File: interface.py

package info (click to toggle)
python-gffutils 0.13-3
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 10,164 kB
  • sloc: python: 5,557; makefile: 57; sh: 13
file content (2009 lines) | stat: -rw-r--r-- 69,828 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
import collections
import os
import sqlite3
import shutil
import warnings
from gffutils import bins
from gffutils import helpers
from gffutils import constants
from gffutils import merge_criteria as mc
from gffutils.feature import Feature
from gffutils.exceptions import FeatureNotFoundError


def assign_child(parent, child):
    """
    Helper for add_relation()
    Sets 'Parent' attribute to parent['ID']

    Parameters
    ----------

    parent : Feature
        Parent Feature

    :param parent: parent Feature

    child : Feature
        Child Feature

    Returns
    -------

    Child Feature
    """
    child.attributes["Parent"] = parent["ID"]
    return child


# Reusable constant for FeatureDB.merge()
no_children = tuple()


def _finalize_merge(feature, feature_children):
    """
    Helper for FeatureDB.merge() to update source and assign children property

    Parameters
    ----------
    feature : Feature
        feature to finalise

    feature_children
        list of children to assign

    Returns
    -------
    feature, modified
    """
    if len(feature_children) > 1:
        feature.source = ",".join(set(child.source for child in feature_children))
        feature.children = feature_children
    else:
        feature.children = no_children
    return feature


class FeatureDB(object):
    # docstring to be filled in for methods that call out to
    # helpers.make_query()
    _method_doc = """
        limit : string or tuple
            Limit the results to a genomic region.  If string, then of the form
            "seqid:start-end"; if tuple, then (seqid, start, end).

        strand : "-" | "+" | "."
            Limit the results to one strand

        featuretype : string or tuple
            Limit the results to one or several featuretypes.

        order_by : string or tuple
            Order results by one or many fields; the string or tuple items must
            be in: 'seqid', 'source', 'featuretype', 'start', 'end', 'score',
            'strand', 'frame', 'attributes', 'extra'.

        reverse : bool
            Change sort order; only relevant if `order_by` is not None.  By
            default, results will be in ascending order, so use `reverse=True`
            for descending.

        completely_within : bool
            If False (default), a single bp overlap with `limit` is sufficient
            to return a feature; if True, then the feature must be completely
            within `limit`. Only relevant when `limit` is not None.
    """

    def __init__(
        self,
        dbfn,
        default_encoding="utf-8",
        keep_order=False,
        pragmas=constants.default_pragmas,
        sort_attribute_values=False,
        text_factory=str,
    ):
        """
        Connect to a database created by :func:`gffutils.create_db`.

        Parameters
        ----------

        dbfn : str

            Path to a database created by :func:`gffutils.create_db`.

        text_factory : callable

            Optionally set the way sqlite3 handles strings.  Default is
            str

        default_encoding : str

            When non-ASCII characters are encountered, assume they are in this
            encoding.

        keep_order : bool

            If True, all features returned from this instance will have the
            order of their attributes maintained.  This can be turned on or off
            database-wide by setting the `keep_order` attribute or with this
            kwarg, or on a feature-by-feature basis by setting the `keep_order`
            attribute of an individual feature.

            Default is False, since this includes a sorting step that can get
            time-consuming for many features.

        sort_attributes_values : bool
            If True, then in cases where there are multiple values for an
            attribute then ensure they appear in the same order every time.
            This is typically only used for testing, in cases where it is
            important to have consistent ordering.

        pragmas : dict
            Dictionary of pragmas to use when connecting to the database.  See
            http://www.sqlite.org/pragma.html for the full list of
            possibilities, and constants.default_pragmas for the defaults.
            These can be changed later using the :meth:`FeatureDB.set_pragmas`
            method.

        Notes
        -----

            `dbfn` can also be a subclass of :class:`_DBCreator`, useful for
            when :func:`gffutils.create_db` is provided the ``dbfn=":memory:"``
            kwarg.

        """
        # Since specifying the string ":memory:" will actually try to connect
        # to a new, separate (and empty) db in memory, we can alternatively
        # pass in a sqlite connection instance to use its existing, in-memory
        # db.
        from gffutils import create

        if isinstance(dbfn, create._DBCreator):
            self.conn = dbfn.conn
            self.dbfn = dbfn.dbfn

        elif isinstance(dbfn, sqlite3.Connection):
            self.conn = dbfn
            self.dbfn = dbfn
        # otherwise assume dbfn is a string.
        elif dbfn == ":memory:":
            raise ValueError(
                "cannot connect to memory db; please provide the connection"
            )
        else:
            if not os.path.exists(dbfn):
                raise ValueError("Database file %s does not exist" % dbfn)
            self.dbfn = dbfn
            self.conn = sqlite3.connect(self.dbfn)

        if text_factory is not None:
            self.conn.text_factory = text_factory
        self.conn.row_factory = sqlite3.Row

        self.default_encoding = default_encoding
        self.keep_order = keep_order
        self.sort_attribute_values = sort_attribute_values
        c = self.conn.cursor()

        # Load some meta info
        # TODO: this is a good place to check for previous versions, and offer
        # to upgrade...
        c.execute(
            """
            SELECT version, dialect FROM meta
            """
        )
        version, dialect = c.fetchone()
        self.version = version
        self.dialect = helpers._unjsonify(dialect)

        # Load directives from db
        c.execute(
            """
            SELECT directive FROM directives
            """
        )
        self.directives = [directive[0] for directive in c if directive]

        # Load autoincrements so that when we add new features, we can start
        # autoincrementing from where we last left off (instead of from 1,
        # which would cause name collisions)
        c.execute(
            """
            SELECT base, n FROM autoincrements
            """
        )
        self._autoincrements = collections.defaultdict(int, c)

        self.set_pragmas(pragmas)

        if not self._analyzed():
            warnings.warn(
                "It appears that this database has not had the ANALYZE "
                "sqlite3 command run on it. Doing so can dramatically "
                "speed up queries, and is done by default for databases "
                "created with gffutils >0.8.7.1 (this database was "
                "created with version %s) Consider calling the analyze() "
                "method of this object." % self.version
            )

    def set_pragmas(self, pragmas):
        """
        Set pragmas for the current database connection.

