1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607
|
import copy
import sys
import os
import json
import time
import tempfile
from gffutils import constants
from gffutils import bins
import gffutils
from gffutils import gffwriter
from gffutils import parser
from gffutils.attributes import dict_class
HERE = os.path.dirname(os.path.abspath(__file__))
def example_filename(fn):
"""
Return the full path of a data file that ships with gffutils.
"""
return os.path.join(HERE, "test", "data", fn)
def infer_dialect(attributes):
"""
Infer the dialect based on the attributes.
Parameters
----------
attributes : str
A single attributes string from a GTF or GFF line
Returns
-------
Dictionary representing the inferred dialect
"""
attributes, dialect = parser._split_keyvals(attributes)
return dialect
def _choose_dialect(features):
"""
Given a list of features (often from peeking into an iterator), choose
a dialect to use as the "canonical" version.
If `features` is an empty list, then use the default GFF3 dialect
Parameters
----------
features : iterable
iterable of features
Returns
-------
dict
"""
# NOTE: can use helpers.dialect_compare if you need to make this more
# complex....
if len(features) == 0:
return constants.dialect
# Structure of `count` will be, e.g.,
#
# {
# 'keyval separator': {'=': 35},
# 'trailing semicolon': {True: 30, False: 5},
# ...(other dialect keys here)...
# }
#
# In this example, all features agreed on keyval separeator. For trailing
# semicolon, there was a higher weight for True, so that will be selected
# for the final dialect.
count = {k: {} for k in constants.dialect.keys()}
for feature in features:
# Number of attributes is currently being used as the weight for
# dialect selection. That is, more complex attribute strings are more
# likely to be informative when determining dialect. This is important
# for e.g., #128, where there is equal representation of long and short
# attributes -- but only the longer attributes correctly have ";
# " field separators.
weight = len(feature.attributes)
for k, v in feature.dialect.items():
if isinstance(v, list):
v = tuple(v)
val = count[k].get(v, 0)
# Increment the observed value by the number of attributes (so more
# complex attribute strings have higher weight in determining
# dialect)
count[k][v] = val + weight
final_dialect = {}
for k, v in count.items():
# Tuples of (entry, total weight) in descending sort
vs = sorted(v.items(), key=lambda x: x[1], reverse=True)
# So the first tuple's first item is the winning value for this dialect
# key.
final_dialect[k] = vs[0][0]
# For backwards compatibility, to figure out the field order to use for the
# dialect we append additional fields as they are observed, giving priority
# to attributes that come first in earlier features. The alternative would
# be to give preference to the most-common order of attributes.
final_order = []
for feature in features:
for o in feature.attributes.keys():
if o not in final_order:
final_order.append(o)
final_dialect["order"] = final_order
return final_dialect
def make_query(
args,
other=None,
limit=None,
strand=None,
featuretype=None,
extra=None,
order_by=None,
reverse=False,
completely_within=False,
):
"""
Multi-purpose, bare-bones ORM function.
This function composes queries given some commonly-used kwargs that can be
passed to FeatureDB methods (like .parents(), .children(), .all_features(),
.features_of_type()). It handles, in one place, things like restricting to
featuretype, limiting to a genomic range, limiting to one strand, or
returning results ordered by different criteria.
Additional filtering/subsetting/sorting behavior should be added here.
(Note: this ended up having better performance (and flexibility) than
sqlalchemy)
This function also provides support for additional JOINs etc (supplied via
the `other` kwarg) and extra conditional clauses (`extra` kwarg). See the
`_QUERY` var below for the order in which they are used.
For example, FeatureDB._relation uses `other` to supply the JOIN
substatment, and that same method also uses `extra` to supply the
"relations.level = ?" substatment (see the source for FeatureDB._relation
for more details).
`args` contains the arguments that will ultimately be supplied to the
sqlite3.connection.execute function. It may be further populated below --
for example, if strand="+", then the query will include a strand clause,
and the strand will be appended to the args.
`args` can be pre-filled with args that are passed to `other` and `extra`.
