1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
Multiple-precision Complex
==========================
gmpy2 adds a multiple-precision complex type called *mpc* that is based on the
MPC library. The context manager settings for *mpfr* arithmetic are applied to
*mpc* arithmetic by default. It is possible to specifiy different precision and
rounding modes for both the real and imaginary components of an *mpc*.
::
>>> import gmpy2
>>> from gmpy2 import mpc
>>> gmpy2.sqrt(mpc("1+2j"))
mpc('1.272019649514069+0.78615137775742328j')
>>> gmpy2.get_context(real_prec=100,imag_prec=200)
context(precision=53, real_prec=100, imag_prec=200,
round=RoundToNearest, real_round=Default, imag_round=Default,
emax=1073741823, emin=-1073741823,
subnormalize=False,
trap_underflow=False, underflow=False,
trap_overflow=False, overflow=False,
trap_inexact=False, inexact=True,
trap_invalid=False, invalid=False,
trap_erange=False, erange=False,
trap_divzero=False, divzero=False,
trap_expbound=False,
allow_complex=False)
>>> gmpy2.sqrt(mpc("1+2j"))
mpc('1.2720196495140689642524224617376+0.78615137775742328606955858584295892952312205783772323766490213j',(100,200))
Exceptions are normally raised in Python when the result of a real operation
is not defined over the reals; for example, ``sqrt(-4)`` will raise an
exception. The default context in gmpy2 implements the same behavior but by
setting allow_complex to True, complex results will be returned.
::
>>> import gmpy2
>>> from gmpy2 import mpc
>>> gmpy2.sqrt(-4)
mpfr('nan')
>>> gmpy2.get_context(allow_complex=True)
context(precision=53, real_prec=Default, imag_prec=Default,
round=RoundToNearest, real_round=Default, imag_round=Default,
emax=1073741823, emin=-1073741823,
subnormalize=False,
trap_underflow=False, underflow=False,
trap_overflow=False, overflow=False,
trap_inexact=False, inexact=False,
trap_invalid=False, invalid=True,
trap_erange=False, erange=False,
trap_divzero=False, divzero=False,
trap_expbound=False,
allow_complex=True)
>>> gmpy2.sqrt(-4)
mpc('0.0+2.0j')
mpc Methods
-----------
**conjugate()**
Returns the complex conjugate.
**digits()**
Returns a two element tuple where each element represents the real and
imaginary components as a 3-tuple containing the mantissa, the exponent,
and the number of bits of precision. The mantissa is represented as a
string in the specified base with up to 'prec' digits. If 'prec' is 0, as
many digits that are available are returned. No more digits than available
given x's precision are returned. 'base' must be between 2 and 62,
inclusive.
mpc Attributes
--------------
**imag**
Returns the imaginary component.
**precision**
Returns a 2-tuple containing the the precision of the real and imaginary
components.
**rc**
Returns a 2-tuple containing the ternary value of the real and imaginary
components. The ternary value is 0 if the value of the component is exactly
equal to the exact, infinite precision value. If the result code is 1, then
the value of the component is greater than the exact value. If the result
code is -1, then the value of the component is less than the exact,
infinite precision value.
**real**
Returns the real component.
mpc Functions
-------------
**acos(...)**
acos(x) returns the arc-cosine of x.
**acosh(...)**
acosh(x) returns the inverse hyperbolic cosine of x.
**add(...)**
add(x, y) returns x + y. The type of the result is based on the types of
the arguments.
**asin(...)**
asin(x) returns the arc-sine of x.
**asinh(...)**
asinh(x) return the inverse hyperbolic sine of x.
**atan(...)**
atan(x) returns the arc-tangent of x.
**atanh(...)**
atanh(x) returns the inverse hyperbolic tangent of x.
**cos(...)**
cos(x) seturns the cosine of x.
**cosh(...)**
cosh(x) returns the hyperbolic cosine of x.
**div(...)**
div(x, y) returns x / y. The type of the result is based on the types of
the arguments.
**div_2exp(...)**
div_2exp(x, n) returns an 'mpfr' or 'mpc' divided by 2**n.
**exp(...)**
exp(x) returns e**x.
**fma(...)**
fma(x, y, z) returns correctly rounded result of (x * y) + z.
**fms(...)**
fms(x, y, z) returns correctly rounded result of (x * y) - z.
**is_inf(...)**
is_inf(x) returns True if either the real or imaginary component of x is
Infinity or -Infinity.
**is_nan(...)**
is_nan(x) returns True if either the real or imaginary component of x is
NaN (Not-A-Number).
**is_zero(...)**
is_zero(x) returns True if x is zero.