        Parameters
        ----------
        pragmas : dict
            Dictionary of pragmas; see constants.default_pragmas for a template
            and http://www.sqlite.org/pragma.html for a full list.
        """
        self.pragmas = pragmas
        c = self.conn.cursor()
        c.executescript(";\n".join(["PRAGMA %s=%s" % i for i in self.pragmas.items()]))
        self.conn.commit()

    def _feature_returner(self, **kwargs):
        """
        Returns a feature, adding additional database-specific defaults
        """
        kwargs.setdefault("dialect", self.dialect)
        kwargs.setdefault("keep_order", self.keep_order)
        kwargs.setdefault("sort_attribute_values", self.sort_attribute_values)
        return Feature(**kwargs)

    def _analyzed(self):
        res = self.execute(
            """
            SELECT name FROM sqlite_master WHERE type='table'
            AND name='sqlite_stat1';
            """
        )
        return len(list(res)) == 1

    def schema(self):
        """
        Returns the database schema as a string.
        """
        c = self.conn.cursor()
        c.execute(
            """
            SELECT sql FROM sqlite_master
            """
        )
        results = []
        for (i,) in c:
            if i is not None:
                results.append(i)
        return "\n".join(results)

    def __getitem__(self, key):
        if isinstance(key, Feature):
            key = key.id
        c = self.conn.cursor()
        try:
            c.execute(constants._SELECT + " WHERE id = ?", (key,))
        except sqlite3.ProgrammingError:
            c.execute(
                constants._SELECT + " WHERE id = ?",
                (key.decode(self.default_encoding),),
            )
        results = c.fetchone()
        # TODO: raise error if more than one key is found
        if results is None:
            raise FeatureNotFoundError(key)
        return self._feature_returner(**results)

    def count_features_of_type(self, featuretype=None):
        """
        Simple count of features.

        Can be faster than "grep", and is faster than checking the length of
        results from :meth:`gffutils.FeatureDB.features_of_type`.

        Parameters
        ----------

        featuretype : string

            Feature type (e.g., "gene") to count.  If None, then count *all*
            features in the database.

        Returns
        -------
        The number of features of this type, as an integer

        """
        c = self.conn.cursor()
        if featuretype is not None:
            c.execute(
                """
                SELECT count() FROM features
                WHERE featuretype = ?
                """,
                (featuretype,),
            )
        else:
            c.execute(
                """
                SELECT count() FROM features
                """
            )

        results = c.fetchone()
        if results is not None:
            results = results[0]
        return results

    def features_of_type(
        self,
        featuretype,
        limit=None,
        strand=None,
        order_by=None,
        reverse=False,
        completely_within=False,
    ):
        """
        Returns an iterator of :class:`gffutils.Feature` objects.

        Parameters
        ----------
        {_method_doc}
        """
        query, args = helpers.make_query(
            args=[],
            limit=limit,
            featuretype=featuretype,
            order_by=order_by,
            reverse=reverse,
            strand=strand,
            completely_within=completely_within,
        )

        for i in self._execute(query, args):
            yield self._feature_returner(**i)

    # TODO: convert this to a syntax similar to itertools.groupby
    def iter_by_parent_childs(
        self,
        featuretype="gene",
        level=None,
        order_by=None,
        reverse=False,
        completely_within=False,
    ):
        """
        For each parent of type `featuretype`, yield a list L of that parent
        and all of its children (`[parent] + list(children)`). The parent will
        always be L[0].

        This is useful for "sanitizing" a GFF file for downstream tools.

        Additional kwargs are passed to :meth:`FeatureDB.children`, and will
        therefore only affect items L[1:] in each yielded list.
        """
        # Get all the parent records of the requested feature type
        parent_recs = self.all_features(featuretype=featuretype)
        # Return a generator of these parent records and their
        # children
        for parent_rec in parent_recs:
            unit_records = [parent_rec] + list(self.children(parent_rec.id))
            yield unit_records

    def all_features(
        self,
        limit=None,
        strand=None,
        featuretype=None,
        order_by=None,
        reverse=False,
        completely_within=False,
    ):
        """
        Iterate through the entire database.

        Returns
        -------
        A generator object that yields :class:`Feature` objects.

        Parameters
        ----------
        {_method_doc}
        """
        query, args = helpers.make_query(
            args=[],
            limit=limit,
            strand=strand,
            featuretype=featuretype,
            order_by=order_by,
            reverse=reverse,
            completely_within=completely_within,
        )
        for i in self._execute(query, args):
            yield self._feature_returner(**i)

    def featuretypes(self):
        """
        Iterate over feature types found in the database.

        Returns
        -------
        A generator object that yields featuretypes (as strings)
        """
        c = self.conn.cursor()
        c.execute(
            """
            SELECT DISTINCT featuretype from features
            """
        )
        for (i,) in c:
            yield i

    def _relation(
        self,
        id,
        join_on,
        join_to,
        level=None,
        featuretype=None,
        order_by=None,
        reverse=False,
        completely_within=False,
        limit=None,
    ):

        # The following docstring will be included in the parents() and
        # children() docstrings to maintain consistency, since they both
        # delegate to this method.
        """
        Parameters
        ----------

        id : string or a Feature object

        level : None or int

            If `level=None` (default), then return all children regardless
            of level.  If `level` is an integer, then constrain to just that
            level.
        {_method_doc}

        Returns
        -------
        A generator object that yields :class:`Feature` objects.
        """

        if isinstance(id, Feature):
            id = id.id

        other = """
        JOIN relations
        ON relations.{join_on} = features.id
        WHERE relations.{join_to} = ?
        """.format(
            **locals()
        )
        args = [id]

        level_clause = ""
        if level is not None:
            level_clause = "relations.level = ?"
            args.append(level)

        query, args = helpers.make_query(
            args=args,
            other=other,
            extra=level_clause,
            featuretype=featuretype,
            order_by=order_by,
            reverse=reverse,
            limit=limit,
            completely_within=completely_within,
        )

        # modify _SELECT so that only unique results are returned
        query = query.replace("SELECT", "SELECT DISTINCT")
        for i in self._execute(query, args):
            yield self._feature_returner(**i)

    def children(
        self,
        id,
        level=None,
        featuretype=None,
        order_by=None,
        reverse=False,
        limit=None,
        completely_within=False,
    ):
        """
        Return children of feature `id`.
        {_relation_docstring}
        """
        return self._relation(
            id,
            join_on="child",
            join_to="parent",
            level=level,
            featuretype=featuretype,
            order_by=order_by,
            reverse=reverse,
            limit=limit,
            completely_within=completely_within,
        )

    def parents(
        self,
        id,
        level=None,
        featuretype=None,
        order_by=None,
        reverse=False,
        completely_within=False,
        limit=None,
    ):
        """
        Return parents of feature `id`.
        {_relation_docstring}
        """
        return self._relation(
            id,
            join_on="parent",
            join_to="child",
            level=level,
            featuretype=featuretype,
            order_by=order_by,
            reverse=reverse,
            limit=limit,
            completely_within=completely_within,
        )

    def _execute(self, query, args):
        self._last_query = query
        self._last_args = args
        c = self.conn.cursor()
        c.execute(query, tuple(args))
        return c

    def execute(self, query):
        """
        Execute arbitrary queries on the db.

        .. seealso::

                :class:`FeatureDB.schema` may be helpful when writing your own
                queries.