"""
_QUERY = "{_SELECT} {OTHER} {EXTRA} {FEATURETYPE} " "{LIMIT} {STRAND} {ORDER_BY}"
# Construct a dictionary `d` that will be used later as _QUERY.format(**d).
# Default is just _SELECT, which returns all records in the features table.
# (Recall that constants._SELECT gets the fields in the order needed to
# reconstruct a Feature)
d = dict(
_SELECT=constants._SELECT,
OTHER="",
FEATURETYPE="",
LIMIT="",
STRAND="",
ORDER_BY="",
EXTRA="",
)
if other:
d["OTHER"] = other
if extra:
d["EXTRA"] = extra
# If `other` and `extra` take args (that is, they have "?" in them), then
# they should have been provided in `args`.
required_args = (d["EXTRA"] + d["OTHER"]).count("?")
if len(args) != required_args:
raise ValueError("Not enough args (%s) for subquery" % args)
# Below, if a kwarg is specified, then we create sections of the query --
# appending to args as necessary.
#
# IMPORTANT: the order in which things are processed here is the same as
# the order of the placeholders in _QUERY. That is, we need to build the
# args in parallel with the query to avoid putting the wrong args in the
# wrong place.
if featuretype:
# Handle single or iterables of featuretypes.
#
# e.g., "featuretype = 'exon'"
#
# or, "featuretype IN ('exon', 'CDS')"
if isinstance(featuretype, str):
d["FEATURETYPE"] = "features.featuretype = ?"
args.append(featuretype)
else:
d["FEATURETYPE"] = "features.featuretype IN (%s)" % (
",".join(["?" for _ in featuretype])
)
args.extend(featuretype)
if limit:
# Restrict to a genomic region. Makes use of the UCSC binning strategy
# for performance.
#
# `limit` is a string or a tuple of (chrom, start, stop)
#
# e.g., "seqid = 'chr2L' AND start > 1000 AND end < 5000"
if isinstance(limit, str):
seqid, startstop = limit.split(":")
start, end = startstop.split("-")
else:
seqid, start, end = limit
# Identify possible bins
_bins = bins.bins(int(start), int(end), one=False)
# Use different overlap conditions
if completely_within:
d["LIMIT"] = (
"features.seqid = ? AND features.start >= ? " "AND features.end <= ?"
)
args.extend([seqid, start, end])
else:
d["LIMIT"] = (
"features.seqid = ? AND features.start <= ? " "AND features.end >= ?"
)
# Note order (end, start)
args.extend([seqid, end, start])
# Add bin clause. See issue #45.
if len(_bins) < 900:
d["LIMIT"] += " AND features.bin IN (%s)" % (",".join(map(str, _bins)))
if strand:
# e.g., "strand = '+'"
d["STRAND"] = "features.strand = ?"
args.append(strand)
# TODO: implement file_order!
valid_order_by = constants._gffkeys_extra + ["file_order", "length"]
_order_by = []
if order_by:
# Default is essentially random order.
#
# e.g. "ORDER BY seqid, start DESC"
if isinstance(order_by, str):
_order_by.append(order_by)
else:
for k in order_by:
if k not in valid_order_by:
raise ValueError(
"%s not a valid order-by value in %s" % (k, valid_order_by)
)
# There's no length field, so order by end - start
if k == "length":
k = "(end - start)"
_order_by.append(k)
_order_by = ",".join(_order_by)
if reverse:
direction = "DESC"
else:
direction = "ASC"
d["ORDER_BY"] = "ORDER BY %s %s" % (_order_by, direction)
# Ensure only one "WHERE" is included; the rest get "AND ". This is ugly.
where = False
if "where" in d["OTHER"].lower():
where = True
for i in ["EXTRA", "FEATURETYPE", "LIMIT", "STRAND"]:
if d[i]:
if not where:
d[i] = "WHERE " + d[i]
where = True
else:
d[i] = "AND " + d[i]
return _QUERY.format(**d), args
def _bin_from_dict(d):
"""
Given a dictionary yielded by the parser, return the genomic "UCSC" bin
"""
try:
start = int(d["start"])
end = int(d["end"])
return bins.bins(start, end, one=True)
# e.g., if "."
except ValueError:
return None
def _jsonify(x):
"""Use most compact form of JSON"""
if isinstance(x, dict_class):
return json.dumps(x._d, separators=(",", ":"))
return json.dumps(x, separators=(",", ":"))
def _unjsonify(x, isattributes=False):
"""Convert JSON string to an ordered defaultdict."""
