1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837
|
Multiple-precision Reals
========================
gmpy2 replaces the *mpf* type from gmpy 1.x with a new *mpfr* type based on
the MPFR library. The new *mpfr* type supports correct rounding, selectable
rounding modes, and many trigonometric, exponential, and special functions. A
*context manager* is used to control precision, rounding modes, and the
behavior of exceptions.
The default precision of an *mpfr* is 53 bits - the same precision as Python's
*float* type. If the precison is changed, then ``mpfr(float('1.2'))`` differs
from ``mpfr('1.2')``. To take advantage of the higher precision provided by
the *mpfr* type, always pass constants as strings.
::
>>> import gmpy2
>>> from gmpy2 import mpfr
>>> mpfr('1.2')
mpfr('1.2')
>>> mpfr(float('1.2'))
mpfr('1.2')
>>> gmpy2.get_context().precision=100
>>> mpfr('1.2')
mpfr('1.2000000000000000000000000000006',100)
>>> mpfr(float('1.2'))
mpfr('1.1999999999999999555910790149937',100)
>>>
Contexts
--------
.. warning::
Contexts and context managers are not thread-safe! Modifying the context
in one thread will impact all other threads.
A *context* is used to control the behavior of *mpfr* and *mpc* arithmetic.
In addition to controlling the precision, the rounding mode can be specified,
minimum and maximum exponent values can be changed, various exceptions can be
raised or ignored, gradual underflow can be enabled, and returning complex
results can be enabled.
``gmpy2.context()`` creates a new context with all options set to default.
``gmpy2.set_context(ctx)`` will set the active context to *ctx*.
``gmpy2.get_context()`` will return a reference to the active context. Note
that contexts are mutable: modifying the reference returned by get_context()
will modify the active context until a new context is enabled with
set_context(). The ``copy()`` method of a context will return a copy of the
context.
The following example just modifies the precision. The remaining options will
be discussed later.
::
>>> gmpy2.set_context(gmpy2.context())
>>> gmpy2.get_context()
context(precision=53, real_prec=Default, imag_prec=Default,
round=RoundToNearest, real_round=Default, imag_round=Default,
emax=1073741823, emin=-1073741823,
subnormalize=False,
trap_underflow=False, underflow=False,
trap_overflow=False, overflow=False,
trap_inexact=False, inexact=False,
trap_invalid=False, invalid=False,
trap_erange=False, erange=False,
trap_divzero=False, divzero=False,
trap_expbound=False,
allow_complex=False)
>>> gmpy2.sqrt(5)
mpfr('2.2360679774997898')
>>> gmpy2.get_context().precision=100
>>> gmpy2.sqrt(5)
mpfr('2.2360679774997896964091736687316',100)
>>> gmpy2.get_context().precision+=20
>>> gmpy2.sqrt(5)
mpfr('2.2360679774997896964091736687312762351',120)
>>> ctx=gmpy2.get_context()
>>> ctx.precision+=20
>>> gmpy2.sqrt(5)
mpfr('2.2360679774997896964091736687312762354406182',140)
>>> gmpy2.set_context(gmpy2.context())
>>> gmpy2.sqrt(5)
mpfr('2.2360679774997898')
>>> ctx.precision+=20
>>> gmpy2.sqrt(5)
mpfr('2.2360679774997898')
>>> gmpy2.set_context(ctx)
>>> gmpy2.sqrt(5)
mpfr('2.2360679774997896964091736687312762354406183596116',160)
>>>
Context Attributes
------------------
**precision**
This attribute controls the precision of an *mpfr* result. The precision
is specified in bits, not decimal digits. The maximum precision that can
be specified is platform dependent and can be retrieved with
**get_max_precision()**.
.. note::
Specifying a value for precision that is too close to the maximum precision
will cause the MPFR library to fail.
**real_prec**
This attribute controls the precision of the real part of an *mpc* result.
If the value is ``Default``, then the value of the precision attribute is
used.
**imag_prec**
This attribute controls the precision of the imaginary part of an *mpc*
result. If the value is ``Default``, then the value of real_prec is used.
**round**
There are five rounding modes availble to *mpfr* types:
``RoundAwayZero``
The result is rounded away from 0.0.
``RoundDown``
The result is rounded towards -Infinity.
``RoundToNearest``
Round to the nearest value; ties are rounded to an even value.