        Parameters
        ----------

        query : str

            Query to execute -- trailing ";" optional.

        Returns
        -------
        A sqlite3.Cursor object that can be iterated over.
        """
        c = self.conn.cursor()
        return c.execute(query)

    def analyze(self):
        """
        Runs the sqlite ANALYZE command to potentially speed up queries
        dramatically.
        """
        self.execute("ANALYZE features")
        self.conn.commit()

    def region(
        self,
        region=None,
        seqid=None,
        start=None,
        end=None,
        strand=None,
        featuretype=None,
        completely_within=False,
    ):
        """
        Return features within specified genomic coordinates.

        Specifying genomic coordinates can be done in a flexible manner

        Parameters
        ----------
        region : string, tuple, or Feature instance
            If string, then of the form "seqid:start-end".  If tuple, then
            (seqid, start, end).  If :class:`Feature`, then use the features
            seqid, start, and end values.

            This argument is mutually exclusive with start/end/seqid.

            *Note*: By design, even if a feature is provided, its strand will
            be ignored.  If you want to restrict the output by strand, use the
            separate `strand` kwarg.

        strand : + | - | . | None
            If `strand` is provided, then only those features exactly matching
            `strand` will be returned. So `strand='.'` will only return
            unstranded features. Default is `strand=None` which does not
            restrict by strand.

        seqid, start, end, strand
            Mutually exclusive with `region`.  These kwargs can be used to
            approximate slice notation; see "Details" section below.

        featuretype : None, string, or iterable
            If not None, then restrict output.  If string, then only report
            that feature type.  If iterable, then report all featuretypes in
            the iterable.

        completely_within : bool
            By default (`completely_within=False`), returns features that
            partially or completely overlap `region`.  If
            `completely_within=True`, features that are completely within
            `region` will be returned.

        Notes
        -----

        The meaning of `seqid`, `start`, and `end` is interpreted as follows:

        ====== ====== ===== ======================================
        seqid  start  end   meaning
        ====== ====== ===== ======================================
        str    int    int   equivalent to `region` kwarg
        None   int    int   features from all chroms within coords
        str    None   int   equivalent to [:end] slice notation
        str    int    None  equivalent to [start:] slice notation
        None   None   None  equivalent to FeatureDB.all_features()
        ====== ====== ===== ======================================

        If performance is a concern, use `completely_within=True`. This allows
        the query to be optimized by only looking for features that fall in the
        precise genomic bin (same strategy as UCSC Genome Browser and
        BEDTools). Otherwise all features' start/stop coords need to be
        searched to see if they partially overlap the region of interest.

        Examples
        --------

        - `region(seqid="chr1", start=1000)` returns all features on chr1 that
          start or extend past position 1000

        - `region(seqid="chr1", start=1000, completely_within=True)` returns
          all features on chr1 that start past position 1000.

        - `region("chr1:1-100", strand="+", completely_within=True)` returns
          only plus-strand features that completely fall within positions 1 to
          100 on chr1.

        Returns
        -------
        A generator object that yields :class:`Feature` objects.
        """
        # Argument handling.
        if region is not None:
            if (seqid is not None) or (start is not None) or (end is not None):
                raise ValueError(
                    "If region is supplied, do not supply seqid, "
                    "start, or end as separate kwargs"
                )
            if isinstance(region, str):
                toks = region.split(":")
                if len(toks) == 1:
                    seqid = toks[0]
                    start, end = None, None
                else:
                    seqid, coords = toks[:2]
                    if len(toks) == 3:
                        strand = toks[2]
                    start, end = coords.split("-")

            elif isinstance(region, Feature):
                seqid = region.seqid
                start = region.start
                end = region.end
                strand = region.strand

            # otherwise assume it's a tuple
            else:
                seqid, start, end = region[:3]

        # e.g.,
        #   completely_within=True..... start >= {start} AND end <= {end}
        #   completely_within=False.... start <  {end}   AND end >  {start}
        if completely_within:
            start_op = ">="
            end_op = "<="
        else:
            start_op = "<"
            end_op = ">"
            end, start = start, end

        args = []
        position_clause = []
        if seqid is not None:
            position_clause.append("seqid = ?")
            args.append(seqid)
        if start is not None:
            start = int(start)
        if end is not None:
            end = int(end)

        # See #129
        if start and end and not completely_within:
            position_clause.append(
                """(
                ({region_start} <= start AND {region_end} >= start) OR
                ({region_start} >= start AND {region_end} <= end) OR
                ({region_start} <= end AND {region_end} >= end)
            )""".format(
                    region_start=start, region_end=end
                )
            )
        else:
            if start:
                position_clause.append("start %s ?" % start_op)
                args.append(start)
            if end:
                position_clause.append("end %s ?" % end_op)
                args.append(end)

        position_clause = " AND ".join(position_clause)

        # Only use bins if we have defined boundaries and completely_within is
        # True. Otherwise you can't know how far away a feature stretches
        # (which means bins are not computable ahead of time)
        _bin_clause = ""
        if (start is not None) and (end is not None) and completely_within:
            if start <= bins.MAX_CHROM_SIZE and end <= bins.MAX_CHROM_SIZE:
                _bins = list(bins.bins(start, end, one=False))
                # See issue #45
                if len(_bins) < 900:
                    _bin_clause = " or ".join(["bin = ?" for _ in _bins])
                    _bin_clause = "AND ( %s )" % _bin_clause
                    args += _bins

        query = " ".join([constants._SELECT, "WHERE ", position_clause, _bin_clause])

        # Add the featuretype clause
        if featuretype is not None:
            if isinstance(featuretype, str):
                featuretype = [featuretype]
            feature_clause = " or ".join(["featuretype = ?" for _ in featuretype])
            query += " AND (%s) " % feature_clause
            args.extend(featuretype)

        if strand is not None:
            strand_clause = " and strand = ? "
            query += strand_clause
            args.append(strand)

        c = self.conn.cursor()
        self._last_query = query
        self._last_args = args
        self._context = {
            "start": start,
            "end": end,
            "seqid": seqid,
            "region": region,
        }
        c.execute(query, tuple(args))
        for i in c:
            yield self._feature_returner(**i)

    def interfeatures(
        self,
        features,
        new_featuretype=None,
        merge_attributes=True,
        numeric_sort=False,
        dialect=None,
        attribute_func=None,
        update_attributes=None,
    ):
        """
        Construct new features representing the space between features.

        For example, if `features` is a list of exons, then this method will
        return the introns.  If `features` is a list of genes, then this method
        will return the intergenic regions.

        Providing N features will return N - 1 new features.

        This method purposefully does *not* do any merging or sorting of
        coordinates. So nested or overlapping features may not behave as you
        might expect. You may want to use :meth:`FeatureDB.merge` first, and
        when selecting features use the `order_by` kwarg, e.g.,
        `db.features_of_type('gene', order_by=('seqid', 'start'))`.