**log(...)**
log(x) returns the natural logarithm of x.
**log10(...)**
log10(x) returns the base-10 logarithm of x.
**mpc(...)**
mpc() returns an *mpc* object set to 0.0+0.0j.
mpc(c[, precision=0]) returns a new 'mpc' object from an existing complex
number (either a Python complex object or another 'mpc' object). If the
precision is not specified, then the precision is taken from the current
context. The rounding mode is always taken from the current context.
mpc(r[, i=0[, precision=0]]) returns a new 'mpc' object by converting two
non-complex numbers into the real and imaginary components of an 'mpc'
object. If the precision is not specified, then the precision is taken from
the current context. The rounding mode is always taken from the current
context.
mpc(s[, [precision=0[, base=10]]) returns a new 'mpc' object by converting
a string s into a complex number. If base is omitted, then a base-10
representation is assumed otherwise a base between 2 and 36 can be
specified. If the precision is not specified, then the precision is taken
from the current context. The rounding mode is always taken from the
current context.
In addition to the standard Python string representation of a complex
number: ``"1+2j"``, the string representation used by the MPC library:
``"(1 2)"`` is also supported.
.. note::
The precision can be specified either a single number that is used for
both the real and imaginary components, or as a 2-tuple that can
specify different precisions for the real and imaginary components.
**mpc_random(...)**
mpfc_random(random_state) returns a uniformly distributed number in the
unit square [0,1]x[0,1]. The parameter *random_state* must be created by
random_state() first.
**mul(...)**
mul(x, y) returns x * y. The type of the result is based on the types of
the arguments.
**mul_2exp(...)**
mul_2exp(x, n) returns 'mpfr' or 'mpc' multiplied by 2**n.
**norm(...)**
norm(x) returns the norm of a complex x. The norm(x) is defined as
x.real**2 + x.imag**2. abs(x) is the square root of norm(x).
**phase(...)**
phase(x) returns the phase angle, also known as argument, of a complex x.
**polar(...)**
polar(x) returns the polar coordinate form of a complex x that is in
rectangular form.
**proj(...)**
proj(x) returns the projection of a complex x on to the Riemann sphere.
**rect(...)**
rect(x) returns the polar coordinate form of a complex x that is in
rectangular form.
**sin(...)**
sin(x) returns the sine of x.
**sinh(...)**
sinh(x) returns the hyberbolic sine of x.
**sqrt(...)**
sqrt(x) returns the square root of x. If x is integer, rational, or real,
then an *mpfr* will be returned. If x is complex, then an *mpc* will
be returned. If context.allow_complex is True, negative values of x
will return an *mpc*.
**square(...)**
square(x) returns x * x. The type of the result is based on the types of
the arguments.
**sub(...)**
sub(x, y) returns x - y. The type of the result is based on the types of
the arguments.
**tan(...)**
tan(x) returns the tangent of x. x is measured in radians.
**tanh(...)**
tanh(x) returns the hyperbolic tangent of x.
mpc Formatting
--------------
The *mpc* type supports the __format__() special method to allow custom output
formatting.
**__format__(...)**
x.__format__(fmt) returns a Python string by formatting 'x' using the
format string 'fmt'. A valid format string consists of:
| optional alignment code:
| '<' -> left shifted in field
| '>' -> right shifted in field
| '^' -> centered in field
| optional leading sign code
| '+' -> always display leading sign
| '-' -> only display minus for negative values
| ' ' -> minus for negative values, space for positive values
| optional width.real_precision.imag_precision
| optional rounding mode:
| 'U' -> round toward plus infinity
| 'D' -> round toward minus infinity
| 'Z' -> round toward zero
| 'N' -> round to nearest
| optional output style:
| 'P' -> Python style, 1+2j, (default)
| 'M' -> MPC style, (1 2)
| optional conversion code:
| 'a','A' -> hex format
| 'b' -> binary format
| 'e','E' -> scientific format
| 'f','F' -> fixed point format
| 'g','G' -> fixed or scientific format
.. note::
The formatting codes must be specified in the order shown above.
::
>>> import gmpy2
>>> from gmpy2 import mpc
>>> a=gmpy2.sqrt(mpc("1+2j"))
>>> a
mpc('1.272019649514069+0.78615137775742328j')
>>> "{0:.4.4Mf}".format(a)
'(1.2720 0.7862)'
>>> "{0:.4.4f}".format(a)
'1.2720+0.7862j'
>>> "{0:^20.4.4U}".format(a)
' 1.2721+0.7862j '
>>> "{0:^20.4.4D}".format(a)
' 1.2720+0.7861j '
|