``RoundToZero``
The result is rounded towards 0.0.
``RoundUp``
The result is rounded towards +Infinity.
**real_round**
This attribute controls the rounding mode for the real part of an *mpc*
result. If the value is ``Default``, then the value of the round attribute
is used. Note: ``RoundAwayZero`` is not a valid rounding mode for *mpc*.
**imag_round**
This attribute controls the rounding mode for the imaginary part of an
*mpc* result. If the value is ``Default``, then the value of the real_round
attribute is used. Note: ``RoundAwayZero`` is not a valid rounding mode for
*mpc*.
**emax**
This attribute controls the maximum allowed exponent of an *mpfr* result.
The maximum exponent is platform dependent and can be retrieved with
**get_emax_max()**.
**emin**
This attribute controls the minimum allowed exponent of an *mpfr* result.
The minimum exponent is platform dependent and can be retrieved with
**get_emin_min()**.
.. note::
It is possible to change the values of emin/emax such that previous *mpfr*
values are no longer valid numbers but should either underflow to +/-0.0 or
overflow to +/-Infinity. To raise an exception if this occurs, see
**trap_expbound**.
**subnormalize**
The usual IEEE-754 floating point representation supports gradual underflow
when the minimum exponent is reached. The MFPR library does not enable
gradual underflow by default but it can be enabled to precisely mimic the
results of IEEE-754 floating point operations.
**trap_underflow**
If set to ``False``, a result that is smaller than the smallest possible
*mpfr* given the current exponent range will be replaced by +/-0.0. If set
to ``True``, an ``UnderflowResultError`` exception is raised.
**underflow**
This flag is not user controllable. It is automatically set if a result
underflowed to +/-0.0 and trap_underflow is ``False``.
**trap_overflow**
If set to ``False``, a result that is larger than the largest possible
*mpfr* given the current exponent range will be replaced by +/-Infinity. If
set to ``True``, an ``OverflowResultError`` exception is raised.
**overflow**
This flag is not user controllable. It is automatically set if a result
overflowed to +/-Infinity and trap_overflow is ``False``.
**trap_inexact**
This attribute controls whether or not an ``InexactResultError`` exception
is raised if an inexact result is returned. To check if the result is
greater or less than the exact result, check the **rc** attribute of the
*mpfr* result.
**inexact**
This flag is not user controllable. It is automatically set if an inexact
result is returned.
**trap_invalid**
This attribute controls whether or not an ``InvalidOperationError``
exception is raised if a numerical result is not defined. A special
NaN (Not-A-Number) value will be returned if an exception is not raised.
The ``InvalidOperationError`` is a sub-class of Python's ``ValueError``.
For example, ``gmpy2.sqrt(-2)`` will normally return *mpfr('nan')*.
However, if allow_complex is set to ``True``, then an *mpc* result will
be returned.
**invalid**
This flag is not user controllable. It is automatically set if an invalid
(Not-A-Number) result is returned.
**trap_erange**
This attribute controls whether or not a ``RangeError`` exception is raised
when certain operations are performed on NaN and/or Infinity values.
Setting trap_erange to ``True`` can be used to raise an exception if
comparisons are attempted with a NaN.
::
>>> gmpy2.set_context(gmpy2.context())
>>> mpfr('nan') == mpfr('nan')
False
>>> gmpy2.get_context().trap_erange=True
>>> mpfr('nan') == mpfr('nan')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
gmpy2.RangeError: comparison with NaN
>>>
**erange**
This flag is not user controllable. It is automatically set if an erange
error occurred.
**trap_divzero**
This attribute controls whether or not a ``DivisionByZeroError`` exception
is raised if division by 0 occurs. The ``DivisionByZeroError`` is a
sub-class of Python's ``ZeroDivisionError``.
**divzero**
This flag is not user controllable. It is automatically set if a division
by zero occurred and NaN result was returned.
**trap_expbound**
This attribute controls whether or not an ``ExponentOutOfBoundsError``
exception is raised if exponents in an operand are outside the current
emin/emax limits.
**allow_complex**
This attribute controls whether or not an *mpc* result can be returned if
an *mpfr* result would normally not be possible.
Context Methods
---------------
**clear_flags()**
Clear the underflow, overflow, inexact, invalid, erange, and divzero flags.
**copy()**
Return a copy of the context.