        Parameters
        ----------
        features : iterable of :class:`feature.Feature` instances
            Sorted, merged iterable

        new_featuretype : string or None
            The new features will all be of this type, or, if None (default)
            then the featuretypes will be constructed from the neighboring
            features, e.g., `inter_exon_exon`.

        merge_attributes : bool
            If True, new features' attributes will be a merge of the neighboring
            features' attributes.  This is useful if you have provided a list of
            exons; the introns will then retain the transcript and/or gene
            parents as a single item. Otherwise, if False, the attribute will
            be a comma-separated list of values, potentially listing the same
            gene ID twice.

        numeric_sort : bool
            If True, then merged attributes that can be cast to float will be
            sorted by their numeric values (but will still be returned as
            string). This is useful, for example, when creating introns between
            exons and the exons have exon_number attributes as an integer.
            Using numeric_sort=True will ensure that the returned exons have
            merged exon_number attribute of ['9', '10'] (numerically sorted)
            rather than ['10', '9'] (alphabetically sorted).

        attribute_func : callable or None
            If None, then nothing special is done to the attributes.  If
            callable, then the callable accepts two attribute dictionaries and
            returns a single attribute dictionary.  If `merge_attributes` is
            True, then `attribute_func` is called before `merge_attributes`.
            This could be useful for manually managing IDs for the new
            features.

        update_attributes : dict
            After attributes have been modified and merged, this dictionary can
            be used to replace parts of the attributes dictionary.

        Returns
        -------
        A generator that yields :class:`Feature` objects
        """

        def _init_interfeature(f):
            """
            Used to initialize a new interfeature that is ready to be updated
            in-place.
            """
            keys = [
                "id",
                "seqid",
                "source",
                "featuretype",
                "start",
                "end",
                "score",
                "strand",
                "frame",
                "attributes",
                "bin",
            ]
            d = dict(zip(keys, f.astuple()))
            d["source"] = "gffutils_derived"
            return d

        def _prep_for_yield(d):
            """
            Finalize the interfeature by adjusting coords, recalculating the
            bin, and creating a feature using self._feature_returner.

            If start is greater than stop (which happens when trying to get
            interfeatures for overlapping features), then return None.
            """
            d["start"] += 1
            d["end"] -= 1
            new_bin = bins.bins(d["start"], d["end"], one=True)
            d["bin"] = new_bin

            if d["start"] > d["end"]:
                return None

            new_feature = self._feature_returner(**d)

            # concat list of ID to create uniq IDs because feature with
            # multiple values for their ID are no longer permitted since v0.11
            if "ID" in new_feature.attributes and len(new_feature.attributes["ID"]) > 1:
                new_id = "-".join(new_feature.attributes["ID"])
                new_feature.attributes["ID"] = [new_id]
            return new_feature

        # If not provided, use a no-op function instead.
        if not attribute_func:

            def attribute_func(a):
                return a

        for i, f in enumerate(features):
            # First feature: initialize an interfeature and continue to the next.
            if i == 0:
                interfeature = _init_interfeature(f)
                last_feature = f
                nfeatures = 1
                continue

            # Yield the last interfeature (if we saw at least 2 features) and
            # start a new interfeature on this chrom.
            if f.chrom != last_feature.chrom:
                if nfeatures > 1:
                    new_feature = _prep_for_yield(interfeature)
                    if new_feature:
                        yield new_feature
                interfeature = _init_interfeature(f)
                last_feature = f
                nfeatures = 1
                continue

            # Otherwise, we've already seen a feature on this chrom so
            # this is the second.
            nfeatures += 1

            # Adjust the interfeature dict in-place with coords...
            interfeature["start"] = last_feature.stop
            interfeature["end"] = f.start

            # ...featuretype
            if new_featuretype is None:
                interfeature["featuretype"] = "inter_%s_%s" % (
                    last_feature.featuretype,
                    f.featuretype,
                )
            else:
                interfeature["featuretype"] = new_featuretype

            # ...strand
            if last_feature.strand != f.strand:
                interfeature["strand"] = "."
            else:
                interfeature["strand"] = f.strand

            # and attributes
            if merge_attributes:
                new_attributes = helpers.merge_attributes(
                    attribute_func(last_feature.attributes),
                    attribute_func(f.attributes),
                    numeric_sort=numeric_sort,
                )
            else:
                new_attributes = {}

            if update_attributes:
                new_attributes.update(update_attributes)

            interfeature["attributes"] = new_attributes

            # Ready to yield
            new_feature = _prep_for_yield(interfeature)
            if new_feature:
                yield new_feature
            nfeatures = 1

            last_feature = f

    def delete(self, features, make_backup=True, **kwargs):
        """
        Delete features from database.

        features : str, iterable, FeatureDB instance
            If FeatureDB, all features will be used. If string, assume it's the
            ID of the feature to remove. Otherwise, assume it's an iterable of
            Feature objects. The classes in gffutils.iterators may be helpful
            in this case.

        make_backup : bool
            If True, and the database you're about to update is a file on disk,
            makes a copy of the existing database and saves it with a .bak
            extension.

        Returns
        -------
        FeatureDB object, with features deleted.
        """
        if make_backup:
            if isinstance(self.dbfn, str):
                shutil.copy2(self.dbfn, self.dbfn + ".bak")

        c = self.conn.cursor()
        query1 = """
        DELETE FROM features WHERE id = ?
        """
        query2 = """
        DELETE FROM relations WHERE parent = ? OR child = ?
        """
        if isinstance(features, FeatureDB):
            features = features.all_features()
        if isinstance(features, str):
            features = [features]
        if isinstance(features, Feature):
            features = [features]
        for feature in features:
            if isinstance(feature, str):
                _id = feature
            else:
                _id = feature.id
            c.execute(query1, (_id,))
            c.execute(query2, (_id, _id))
        self.conn.commit()
        return self

    def update(self, data, make_backup=True, **kwargs):
        """
        Update the on-disk database with features in `data`.

        WARNING: If you used any non-default kwargs for gffutils.create_db when
        creating the database in the first place (especially
        `disable_infer_transcripts` or `disable_infer_genes`) then you should
        use those same arguments here. The exception is the `force` argument
        though -- in some cases including that can truncate the database.

        WARNING: If you are creating features from the database and writing
        immediately back to the database, you could experience deadlocks. See
        the help for `create_introns` for some different options for avoiding
        this.

        The returned object is the same FeatureDB, but since it is pointing to
        the same database and that has been just updated, the new features can
        now be accessed.

