1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
"""
This module provides different kinds of iterators, all wrapped by the
DataIterator class which should generally be the only one used in practice.
The BaseIterator class allows "peeking" `checklines` lines into the data --
even if it's a consumable iterator -- in order to figure out what the dialect
is and therefore decide whether the data is GFF or GTF format, which is
important for figuring out how to construct the database.
"""
import os
import tempfile
import itertools
from contextlib import contextmanager
from gffutils.feature import feature_from_line
from gffutils.interface import FeatureDB
from gffutils import helpers
from textwrap import dedent
from urllib.request import urlopen
from urllib import parse as urlparse
class Directive(object):
def __init__(self, line):
self.info = line
class _BaseIterator(object):
def __init__(
self,
data,
checklines=10,
transform=None,
force_dialect_check=False,
dialect=None,
):
"""
Base class for iterating over features. In general, you should use
DataIterator -- so see the docstring of class for argument
descriptions.
All subclasses -- _FileIterator, _URLIterator, _FeatureIterator,
_StringIterator -- gain the following behavior:
- self.current_item and self.current_item_number are set on every
iteration. This is very useful for debugging, or reporting to
the user exactly what item or line number caused the issue.
- transform a Feature before it gets yielded, filter out a Feature
- auto-detect dialect by peeking `checklines` items into the
iterator, and then re-reading those, applying the detected
dialect. If multiple dialects are found, use
helpers._choose_dialect to figure out the best one.
- keep track of directives
"""
self.data = data
self.checklines = checklines
self.current_item = None
self.current_item_number = None
self.dialect = None
self._observed_dialects = []
self.directives = []
self.transform = transform
self.warnings = []
if force_dialect_check and dialect is not None:
raise ValueError(
"force_dialect_check is True, but a dialect " "is provided"
)
if force_dialect_check:
# In this case, self.dialect remains None. When
# parser._split_keyvals gets None as a dialect, it tries to infer
# a dialect.
self._iter = self._custom_iter()
elif dialect is not None:
self.dialect = dialect
else:
# Otherwise, check some lines to determine what the dialect should
# be
_peek = self.peek(checklines)
self._peek = _peek
self.dialect = helpers._choose_dialect(_peek)
def _custom_iter(self):
raise NotImplementedError("Must define in subclasses")
def __iter__(self):
for i in self._custom_iter():
i.dialect = self.dialect
if self.transform:
i = self.transform(i)
if i:
yield i
else:
yield i
def _directive_handler(self, directive):
self.directives.append(directive[2:])
class _FileIterator(_BaseIterator):
"""
Subclass for iterating over features provided as a filename
"""
def peek(self, n):
initial = []
for i, feature in enumerate(self._custom_iter()):
initial.append(feature)
if i == n:
break
return initial
def open_function(self, data):
data = os.path.expanduser(data)
if data.endswith(".gz"):
import gzip
return gzip.open(data)
return open(data)
def _custom_iter(self):
self.directives = []
valid_lines = 0
with self.open_function(self.data) as fh:
for i, line in enumerate(fh):
if isinstance(line, bytes):
line = line.decode("utf-8")
line = line.rstrip("\n\r")
self.current_item = line
self.current_item_number = i
if line == "##FASTA" or line.startswith(">"):
return
if line.startswith("##"):
self._directive_handler(line)
continue
if line.startswith(("#")) or len(line) == 0:
continue
# (If we got here it should be a valid line)
valid_lines += 1
yield feature_from_line(line, dialect=self.dialect)
class _UrlIterator(_FileIterator):
"""
Subclass for iterating over features provided as a URL
"""
@contextmanager
def open_function(self, data):
response = urlopen(data)
# ideas from
# http://stackoverflow.com/a/17537107
# https://rationalpie.wordpress.com/2010/06/02/\
# python-streaming-gzip-decompression/
if data.endswith(".gz"):
import zlib
d = zlib.decompressobj(16 + zlib.MAX_WBITS)
READ_BLOCK_SIZE = 1024
def _iter():
last_line = ""
while True:
data = response.read(READ_BLOCK_SIZE)
if not data:
break
data = "".join((last_line, d.decompress(data).decode()))
lines = data.split("\n")
last_line = lines.pop()
for line in lines:
yield line + "\n"
yield last_line
else:
def _iter():
for line in response.readlines():
if not line:
break
yield line.decode() + "\n"
try:
yield _iter()
finally:
response.close()
class _FeatureIterator(_BaseIterator):
"""
Subclass for iterating over features that are already in an iterator
"""
def peek(self, n):
initial = []
for i, feature in enumerate(self.data):
initial.append(feature)
if i == n:
break
# If self.data is generator-like, we need to patch it back together.
if hasattr(self.data, "__next__"):
self.data = itertools.chain(initial, self.data)
return initial
def _custom_iter(self):
for i, feature in enumerate(self.data):
self.current_item = feature
self.current_item_number = i
yield feature
def is_url(url):
"""
Check to see if a URL has a valid protocol.
Parameters
----------
url : str or unicode
Returns
-------
True if `url` has a valid protocol False otherwise.
"""
try:
return urlparse.urlparse(url).scheme in set(urlparse.uses_netloc).difference(
[""]
)
except:
return False
def DataIterator(
data,
checklines=10,
transform=None,
force_dialect_check=False,
from_string=False,
**kwargs,
):
"""
Iterate over features, no matter how they are provided.
Parameters
----------
data : str, iterable of Feature objs, FeatureDB
`data` can be a string (filename, URL, or contents of a file, if
from_string=True), any arbitrary iterable of features, or a FeatureDB
(in which case its all_features() method will be called).
checklines : int
Number of lines to check in order to infer a dialect.
transform : None or callable
If not None, `transform` should accept a Feature object as its only
argument and return either a (possibly modified) Feature object or
a value that evaluates to False. If the return value is False, the
feature will be skipped.
force_dialect_check : bool
If True, check the dialect of every feature. Thorough, but can be
slow.
from_string : bool
If True, `data` should be interpreted as the contents of a file rather
than the filename itself.
dialect : None or dict
Provide the dialect, which will override auto-detected dialects. If
provided, you should probably also use `force_dialect_check=False` and
`checklines=0` but this is not enforced.
"""
if isinstance(data, _BaseIterator):
return data
_kwargs = dict(
data=data,
checklines=checklines,
transform=transform,
force_dialect_check=force_dialect_check,
**kwargs,
)
if isinstance(data, str):
if from_string:
tmp = tempfile.NamedTemporaryFile(delete=False)
data = dedent(data)
if isinstance(data, str):
data = data.encode("utf-8")
tmp.write(data)
tmp.close()
_kwargs["data"] = tmp.name
return _FileIterator(**_kwargs)
else:
if os.path.exists(data):
return _FileIterator(**_kwargs)
elif is_url(data):
return _UrlIterator(**_kwargs)
else:
raise ValueError(
f"{data} cannot be found and does not " "appear to be a URL"
)
elif isinstance(data, FeatureDB):
_kwargs["data"] = data.all_features()
return _FeatureIterator(**_kwargs)
else:
return _FeatureIterator(**_kwargs)
|