Contexts and the with statement
-------------------------------
Contexts can also be used in conjunction with Python's ``with ...`` statement to
temporarily change the context settings for a block of code and then restore the
original settings when the block of code exits.
``gmpy2.local_context()`` first save the current context and then creates a new
context based on a context passed as the first argument, or the current context
if no context is passed. The new context is modified if any optional keyword
arguments are given. The orginal active context is restored when the block
completes.
In the following example, the current context is saved by ``gmpy2.local_context()``
and then the block begins with a copy of the default context and the precision
set to 100. When the block is finished, the original context is restored.
::
>>> with gmpy2.local_context(gmpy2.context(), precision=100) as ctx:
... print(gmpy2.sqrt(2))
... ctx.precision += 100
... print(gmpy2.sqrt(2))
...
1.4142135623730950488016887242092
1.4142135623730950488016887242096980785696718753769480731766796
>>>
A context object can also be used directly to create a context manager block.
However, instead of restoring the context to the active context when the
``with ...`` statement is executed, the restored context is the context used
before any keyword argument modifications.
The code:
::
with gmpy2.ieee(64) as ctx:
is equivalent to:
::
gmpy2.set_context(gmpy2.ieee(64))
with gmpy2.local_context() as ctx:
Contexts that implement the standard *single*, *double*, and *quadruple* precision
floating point types can be created using **ieee()**.
mpfr Methods
------------
**as_integer_ratio()**
Returns a 2-tuple containing the numerator and denominator after converting
the *mpfr* object into the exact rational equivalent. The return 2-tuple
is equivalent to Python's as_integer_ratio() method of built-in float
objects.
**as_mantissa_exp()**
Returns a 2-tuple containing the mantissa and exponent.
**as_simple_fraction()**
Returns an *mpq* containing the simpliest rational value that approximates
the *mpfr* value with an error less than 1/(2**precision).
**conjugate()**
Returns the complex conjugate. For *mpfr* objects, returns a copy of the
original object.
**digits()**
Returns a 3-tuple containing the mantissa, the exponent, and the number
of bits of precision. The mantissa is represented as a string in the
specified base with up to 'prec' digits. If 'prec' is 0, as many digits
that are available are returned. No more digits than available given x's
precision are returned. 'base' must be between 2 and 62, inclusive.
**is_integer()**
Returns True if the *mpfr* object is an integer.
mpfr Attributes
---------------
**imag**
Returns the imaginary component. For *mpfr* objects, returns 0.
**precision**
Returns the precision of the *mpfr* object.
**rc**
The result code (also known as ternary value in the MPFR documentation)
is 0 if the value of the *mpfr* object is exactly equal to the exact,
infinite precision value. If the result code is 1, then the value of the
*mpfr* object is greater than the exact value. If the result code is -1,
then the value of the *mpfr* object is less than the exact, infinite
precision value.
**real**
Returns the real component. For *mpfr* objects, returns a copy of the
original object.
mpfr Functions
--------------
**acos(...)**
acos(x) returns the arc-cosine of x. x is measured in radians. If
context.allow_complex is True, then an *mpc* result will be returned for
abs(x) > 1.
**acosh(...)**
acosh(x) returns the inverse hyperbolic cosine of x.
**add(...)**
add(x, y) returns x + y. The type of the result is based on the types of
the arguments.
**agm(...)**
agm(x, y) returns the arithmetic-geometric mean of x and y.
**ai(...)**
ai(x) returns the Airy function of x.
**asin(...)**
asin(x) returns the arc-sine of x. x is measured in radians. If
context.allow_complex is True, then an *mpc* result will be returned for
abs(x) > 1.
**asinh(...)**
asinh(x) return the inverse hyperbolic sine of x.
**atan(...)**
atan(x) returns the arc-tangent of x. x is measured in radians.
**atan2(...)**
atan2(y, x) returns the arc-tangent of (y/x).
**atanh(...)**
atanh(x) returns the inverse hyperbolic tangent of x. If
context.allow_complex is True, then an *mpc* result will be returned for
abs(x) > 1.
**cbrt(...)**
cbrt(x) returns the cube root of x.
**ceil(...)**
ceil(x) returns the 'mpfr' that is the smallest integer >= x.
**check_range(...)**
check_range(x) return a new 'mpfr' with exponent that lies within the
current range of emin and emax.