        Parameters
        ----------

        data : str, iterable, FeatureDB instance
            If FeatureDB, all data will be used. If string, assume it's
            a filename of a GFF or GTF file.  Otherwise, assume it's an
            iterable of Feature objects.  The classes in gffutils.iterators may
            be helpful in this case.

        make_backup : bool
            If True, and the database you're about to update is a file on disk,
            makes a copy of the existing database and saves it with a .bak
            extension.

        kwargs :
            Additional kwargs are passed to gffutils.create_db; see the help
            for that function for details.

        Returns
        -------
        Returns self but with the underlying database updated.
        """

        from gffutils import create
        from gffutils import iterators

        if make_backup:
            if isinstance(self.dbfn, str):
                shutil.copy2(self.dbfn, self.dbfn + ".bak")

        # get iterator-specific kwargs
        _iterator_kwargs = {}
        for k, v in kwargs.items():
            if k in constants._iterator_kwargs:
                _iterator_kwargs[k] = v

        # Handle all sorts of input
        data = iterators.DataIterator(data, **_iterator_kwargs)

        if not data._peek:
            return self

        kwargs["_autoincrements"] = self._autoincrements

        if self.dialect["fmt"] == "gtf":
            if "id_spec" not in kwargs:
                kwargs["id_spec"] = {"gene": "gene_id", "transcript": "transcript_id"}
            db = create._GTFDBCreator(
                data=data, dbfn=self.dbfn, dialect=self.dialect, **kwargs
            )
        elif self.dialect["fmt"] == "gff3":
            if "id_spec" not in kwargs:
                kwargs["id_spec"] = "ID"
            db = create._GFFDBCreator(
                data=data, dbfn=self.dbfn, dialect=self.dialect, **kwargs
            )

        else:
            raise ValueError

        db._populate_from_lines(data)
        db._update_relations()

        # Note that the autoincrements gets updated here
        db._finalize()

        # Read it back in directly from the stored autoincrements table
        self._autoincrements.update(db._autoincrements)
        return self

    def add_relation(self, parent, child, level, parent_func=None, child_func=None):
        """
        Manually add relations to the database.

        Parameters
        ----------
        parent : str or Feature instance
             Parent feature to add.

        child : str or Feature instance
            Child feature to add

        level : int
            Level of the relation.  For example, if parent is a gene and child
            is an mRNA, then you might want level to be 1.  But if child is an
            exon, then level would be 2.

        parent_func, child_func : callable
            These optional functions control how attributes are updated in the
            database.  They both have the signature `func(parent, child)` and
            must return a [possibly modified] Feature instance.  For example,
            we could add the child's database id as the "child" attribute in
            the parent::

                def parent_func(parent, child):
                    parent.attributes['child'] = child.id

            and add the parent's "gene_id" as the child's "Parent" attribute::

                def child_func(parent, child):
                    child.attributes['Parent'] = parent['gene_id']

        Returns
        -------
        FeatureDB object with new relations added.
        """
        if isinstance(parent, str):
            parent = self[parent]
        if isinstance(child, str):
            child = self[child]

        c = self.conn.cursor()
        c.execute(
            """
                  INSERT INTO relations (parent, child, level)
                  VALUES (?, ?, ?)""",
            (parent.id, child.id, level),
        )

        if parent_func is not None:
            parent = parent_func(parent, child)
            self._update(parent, c)
        if child_func is not None:
            child = child_func(parent, child)
            self._update(child, c)

        self.conn.commit()
        return self

    def _update(self, feature, cursor):
        values = [list(feature.astuple()) + [feature.id]]
        cursor.execute(constants._UPDATE, *tuple(values))

    def _insert(self, feature, cursor):
        """
        Insert a feature into the database.
        """
        try:
            cursor.execute(constants._INSERT, feature.astuple())
        except sqlite3.ProgrammingError:
            cursor.execute(constants._INSERT, feature.astuple(self.default_encoding))

    def create_introns(
        self,
        exon_featuretype="exon",
        grandparent_featuretype="gene",
        parent_featuretype=None,
        new_featuretype="intron",
        merge_attributes=True,
        numeric_sort=False,
    ):
        """
        Create introns from existing annotations.


        Parameters
        ----------
        exon_featuretype : string
            Feature type to use in order to infer introns.  Typically `"exon"`.

        grandparent_featuretype : string
            If `grandparent_featuretype` is not None, then group exons by
            children of this featuretype.  If `granparent_featuretype` is
            "gene" (default), then introns will be created for all first-level
            children of genes.  This may include mRNA, rRNA, ncRNA, etc.  If
            you only want to infer introns from one of these featuretypes
            (e.g., mRNA), then use the `parent_featuretype` kwarg which is
            mutually exclusive with `grandparent_featuretype`.

        parent_featuretype : string
            If `parent_featuretype` is not None, then only use this featuretype
            to infer introns.  Use this if you only want a subset of
            featuretypes to have introns (e.g., "mRNA" only, and not ncRNA or
            rRNA). Mutually exclusive with `grandparent_featuretype`.

        new_featuretype : string
            Feature type to use for the inferred introns; default is
            `"intron"`.

        merge_attributes : bool
            Whether or not to merge attributes from all exons. If False then no
            attributes will be created for the introns.

        numeric_sort : bool
            If True, then merged attributes that can be cast to float will be
            sorted by their numeric values (but will still be returned as
            string). This is useful, for example, when creating introns between
            exons and the exons have exon_number attributes as an integer.
            Using numeric_sort=True will ensure that the returned exons have
            merged exon_number attribute of ['9', '10'] (numerically sorted)
            rather than ['10', '9'] (alphabetically sorted).

        Returns
        -------
        A generator object that yields :class:`Feature` objects representing
        new introns

        Notes
        -----
        The returned generator can be passed directly to the
        :meth:`FeatureDB.update` method to permanently add them to the
        database. However, this needs to be done carefully to avoid deadlocks
        from simultaneous reading/writing.

        When using `update()` you should also use the same keyword arguments
        used to create the db in the first place (with the exception of `force`).

        Here are three options for getting the introns back into the database,
        depending on the circumstances.

        **OPTION 1: Create list of introns.**

        Consume the `create_introns()` generator completely before writing to
        the database. If you have sufficient memory, this is the easiest
        option::

            db.update(list(db.create_introns(**intron_kwargs)), **create_kwargs)

        **OPTION 2: Use `WAL <https://sqlite.org/wal.html>`__**

        The WAL pragma enables simultaneous read/write. WARNING: this does not
        work if the database is on a networked filesystem, like those used on
        many HPC clusters.