if isattributes:
obj = json.loads(x)
return dict_class(obj)
return json.loads(x)
def _feature_to_fields(f, jsonify=True):
"""
Convert feature to tuple, for faster sqlite3 import
"""
x = []
for k in constants._keys:
v = getattr(f, k)
if jsonify and (k in ("attributes", "extra")):
x.append(_jsonify(v))
else:
x.append(v)
return tuple(x)
def _dict_to_fields(d, jsonify=True):
"""
Convert dict to tuple, for faster sqlite3 import
"""
x = []
for k in constants._keys:
v = d[k]
if jsonify and (k in ("attributes", "extra")):
x.append(_jsonify(v))
else:
x.append(v)
return tuple(x)
def asinterval(feature):
"""
Converts a gffutils.Feature to a pybedtools.Interval
"""
import pybedtools
return pybedtools.create_interval_from_list(str(feature).split("\t"))
def merge_attributes(attr1, attr2, numeric_sort=False):
"""
Merges two attribute dictionaries into a single dictionary.
Parameters
----------
`attr1`, `attr2` : dict
numeric_sort : bool
If True, then attempt to convert all values for a key into floats, sort
them numerically, and return the original strings in numerical order.
Default is False for performance.
Returns
-------
dict
"""
new_d = copy.deepcopy(attr1)
new_d.update(copy.deepcopy(attr2))
# all of attr2 key : values just overwrote attr1, fix it
for k, v in new_d.items():
if not isinstance(v, list):
new_d[k] = [v]
for k, v in attr1.items():
if k in attr2:
if not isinstance(v, list):
v = [v]
new_d[k].extend(v)
if not numeric_sort:
return dict((k, sorted(set(v))) for k, v in new_d.items())
final_d = {}
for key, values in new_d.items():
try:
# I.e.:
#
# ['5', '4.2']
#
# becomes the sorted tuples:
#
# [(4.2, '4.2'), ('5.0', '5')]
#
# from which original strings are pulled to get the
# numerically-sorted strings,
#
# ['4.2', '5']
sorted_numeric = sorted([(float(v), v) for v in set(values)])
new_values = [i[1] for i in sorted_numeric]
except ValueError:
# E.g., not everything was able to be converted into a number
new_values = sorted(set(values))
final_d[key] = new_values
return final_d
def dialect_compare(dialect1, dialect2):
"""
Compares two dialects.
"""
orig = set(dialect1.items())
new = set(dialect2.items())
return dict(
added=dict(list(new.difference(orig))), removed=dict(list(orig.difference(new)))
)
def sanitize_gff_db(db, gid_field="gid"):
"""
Sanitize given GFF db. Returns a sanitized GFF db.
Sanitizing means:
- Ensuring that start < stop for all features
- Standardizing gene units by adding a 'gid' attribute
that makes the file grep-able
TODO: Do something with negative coordinates?
"""
def sanitized_iterator():
# Iterate through the database by each gene's records
for gene_recs in db.iter_by_parent_childs():
# The gene's ID
gene_id = gene_recs[0].id
for rec in gene_recs:
# Fixup coordinates if necessary
if rec.start > rec.stop:
rec.start, rec.stop = rec.stop, rec.start
# Add a gene id field to each gene's records
rec.attributes[gid_field] = [gene_id]
yield rec
# Return sanitized GFF database
sanitized_db = gffutils.create_db(sanitized_iterator(), ":memory:", verbose=False)
return sanitized_db
def sanitize_gff_file(gff_fname, in_memory=True, in_place=False):
"""
Sanitize a GFF file.