**const_catalan(...)**
const_catalan([precision=0]) returns the catalan constant using the
specified precision. If no precision is specified, the default precision
is used.
**const_euler(...)**
const_euler([precision=0]) returns the euler constant using the specified
precision. If no precision is specified, the default precision is used.
**const_log2(...)**
const_log2([precision=0]) returns the log2 constant using the specified
precision. If no precision is specified, the default precision is used.
**const_pi(...)**
const_pi([precision=0]) returns the constant pi using the specified
precision. If no precision is specified, the default precision is used.
**context(...)**
context() returns a new context manager controlling MPFR and MPC
arithmetic.
**cos(...)**
cos(x) seturns the cosine of x. x is measured in radians.
**cosh(...)**
cosh(x) returns the hyperbolic cosine of x.
**cot(...)**
cot(x) returns the cotangent of x. x is measured in radians.
**coth(...)**
coth(x) returns the hyperbolic cotangent of x.
**csc(...)**
csc(x) returns the cosecant of x. x is measured in radians.
**csch(...)**
csch(x) returns the hyperbolic cosecant of x.
**degrees(...)**
degrees(x) converts an angle measurement x from radians to degrees.
**digamma(...)**
digamma(x) returns the digamma of x.
**div(...)**
div(x, y) returns x / y. The type of the result is based on the types of
the arguments.
**div_2exp(...)**
div_2exp(x, n) returns an 'mpfr' or 'mpc' divided by 2**n.
**eint(...)**
eint(x) returns the exponential integral of x.
**erf(...)**
erf(x) returns the error function of x.
**erfc(...)**
erfc(x) returns the complementary error function of x.
**exp(...)**
exp(x) returns e**x.
**exp10(...)**
exp10(x) returns 10**x.
**exp2(...)**
exp2(x) returns 2**x.
**expm1(...)**
expm1(x) returns e**x - 1. expm1() is more accurate than exp(x) - 1 when
x is small.
**f2q(...)**
f2q(x[,err]) returns the simplest *mpq* approximating x to within relative
error err. Default is the precision of x. Uses Stern-Brocot tree to find
the simplist approximation. An *mpz* is returned if the the denominator
is 1. If err<0, error sought is 2.0 ** err.
**factorial(...)**
factorial(n) returns the floating-point approximation to the factorial
of n.
See fac(n) to get the exact integer result.
**floor(...)**
floor(x) returns the 'mpfr' that is the smallest integer <= x.
**fma(...)**
fma(x, y, z) returns correctly rounded result of (x * y) + z.
**fmod(...)**
fmod(x, y) returns x - n*y where n is the integer quotient of x/y, rounded
to 0.
**fms(...)**
fms(x, y, z) returns correctly rounded result of (x * y) - z.
**frac(...)**
frac(x) returns the fractional part of x.
**frexp(...)**
frexp(x) returns a tuple containing the exponent and mantissa of x.
**fsum(...)**
fsum(iterable) returns the accurate sum of the values in the iterable.
**gamma(...)**
gamma(x) returns the gamma of x.
**get_exp(...)**
get_exp(mpfr) returns the exponent of an *mpfr*. Returns 0 for NaN or
Infinity and sets the erange flag and will raise an exception if trap_erange
is set.
**hypot(...)**
hypot(y, x) returns square root of (x**2 + y**2).
**ieee(...)**
ieee(bitwidth) returns a context with settings for 32-bit (aka single),
64-bit (aka double), or 128-bit (aka quadruple) precision floating
point types.
**inf(...)**
inf(n) returns an *mpfr* initialized to Infinity with the same sign as n.
If n is not given, +Infinity is returned.
**is_finite(...)**
is_finite(x) returns True if x is an actual number (i.e. not NaN or
Infinity).
**is_inf(...)**
is_inf(x) returns True if x is Infinity or -Infinity.
.. note::
**is_inf()** is deprecated; please use **if_infinite()**.
**is_infinite(...)**
is_infinite(x) returns True if x Infinity or -Infinity.
**is_nan(...)**
is_nan(x) returns True if x is NaN (Not-A-Number).
**is_number(...)**
is_number(x) returns True if x is an actual number (i.e. not NaN or
Infinity).
.. note::
**is_number()** is deprecated; please use **is_finite()**.
**is_regular(...)**
is_regular(x) returns True if x is not zero, NaN, or Infinity.