        ::

            db.set_pragmas({"journal_mode": "WAL"})
            db.update(db.create_introns(**intron_kwargs), **create_kwargs)

        **OPTION 3: Write to intermediate file.**

        Use this if you are memory limited and using a networked filesystem::

            with open('tmp.gtf', 'w') as fout:
                for intron in db.create_introns(**intron_kwargs):
                    fout.write(str(intron) + "\n")
            db.update(gffutils.DataIterator('tmp.gtf'), **create_kwargs)

        """
        if (grandparent_featuretype and parent_featuretype) or (
            grandparent_featuretype is None and parent_featuretype is None
        ):
            raise ValueError(
                "exactly one of `grandparent_featuretype` or "
                "`parent_featuretype` should be provided"
            )

        if grandparent_featuretype:

            def child_gen():
                for gene in self.features_of_type(grandparent_featuretype):
                    for child in self.children(gene, level=1):
                        yield child

        elif parent_featuretype:

            def child_gen():
                for child in self.features_of_type(parent_featuretype):
                    yield child

        for child in child_gen():
            exons = self.children(
                child, level=1, featuretype=exon_featuretype, order_by="start"
            )
            for intron in self.interfeatures(
                exons,
                new_featuretype=new_featuretype,
                merge_attributes=merge_attributes,
                numeric_sort=numeric_sort,
                dialect=self.dialect,
            ):
                yield intron

    def create_splice_sites(
        self,
        exon_featuretype="exon",
        grandparent_featuretype="gene",
        parent_featuretype=None,
        merge_attributes=True,
        numeric_sort=False,
    ):
        """
        Create splice sites from existing annotations.


        Parameters
        ----------
        exon_featuretype : string
            Feature type to use in order to infer splice sites.  Typically `"exon"`.

        grandparent_featuretype : string
            If `grandparent_featuretype` is not None, then group exons by
            children of this featuretype.  If `granparent_featuretype` is
            "gene" (default), then splice sites will be created for all first-level
            children of genes.  This may include mRNA, rRNA, ncRNA, etc.  If
            you only want to infer splice sites from one of these featuretypes
            (e.g., mRNA), then use the `parent_featuretype` kwarg which is
            mutually exclusive with `grandparent_featuretype`.

        parent_featuretype : string
            If `parent_featuretype` is not None, then only use this featuretype
            to infer splice sites.  Use this if you only want a subset of
            featuretypes to have splice sites (e.g., "mRNA" only, and not ncRNA or
            rRNA). Mutually exclusive with `grandparent_featuretype`.

        merge_attributes : bool
            Whether or not to merge attributes from all exons. If False then no
            attributes will be created for the splice sites.

        numeric_sort : bool
            If True, then merged attributes that can be cast to float will be
            sorted by their numeric values (but will still be returned as
            string). This is useful, for example, when creating splice sites between
            exons and the exons have exon_number attributes as an integer.
            Using numeric_sort=True will ensure that the returned exons have
            merged exon_number attribute of ['9', '10'] (numerically sorted)
            rather than ['10', '9'] (alphabetically sorted).

        Returns
        -------
        A generator object that yields :class:`Feature` objects representing
        new splice sites

        Notes
        -----
        The returned generator can be passed directly to the
        :meth:`FeatureDB.update` method to permanently add them to the
        database, e.g., ::

            db.update(db.create_splice sites())

        """
        if (grandparent_featuretype and parent_featuretype) or (
            grandparent_featuretype is None and parent_featuretype is None
        ):
            raise ValueError(
                "exactly one of `grandparent_featuretype` or "
                "`parent_featuretype` should be provided"
            )

        if grandparent_featuretype:

            def child_gen():
                for gene in self.features_of_type(grandparent_featuretype):
                    for child in self.children(gene, level=1):
                        yield child

        elif parent_featuretype:

            def child_gen():
                for child in self.features_of_type(parent_featuretype):
                    yield child

        # Two splice features need to be created for each interleave
        for side in ["left", "right"]:
            for child in child_gen():
                exons = self.children(
                    child, level=1, featuretype=exon_featuretype, order_by="start"
                )

                # get strand
                strand = child.strand

                new_featuretype = "splice_site"
                if side == "left":
                    if strand == "+":
                        new_featuretype = "five_prime_cis_splice_site"
                    elif strand == "-":
                        new_featuretype = "three_prime_cis_splice_site"

                if side == "right":
                    if strand == "+":
                        new_featuretype = "three_prime_cis_splice_site"
                    elif strand == "-":
                        new_featuretype = "five_prime_cis_splice_site"

                for splice_site in self.interfeatures(
                    exons,
                    new_featuretype=new_featuretype,
                    merge_attributes=merge_attributes,
                    numeric_sort=numeric_sort,
                    dialect=self.dialect,
                ):

                    if side == "left":
                        splice_site.end = splice_site.start + 1
                    if side == "right":
                        splice_site.start = splice_site.end - 1

                    # make ID uniq by adding suffix
                    splice_site.attributes["ID"] = [
                        new_featuretype + "_" + splice_site.attributes["ID"][0]
                    ]

                    yield splice_site

    def _old_merge(self, features, ignore_strand=False):
        """
        DEPRECATED, only retained here for backwards compatibility. Please use
        merge().

        Merge overlapping features together.

        Parameters
        ----------

        features : iterator of Feature instances

        ignore_strand : bool
            If True, features on multiple strands will be merged, and the final
            strand will be set to '.'.  Otherwise, ValueError will be raised if
            trying to merge features on differnt strands.

        Returns
        -------
        A generator object that yields :class:`Feature` objects representing
        the newly merged features.
        """

        # Consume iterator up front...
        features = list(features)

        if len(features) == 0:
            raise StopIteration

        # Either set all strands to '+' or check for strand-consistency.
        if ignore_strand:
            strand = "."
        else:
            strands = [i.strand for i in features]
            if len(set(strands)) > 1:
                raise ValueError(
                    "Specify ignore_strand=True to force merging " "of multiple strands"
                )
            strand = strands[0]

        # Sanity check to make sure all features are from the same chromosome.
        chroms = [i.chrom for i in features]
        if len(set(chroms)) > 1:
            raise NotImplementedError("Merging multiple chromosomes not " "implemented")
        chrom = chroms[0]

        # To start, we create a merged feature of just the first feature.
        current_merged_start = features[0].start
        current_merged_stop = features[0].stop

        # We don't need to check the first one, so start at feature #2.
        for feature in features[1:]:
            # Does this feature start within the currently merged feature?...
            if feature.start <= current_merged_stop + 1:
                # ...It starts within, so leave current_merged_start where it
                # is.  Does it extend any farther?
                if feature.stop >= current_merged_stop:
                    # Extends further, so set a new stop position
                    current_merged_stop = feature.stop
                else:
                    # If feature.stop < current_merged_stop, it's completely
                    # within the previous feature.  Nothing more to do.
                    continue
            else:
                # The start position is outside the merged feature, so we're
                # done with the current merged feature.  Prepare for output...
                merged_feature = dict(
                    seqid=feature.chrom,
                    source=".",
                    featuretype=feature.featuretype,
                    start=current_merged_start,
                    end=current_merged_stop,
                    score=".",
                    strand=strand,
                    frame=".",
                    attributes="",
                )
                yield self._feature_returner(**merged_feature)

                # and we start a new one, initializing with this feature's
                # start and stop.
                current_merged_start = feature.start
                current_merged_stop = feature.stop

        # need to yield the last one.
        if len(features) == 1:
            feature = features[0]
        merged_feature = dict(
            seqid=feature.chrom,
            source=".",
            featuretype=feature.featuretype,
            start=current_merged_start,
            end=current_merged_stop,
            score=".",
            strand=strand,
            frame=".",
            attributes="",
        )
        yield self._feature_returner(**merged_feature)

    def merge(
        self,
        features,
        merge_criteria=(mc.seqid, mc.overlap_end_inclusive, mc.strand, mc.feature_type),
        multiline=False,
    ):
        """
        Merge features matching criteria together


        Returned Features have a special property called 'children' that is
        a list of the component features.  This only exists for the lifetime of
        the Feature instance.

