string` is True, then assume `data` is the actual
        data to use.

        Otherwise, it's an iterable of Feature objects.

    dbfn : string

        Path to the database that will be created.  Can be the special string
        ":memory:" to create an in-memory database.

    id_spec : string, list, dict, callable, or None

        This parameter guides what will be used as the primary key for the
        database, which in turn determines how you will access individual
        features by name from the database.

        If an id spec is not otherwise specified for a featuretype (keep
        reading below for how to do this), or the provided id spec is not
        available for a particular feature (say, exons do not have "ID"
        attributes even though `id_spec="ID"` was provided) then the default
        behavior is to autoincrement an ID for that featuretype. For example,
        if there is no id spec defined for an exon, then the ids for exons will
        take the form exon1, exon2, exon3, and so on. This ensures that each
        feature has a unique primary key in the database without requiring lots
        of configuration. However, if you want to be able to retrieve features
        based on their primary key, then it is worth the effort to provide an
        accurate id spec.

        If `id_spec=None`, then use the default behavior. The default behavior
        depends on the detected format (or forced format, e.g., if
        `force_gff=True`). For GFF files, the default is be `id_spec="ID"`. For
        GTF files, the default is `id_spec={'gene': 'gene_id', 'transcript':
        'transcript_id'}`.

        If `id_spec` is a string, then look for this key in the attributes.  If
        it exists, then use its value as the primary key, otherwise
        autoincrement based on the feature type.  For many GFF3 files, "ID"
        usually works well.

        If `id_spec` is a list or tuple of keys, then check for each one in
        order, using the first one found.  For GFF3, this might be modified to
        ["ID", "Name"], which would use the ID if it exists, otherwise the
        Name, otherwise autoincrement based on the feature type.

        If `id_spec` is a dictionary, then it is a mapping of feature types to
        what should be used as the ID.  For example, for GTF files, `{'gene':
        'gene_id', 'transcript': 'transcript_id'}` may be useful.  The values
        of this dictionary can also be a list, e.g., `{'gene': ['gene_id',
        'geneID']}`.

        If `id_spec` is a callable object, then it accepts a dictionary from
        the iterator and returns one of the following:

            * None (in which case the feature type will be auto-incremented)
            * string (which will be used as the primary key)
            * special string starting with "autoincrement:X", where "X" is
              a string that will be used for auto-incrementing.  For example,
              if "autoincrement:chr10", then the first feature will be
              "chr10_1", the second "chr10_2", and so on.

    force : bool

        If `False` (default), then raise an exception if `dbfn` already exists.
        Use `force=True` to overwrite any existing databases.

    verbose : bool

        Report percent complete and other feedback on how the db creation is
        progressing.

        In order to report percent complete, the entire file needs to be read
        once to see how many items there are; for large files you may want to
        use `verbose=False` to avoid this.

    checklines : int

        Number of lines to check the dialect.

    merge_strategy : str
        One of {merge, create_unique, error, warning, replace}.

        This parameter specifies the behavior when two items have an identical
        primary key.

        Using `merge_strategy="merge"`, then there will be a single entry in
        the database, but the attributes of all features with the same primary
        key will be merged. WARNING: this can be quite slow when incorrectly
        used.

        Using `merge_strategy="create_unique"`, then the first entry will use
        the original primary key, but the second entry will have a unique,
        autoincremented primary key assigned to it

        Using `merge_strategy="error"`, a :class:`gffutils.DuplicateID`
        exception will be raised.  This means you will have to edit the file
        yourself to fix the duplicated IDs.

        Using `merge_strategy="warning"`, a warning will be printed to the
        logger, and the duplicate feature will be skipped.

        Using `merge_strategy="replace"` will replace the entire existing
        feature with the new feature.

    transform : callable

        If not None, `transform` should accept a Feature object as its only
        argument and return either a (possibly modified) Feature object or
        a value that evaluates to False.  If the return value is False, the
        feature will be skipped.

    gtf_transcript_key, gtf_gene_key : string

        Which attribute to use as the transcript ID and gene ID respectively
        for GTF files.  Default is `transcript_id` and `gene_id` according to
        the GTF spec.

    gtf_subfeature : string

        Feature type to use as a "gene component" when inferring gene and
        transcript extents for GTF files.  Default is `exon` according to the
        GTF spec.

    force_gff : bool
        If True, do not do automatic format detection -- only use GFF.

    force_dialect_check : bool
        If True, the dialect will be checkef for every feature (instead of just
        `checklines` features).  This can be slow, but may be necessary for
        inconsistently-formatted input files.

    from_string : bool
        If True, then treat `data` as actual data (rather than the path to
        a file).

    keep_order : bool

        If True, all features returned from this instance will have the
        order of their attributes maintained.  This can be turned on or off
        database-wide by setting the `keep_order` attribute or with this
        kwarg, or on a feature-by-feature basis by setting the `keep_order`
        attribute of an individual feature.