"""
db = None
if is_gff_db(gff_fname):
# It's a database filename, so load it
db = gffutils.FeatureDB(gff_fname)
else:
# Need to create a database for file
if in_memory:
db = gffutils.create_db(gff_fname, ":memory:", verbose=False)
else:
db = get_gff_db(gff_fname)
if in_place:
gff_out = gffwriter.GFFWriter(gff_fname, in_place=in_place)
else:
gff_out = gffwriter.GFFWriter(sys.stdout)
sanitized_db = sanitize_gff_db(db)
for gene_rec in sanitized_db.all_features(featuretype="gene"):
gff_out.write_gene_recs(sanitized_db, gene_rec.id)
gff_out.close()
def annotate_gff_db(db):
"""
Annotate a GFF file by cross-referencing it with another GFF
file, e.g. one containing gene models.
"""
pass
def is_gff_db(db_fname):
"""
Return True if the given filename is a GFF database.
For now, rely on .db extension.
"""
if not os.path.isfile(db_fname):
return False
if db_fname.endswith(".db"):
return True
return False
def to_unicode(obj, encoding="utf-8"):
if isinstance(obj, str):
if not isinstance(obj, str):
obj = str(obj, encoding)
return obj
def canonical_transcripts(db, fasta_filename):
"""
WARNING: this function is currently not well ttested and will likely be
replaced with a more modular approach.
"""
import pyfaidx
fasta = pyfaidx.Fasta(fasta_filename, as_raw=False)
for gene in db.features_of_type("gene"):
# exons_list will contain (CDS_length, total_length, transcript, [exons]) tuples.
exon_list = []
for ti, transcript in enumerate(db.children(gene, level=1)):
cds_len = 0
total_len = 0
exons = list(db.children(transcript, level=1))
for exon in exons:
exon_length = len(exon)
if exon.featuretype == "CDS":
cds_len += exon_length
total_len += exon_length
exon_list.append(
(
cds_len,
total_len,
transcript,
exons
if cds_len == 0
else [
e
for e in exons
if e.featuretype in ["CDS", "five_prime_UTR", "three_prime_UTR"]
],
)
)
# If we have CDS, then use the longest coding transcript
if max(i[0] for i in exon_list) > 0:
best = sorted(exon_list, key=lambda x: x[0], reverse=True)[0]
# Otherwise, just choose the longest
else:
best = sorted(exon_list, key=lambda x: x[1])[0]
print(best)
canonical_exons = best[-1]
transcript = best[-2]
seqs = [
i.sequence(fasta)
for i in sorted(
canonical_exons, key=lambda x: x.start, reverse=transcript.strand != "+"
)
]
yield transcript, "".join(seqs)
##
## Helpers for gffutils-cli
##
## TODO: move clean_gff here?
##
def get_gff_db(gff_fname, ext=".db"):
"""
Get db for GFF file. If the database has a .db file,
load that. Otherwise, create a named temporary file,
serialize the db to that, and return the loaded database.
"""
if not os.path.isfile(gff_fname):
# Not sure how we should deal with errors normally in
# gffutils -- Ryan?
raise ValueError("GFF %s does not exist." % (gff_fname))
candidate_db_fname = "%s.%s" % (gff_fname, ext)
if os.path.isfile(candidate_db_fname):
# Standard .db file found, so return it
return candidate_db_fname
# Otherwise, we need to create a temporary but non-deleted
# file to store the db in. It'll be up to the user
# of the function the delete the file when done.
## NOTE: Ryan must have a good scheme for dealing with this
## since pybedtools does something similar under the hood, i.e.
## creating temporary files as needed without over proliferation
db_fname = tempfile.NamedTemporaryFile(delete=False)
# Create the database for the gff file (suppress output
# when using function internally)
print("Creating db for %s" % (gff_fname))
t1 = time.time()
db = gffutils.create_db(
gff_fname, db_fname.name, merge_strategy="merge", verbose=False
)
t2 = time.time()
print(" - Took %.2f seconds" % (t2 - t1))
return db
|