        Parameters
        ----------
        features : iterable
            Iterable of Feature instances to merge

        merge_criteria : list
            List of merge criteria callbacks. All must evaluate to True in
            order for a feature to be merged. See notes below on callback
            signature.

        multiline : bool
            True to emit multiple features with the same ID attribute, False
            otherwise.

        Returns
        -------
        Generator yielding merged Features

        Notes
        -----

        See the `gffutils.merge_criteria` module (imported here as `mc`) for
        existing callback functions. For writing custom callbacks, functions
        must have the following signature::

            callback(
                acc: gffutils.Feature,
                cur: gffutils.Feature,
                components: [gffutils.Feature]
            ) -> bool

        Where:

            - `acc`: current accumulated feature
            - `cur`: candidate feature to merge
            - `components`: list of features that compose acc

        The function should return True to merge `cur` into `acc`, False to set
        `cur` to `acc` (that is, start a new merged feature).

        If merge criteria allows different feature types then the merged
        features' feature types should have their featuretype property
        reassigned to a more specific ontology value.
        """
        if not isinstance(merge_criteria, list):
            try:
                merge_criteria = list(merge_criteria)
            except TypeError:
                merge_criteria = [merge_criteria]

        # To start, we create a merged feature of just the first feature.
        features = iter(features)
        last_id = None
        current_merged = None
        feature_children = []

        for feature in features:
            if current_merged is None:
                if all(
                    criteria(feature, feature, feature_children)
                    for criteria in merge_criteria
                ):
                    current_merged = feature
                    feature_children = [feature]
                else:
                    yield _finalize_merge(feature, no_children)
                    last_id = None
                continue

            if (
                len(feature_children) == 0
            ):  # current_merged is last feature and unchecked
                if all(
                    criteria(current_merged, current_merged, feature_children)
                    for criteria in merge_criteria
                ):
                    feature_children.append(current_merged)
                else:
                    yield _finalize_merge(current_merged, no_children)
                    current_merged = feature
                    last_id = None
                    continue

            if all(
                criteria(current_merged, feature, feature_children)
                for criteria in merge_criteria
            ):
                # Criteria satisfied, merge
                # TODO Test multiline records and iron out the following code
                # if multiline and (feature.start > current_merged.end + 1 or feature.end + 1 < current_merged.start):
                #    # Feature is possibly multiline (discontiguous), keep ID but start new record
                #    yield _finalize_merge(current_merged, feature_children)
                #    current_merged = feature
                #    feature_children = [feature]

                if len(feature_children) == 1:
                    # Current merged is only child and merge is going to occur, make copy
                    current_merged = vars(current_merged).copy()
                    del current_merged["attributes"]
                    del current_merged["extra"]
                    del current_merged["dialect"]
                    del current_merged["keep_order"]
                    del current_merged["sort_attribute_values"]
                    current_merged = self._feature_returner(**current_merged)
                    if not last_id:
                        # Generate unique ID for new Feature
                        self._autoincrements[current_merged.featuretype] += 1
                        last_id = (
                            current_merged.featuretype
                            + "_"
                            + str(self._autoincrements[current_merged.featuretype])
                        )
                    current_merged["ID"] = last_id
                    current_merged.id = last_id

                feature_children.append(feature)

                # Set mismatched properties to ambiguous values
                if feature.seqid not in current_merged.seqid.split(","):
                    current_merged.seqid += "," + feature.seqid
                if feature.strand != current_merged.strand:
                    current_merged.strand = "."
                if feature.frame != current_merged.frame:
                    current_merged.frame = "."
                if feature.featuretype != current_merged.featuretype:
                    current_merged.featuretype = "sequence_feature"

                if feature.start < current_merged.start:
                    # Extends prior, so set a new start position
                    current_merged.start = feature.start

                if feature.end > current_merged.end:
                    # Extends further, so set a new stop position
                    current_merged.end = feature.end

            else:
                yield _finalize_merge(current_merged, feature_children)
                current_merged = feature
                feature_children = []
                last_id = None

        if current_merged:
            yield _finalize_merge(current_merged, feature_children)

    def merge_all(
        self,
        merge_order=("seqid", "featuretype", "strand", "start"),
        merge_criteria=(mc.seqid, mc.overlap_end_inclusive, mc.strand, mc.feature_type),
        featuretypes_groups=(None,),
        exclude_components=False,
    ):
        """
        Merge all features in database according to criteria.
        Merged features will be assigned as children of the merged record.
        The resulting records are added to the database.

        Parameters
        ----------
        merge_order : list
            Ordered list of columns with which to group features before evaluating criteria
        merge_criteria : list
            List of merge criteria callbacks. See merge().
        featuretypes_groups : list
            iterable of sets of featuretypes to merge together
        exclude_components : bool
            True: child features will be discarded. False to keep them.

        Returns
        -------
            list of merge features
        """

        if not len(featuretypes_groups):
            # Can't be empty
            featuretypes_groups = (None,)

        result_features = []

        # Merge features per featuregroup
        for featuregroup in featuretypes_groups:
            for merged in self.merge(
                self.all_features(featuretype=featuregroup, order_by=merge_order),
                merge_criteria=merge_criteria,
            ):
                # If feature is result of merge
                if merged.children:
                    self._insert(merged, self.conn.cursor())
                    if exclude_components:
                        # Remove child features from DB
                        self.delete(merged.children)
                    else:
                        # Add child relations to DB
                        for child in merged.children:
                            self.add_relation(merged, child, 1, child_func=assign_child)
                    result_features.append(merged)
                else:
                    pass  # Do nothing, feature is already in DB

        return result_features

    def children_bp(
        self,
        feature,
        child_featuretype="exon",
        merge=False,
        merge_criteria=(mc.seqid, mc.overlap_end_inclusive, mc.strand, mc.feature_type),
        **kwargs
    ):
        """
        Total bp of all children of a featuretype.