**is_signed(...)**
is_signed(x) returns True if the sign bit of x is set.
**is_unordered(...)**
is_unordered(x,y) returns True if either x and/or y is NaN.
**is_zero(...)**
is_zero(x) returns True if x is zero.
**j0(...)**
j0(x) returns the Bessel function of the first kind of order 0 of x.
**j1(...)**
j1(x) returns the Bessel function of the first kind of order 1 of x.
**jn(...)**
jn(x,n) returns the Bessel function of the first kind of order n of x.
**lgamma(...)**
lgamma(x) returns a tuple containing the logarithm of the absolute value of
gamma(x) and the sign of gamma(x)
**li2(...)**
li2(x) returns the real part of dilogarithm of x.
**lngamma(...)**
lngamma(x) returns the logarithm of gamma(x).
**log(...)**
log(x) returns the natural logarithm of x.
**log10(...)**
log10(x) returns the base-10 logarithm of x.
**log1p(...)**
log1p(x) returns the natural logarithm of (1+x).
**log2(...)**
log2(x) returns the base-2 logarithm of x.
**max2(...)**
max2(x, y) returns the maximum of x and y. The result may be rounded to
match the current context. Use the builtin max() to get an exact copy of
the largest object without any rounding.
**min2(...)**
min2(x, y) returns the minimum of x and y. The result may be rounded to
match the current context. Use the builtin min() to get an exact copy of
the smallest object without any rounding.
**modf(...)**
modf(x) returns a tuple containing the integer and fractional portions
of x.
**mpfr(...)**
mpfr() returns and *mpfr* object set to 0.0.
mpfr(n[, precison=0]) returns an *mpfr* object after converting a numeric
value n. If no precision, or a precision of 0, is specified; the precision
is taken from the current context.
mpfr(s[, precision=0[, [base=0]]) returns an *mpfr* object after converting
a string 's' made up of digits in the given base, possibly with fractional
part (with period as a separator) and/or exponent (with exponent marker
'e' for base<=10, else '@'). If no precision, or a precision of 0, is
specified; the precison is taken from the current context. The base of the
string representation must be 0 or in the interval 2 ... 62. If the base
is 0, the leading digits of the string are used to identify the base: 0b
implies base=2, 0x implies base=16, otherwise base=10 is assumed.
**mpfr_from_old_binary(...)**
mpfr_from_old_binary(string) returns an *mpfr* from a GMPY 1.x binary mpf
format. Please use to_binary()/from_binary() to convert GMPY2 objects to or
from a binary format.
**mpfr_grandom(...)**
mpfr_grandom(random_state) returns two random numbers with gaussian
distribution. The parameter *random_state* must be created by random_state()
first.
**mpfr_random(...)**
mpfr_random(random_state) returns a uniformly distributed number between
[0,1]. The parameter *random_state* must be created by random_state() first.
**mul(...)**
mul(x, y) returns x * y. The type of the result is based on the types of
the arguments.
**mul_2exp(...)**
mul_2exp(x, n) returns 'mpfr' or 'mpc' multiplied by 2**n.
**nan(...)**
nan() returns an 'mpfr' initialized to NaN (Not-A-Number).
**next_above(...)**
next_above(x) returns the next 'mpfr' from x toward +Infinity.
**next_below(...)**
next_below(x) returns the next 'mpfr' from x toward -Infinity.
**radians(...)**
radians(x) converts an angle measurement x from degrees to radians.
**rec_sqrt(...)**
rec_sqrt(x) returns the reciprocal of the square root of x.
**reldiff(...)**
reldiff(x, y) returns the relative difference between x and y. Result is
equal to abs(x-y)/x.
**remainder(...)**
remainder(x, y) returns x - n*y where n is the integer quotient of x/y,
rounded to the nearest integer and ties rounded to even.
**remquo(...)**
remquo(x, y) returns a tuple containing the remainder(x,y) and the low bits
of the quotient.
**rint(...)**
rint(x) returns x rounded to the nearest integer using the current rounding
mode.
**rint_ceil(...)**
rint_ceil(x) returns x rounded to the nearest integer by first rounding to
the next higher or equal integer and then, if needed, using the current
rounding mode.
**rint_floor(...)**
rint_floor(x) returns x rounded to the nearest integer by first rounding to
the next lower or equal integer and then, if needed, using the current
rounding mode.