        Note that a single order of attributes will be used for all features.
        Specifically, the order will be determined by the order of attribute
        keys in the first `checklines` of the input data. See
        helpers._choose_dialect for more information on this.

        Default is False, since this includes a sorting step that can get
        time-consuming for many features.

    infer_gene_extent : bool
        DEPRECATED in version 0.8.4. See `disable_infer_transcripts` and
        `disable_infer_genes` for more granular control.

    disable_infer_transcripts, disable_infer_genes : bool
        Only used for GTF files. By default -- and according to the GTF spec --
        we assume that there are no transcript or gene features in the file.
        gffutils then infers the extent of each transcript based on its
        constituent exons and infers the extent of each gene bases on its
        constituent transcripts.

        This default behavior is problematic if the input file already contains
        transcript or gene features (like recent GENCODE GTF files for human),
        since 1) the work to infer extents is unnecessary, and 2)
        trying to insert an inferred feature back into the database triggers
        gffutils' feature-merging routines, which can get time consuming.

        The solution is to use `disable_infer_transcripts=True` if your GTF
        already has transcripts in it, and/or `disable_infer_genes=True` if it
        already has genes in it. This can result in dramatic (100x) speedup.

        Prior to version 0.8.4, setting `infer_gene_extents=False` would
        disable both transcript and gene inference simultaneously. As of
        version 0.8.4, these argument allow more granular control.

    force_merge_fields : list
        If merge_strategy="merge", then features will only be merged if their
        non-attribute values are identical (same chrom, source, start, stop,
        score, strand, phase).  Using `force_merge_fields`, you can override
        this behavior to allow merges even when fields are different.  This
        list can contain one or more of ['seqid', 'source', 'featuretype',
        'score', 'strand', 'frame'].  The resulting merged fields will be
        strings of comma-separated values.  Note that 'start' and 'end' are not
        available, since these fields need to be integers.

    text_factory : callable
        Text factory to use for the sqlite3 database.

    pragmas : dict
        Dictionary of pragmas used when creating the sqlite3 database. See
        http://www.sqlite.org/pragma.html for a list of available pragmas.  The
        defaults are stored in constants.default_pragmas, which can be used as
        a template for supplying a custom dictionary.

    sort_attribute_values : bool
        All features returned from the database will have their attribute
        values sorted.  Typically this is only useful for testing, since this
        can get time-consuming for large numbers of features.

    _keep_tempfiles : bool or string
        False by default to clean up intermediate tempfiles created during GTF
        import.  If True, then keep these tempfile for testing or debugging.
        If string, then keep the tempfile for testing, but also use the string
        as the suffix fo the tempfile. This can be useful for testing in
        parallel environments.

    Returns
    -------
    New :class:`FeatureDB` object.
    """
    _locals = locals()

    # Check if any older kwargs made it in
    deprecation_handler(kwargs)

    kwargs = dict((i, _locals[i]) for i in constants._iterator_kwargs)

    # First construct an iterator so that we can identify the file format.
    # DataIterator figures out what kind of data was provided (string of lines,
    # filename, or iterable of Features) and checks `checklines` lines to
    # identify the dialect.
    iterator = iterators.DataIterator(**kwargs)

    kwargs.update(**_locals)

    if dialect is None:
        dialect = iterator.dialect

    # However, a side-effect of this is that  if `data` was a generator, then
    # we've just consumed `checklines` items (see
    # iterators.BaseIterator.__init__, which calls iterators.peek).
    #
    # But it also chains those consumed items back onto the beginning, and the
    # result is available as as iterator._iter.
    #
    # That's what we should be using now for `data:
    kwargs["data"] = iterator
    kwargs["directives"] = iterator.directives

    # Since we've already checked lines, we don't want to do it again
    kwargs["checklines"] = 0

    if force_gff or (dialect["fmt"] == "gff3"):
        cls = _GFFDBCreator
        id_spec = id_spec or "ID"
        add_kwargs = dict(
            id_spec=id_spec,
        )

    elif dialect["fmt"] == "gtf":
        cls = _GTFDBCreator
        id_spec = id_spec or {"gene": "gene_id", "transcript": "transcript_id"}
        add_kwargs = dict(
            transcript_key=gtf_transcript_key,
            gene_key=gtf_gene_key,
            subfeature=gtf_subfeature,
            id_spec=id_spec,
        )

    kwargs.update(**add_kwargs)
    kwargs["dialect"] = dialect
    c = cls(**kwargs)

    c.create()
    if dbfn == ":memory:":
        db = interface.FeatureDB(
            c.conn,
            keep_order=keep_order,
            pragmas=pragmas,
            sort_attribute_values=sort_attribute_values,
            text_factory=text_factory,
        )
    else:
        db = interface.FeatureDB(
            c,
            keep_order=keep_order,
            pragmas=pragmas,
            sort_attribute_values=sort_attribute_values,
            text_factory=text_factory,
        )

    return db