        Useful for getting the exonic bp of an mRNA.

        Parameters
        ----------

        feature : str or Feature instance

        child_featuretype : str
            Which featuretype to consider.  For example, to get exonic bp of an
            mRNA, use `child_featuretype='exon'`.

        merge : bool
            Whether or not to merge child features together before summing
            them.

        merge_criteria : list
            List of merge criteria callbacks. All must evaluate to True in
            order for a feature to be merged. Only used if merge=True. When
            modifying this argument, you may want to use:

                from gffutils import merge_criteria as mc

            to access the available callbacks.

        Returns
        -------
        Integer representing the total number of bp.
        """

        if kwargs:
            if "ignore_strand" in kwargs:
                raise ValueError(
                    "'ignore_strand' has been deprecated; please use "
                    "merge_criteria to control how features should be merged. "
                    "E.g., leave out the 'mc.strand' criteria to ignore strand."
                )
            else:
                raise TypeError(
                    "merge() got unexpected keyword arguments '{}'".format(
                        kwargs.keys()
                    )
                )

        children = self.children(
            feature, featuretype=child_featuretype, order_by="start"
        )
        if merge:
            children = self.merge(children, merge_criteria=merge_criteria)

        total = 0
        for child in children:
            total += len(child)
        return total

    def bed12(
        self,
        feature,
        block_featuretype=["exon"],
        thick_featuretype=["CDS"],
        thin_featuretype=None,
        name_field="ID",
        color=None,
    ):
        """
        Converts `feature` into a BED12 format.

        GFF and GTF files do not necessarily define genes consistently, so this
        method provides flexiblity in specifying what to call a "transcript".

        Parameters
        ----------
        feature : str or Feature instance
            In most cases, this feature should be a transcript rather than
            a gene.

        block_featuretype : str or list
            Which featuretype to use as the exons. These are represented as
            blocks in the BED12 format.  Typically 'exon'.

            Use the `thick_featuretype` and `thin_featuretype` arguments to
            control the display of CDS as thicker blocks and UTRs as thinner
            blocks.

            Note that the features for `thick` or `thin` are *not*
            automatically included in the blocks; if you do want them included,
            then those featuretypes should be added to this `block_features`
            list.

            If no child features of type `block_featuretype` are found, then
            the full `feature` is returned in BED12 format as if it had
            a single exon.

        thick_featuretype : str or list
            Child featuretype(s) to use in order to determine the boundaries of
            the "thick" blocks. In BED12 format, these represent coding
            sequences; typically this would be set to "CDS".  This argument is
            mutually exclusive with `thin_featuretype`.

            Specifically, the BED12 thickStart will be the start coord of the
            first `thick` item and the thickEnd will be the stop coord of the
            last `thick` item.

        thin_featuretype : str or list
            Child featuretype(s) to use in order to determine the boundaries of
            the "thin" blocks.  In BED12 format, these represent untranslated
            regions.  Typically "utr" or ['three_prime_UTR', 'five_prime_UTR'].
            Mutually exclusive with `thick_featuretype`.

            Specifically, the BED12 thickStart field will be the stop coord of
            the first `thin` item and the thickEnd field will be the start
            coord of the last `thin` item.

        name_field : str
            Which attribute of `feature` to use as the feature's name.  If this
            field is not present, a "." placeholder will be used instead.

        color : None or str
            If None, then use black (0,0,0) as the RGB color; otherwise this
            should be a comma-separated string of R,G,B values each of which
            are integers in the range 0-255.
        """
        if thick_featuretype and thin_featuretype:
            raise ValueError(
                "Can only specify one of `thick_featuertype` or " "`thin_featuretype`"
            )

        exons = list(
            self.children(feature, featuretype=block_featuretype, order_by="start")
        )
        if len(exons) == 0:
            exons = [feature]
        feature = self[feature]
        first = exons[0].start
        last = exons[-1].stop

        if first != feature.start:
            raise ValueError(
                "Start of first exon (%s) does not match start of feature (%s)"
                % (first, feature.start)
            )
        if last != feature.stop:
            raise ValueError(
                "End of last exon (%s) does not match end of feature (%s)"
                % (last, feature.stop)
            )

        if color is None:
            color = "0,0,0"
        color = color.replace(" ", "").strip()

        # Use field names as defined at
        # http://genome.ucsc.edu/FAQ/FAQformat.html#format1
        chrom = feature.chrom
        chromStart = feature.start - 1
        chromEnd = feature.stop
        orig = constants.always_return_list
        constants.always_return_list = True
        try:
            name = feature[name_field][0]
        except KeyError:
            name = "."

        constants.always_return_list = orig

        score = feature.score
        if score == ".":
            score = "0"
        strand = feature.strand
        itemRgb = color
        blockCount = len(exons)
        blockSizes = [len(i) for i in exons]
        blockStarts = [i.start - 1 - chromStart for i in exons]

        if thick_featuretype:
            thick = list(
                self.children(feature, featuretype=thick_featuretype, order_by="start")
            )
            if len(thick) == 0:
                thickStart = feature.start
                thickEnd = feature.stop
            else:
                thickStart = thick[0].start - 1  # BED 0-based coords
                thickEnd = thick[-1].stop

        if thin_featuretype:
            thin = list(
                self.children(feature, featuretype=thin_featuretype, order_by="start")
            )
            if len(thin) == 0:
                thickStart = feature.start
                thickEnd = feature.stop
            else:
                thickStart = thin[0].stop
                thickEnd = thin[-1].start - 1  # BED 0-based coords

        tst = chromStart + blockStarts[-1] + blockSizes[-1]
        assert tst == chromEnd, "tst=%s; chromEnd=%s" % (tst, chromEnd)

        fields = [
            chrom,
            chromStart,
            chromEnd,
            name,
            score,
            strand,
            thickStart,
            thickEnd,
            itemRgb,
            blockCount,
            ",".join(map(str, blockSizes)),
            ",".join(map(str, blockStarts)),
        ]
        return "\t".join(map(str, fields))

    def seqids(self):
        """
        Yield the unique sequence IDs (chromosomes, contigs) observed in the
        database.
        """
        c = self.conn.cursor()
        c.execute(
            """
            SELECT DISTINCT seqid from features
            """
        )
        for (i,) in c:
            yield i

    # Recycle the docs for _relation so they stay consistent between parents()
    # and children()
    children.__doc__ = children.__doc__.format(_relation_docstring=_relation.__doc__)
    parents.__doc__ = parents.__doc__.format(_relation_docstring=_relation.__doc__)

    # Add the docs for methods that call helpers.make_query()
    for method in [parents, children, features_of_type, all_features]:
        method.__doc__ = method.__doc__.format(_method_doc=_method_doc)