**rint_round(...)**
rint_round(x) returns x rounded to the nearest integer by first rounding to
the nearest integer (ties away from 0) and then, if needed, using the
current rounding mode.
**rint_trunc(...)**
rint_trunc(x) returns x rounded to the nearest integer by first rounding
towards zero and then, if needed, using the current rounding mode.
**root(...)**
root(x, n) returns n-th root of x. The result always an *mpfr*.
**round2(...)**
round2(x[, n]) returns x rounded to n bits. Uses default precision if n is
not specified. See round_away() to access the mpfr_round() function. Use
the builtin round() to round x to n decimal digits.
**round_away(...)**
round_away(x) returns an *mpfr* by rounding x the nearest integer, with
ties rounded away from 0.
**sec(...)**
sec(x) returns the secant of x. x is measured in radians.
**sech(...)**
sech(x) returns the hyperbolic secant of x.
**set_exp(...)**
set_exp(x, n) sets the exponent of a given *mpfr* to n. If n is outside the
range of valid exponents, set_exp() will set the erange flag and either
return the original value or raise an exception if trap_erange is set.
**set_sign(...)**
set_sign(x, bool) returns a copy of x with it's sign bit set if *bool*
evaluates to True.
**sign(...)**
sign(x) returns -1 if x < 0, 0 if x == 0, or +1 if x >0.
**sin(...)**
sin(x) returns the sine of x. x is measured in radians.
**sin_cos(...)**
sin_cos(x) returns a tuple containing the sine and cosine of x. x is
measured in radians.
**sinh(...)**
sinh(x) returns the hyberbolic sine of x.
**sinh_cosh(...)**
sinh_cosh(x) returns a tuple containing the hyperbolic sine and cosine of
x.
**sqrt(...)**
sqrt(x) returns the square root of x. If x is integer, rational, or real,
then an *mpfr* will be returned. If x is complex, then an *mpc* will
be returned. If context.allow_complex is True, negative values of x
will return an *mpc*.
**square(...)**
square(x) returns x * x. The type of the result is based on the types of
the arguments.
**sub(...)**
sub(x, y) returns x - y. The type of the result is based on the types of
the arguments.
**tan(...)**
tan(x) returns the tangent of x. x is measured in radians.
**tanh(...)**
tanh(x) returns the hyperbolic tangent of x.
**trunc(...)**
trunc(x) returns an 'mpfr' that is x truncated towards 0. Same as
x.floor() if x>=0 or x.ceil() if x<0.
**y0(...)**
y0(x) returns the Bessel function of the second kind of order 0 of x.
**y1(...)**
y1(x) returns the Bessel function of the second kind of order 1 of x.
**yn(...)**
yn(x,n) returns the Bessel function of the second kind of order n of x.
**zero(...)**
zero(n) returns an *mpfr* inialized to 0.0 with the same sign as n.
If n is not given, +0.0 is returned.
**zeta(...)**
zeta(x) returns the Riemann zeta of x.
mpfr Formatting
---------------
The *mpfr* type supports the __format__() special method to allow custom output
formatting.
**__format__(...)**
x.__format__(fmt) returns a Python string by formatting 'x' using the
format string 'fmt'. A valid format string consists of:
| optional alignment code:
| '<' -> left shifted in field
| '>' -> right shifted in field
| '^' -> centered in field
| optional leading sign code
| '+' -> always display leading sign
| '-' -> only display minus for negative values
| ' ' -> minus for negative values, space for positive values
| optional width.precision
| optional rounding mode:
| 'U' -> round toward plus infinity
| 'D' -> round toward minus infinity
| 'Y' -> round away from zero
| 'Z' -> round toward zero
| 'N' -> round to nearest
| optional conversion code:
| 'a','A' -> hex format
| 'b' -> binary format
| 'e','E' -> scientific format
| 'f','F' -> fixed point format
| 'g','G' -> fixed or scientific format
.. note::
The formatting codes must be specified in the order shown above.
::
>>> import gmpy2
>>> from gmpy2 import mpfr
>>> a=mpfr("1.23456")
>>> "{0:15.3f}".format(a)
' 1.235'
>>> "{0:15.3Uf}".format(a)
' 1.235'
>>> "{0:15.3Df}".format(a)
' 1.234'
>>> "{0:.3Df}".format(a)
'1.234'
>>> "{0:+.3Df}".format(a)
'+1.234'
|