1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184
|
This is an overview of the capabilities of =gnuplotlib=. The [[https://github.com/dkogan/gnuplotlib/][documentation]]
provides a complete API reference.
* Tutorial
** Specifying the data in one dataset
First, a trivial plot: let's plot a sinusoid
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot(np.sin(th))
#+END_SRC
#+RESULTS:
[[file:guide-1.svg]]
This was a trivial plot, and was trivially-easy to make: we called =plot()= with
one argument, and we got a plot.
Here each point we plotted was 2-dimensional (has an x value an a y value), but
we passed in only one number for each point. =gnuplotlib= noted the missing
value and filled in sequential integers (0, 1, 2, ...) for the x coordinate.
If we pass in two arrays, =gnuplotlib= will use one for the x, and the other for
the y. Let's plot =sin(theta)= vs. =cos(theta)=, i.e. a circle:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-np.pi, np.pi, 100)
gp.plot(np.cos(th), np.sin(th))
#+END_SRC
#+RESULTS:
[[file:guide-2.svg]]
Hmmm. We asked for a circle, but this looks more like an ellipse. Why? Because
gnuplot is autoscaling the x and y axes independently to fill the plot window.
If we ask for the autoscaling to scale the axes /together/, we get a circle:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-np.pi, np.pi, 100)
gp.plot(np.cos(th), np.sin(th),
square = True)
#+END_SRC
#+RESULTS:
[[file:guide-3.svg]]
Here we used the =square= /plot option/. More on those later. We just plotted
something where each point is represented by 2 values: x and y. When making 2D
plots, this is the most common situation, but others are possible. What if we
want to color-code our points using another array to specify the colors? You
pass in the new array, you tell =gnuplotlib= that you now have /3/ values per
point (the =tuplesize=), and you tell =gnuplot= how you want this plot to be
made:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-np.pi, np.pi, 100)
gp.plot(np.cos(th), np.sin(th),
# The angle (in degrees) is shown as the color
th * 180./np.pi,
tuplesize = 3,
_with = 'linespoints palette',
square = True)
#+END_SRC
#+RESULTS:
[[file:guide-4.svg]]
=_with= is a /curve option/ that indicates how this dataset should be plotted.
It's =_with= and not =with= because the latter is a built-in keyword in Python.
=gnuplotlib= treats all =_xxx= options identically to =xxx=, so =plot(..., _with
= 'xxx')= and =plot(..., **{'_with': 'xxx'})= and =plot(..., **{'with': 'xxx'})=
are identical.
Styles in =_with= are strings that are passed on to =gnuplot= verbatim. So the
full power of =gnuplot= is available, and there's nothing =gnuplotlib=-specific
to learn. =gnuplot= has plenty of documentation about styling details.
Earlier we saw that a missing x array can be automatically filled-in with
integers 0, 1, 2, ... This is available with fancier plots also. The rule is:
- Normally we should be given exactly =tuplesize= arrays
- If we are given exactly =tuplesize-1= arrays, use 0, 1, 2, ... for the x
- If we are given exactly =tuplesize-2= arrays, use a regularly spaced xy grid
with 0, 1, 2, ... in x and in y
These are the only allowed mismatches between =tuplesize= and how much data is
received. This allows flexibility in the passing of data, and some level of
validation of input. Example. Let's color-code the sinusoid by passing in /two/
arrays. The =tuplesize= is still 3, but we have an implicit x.
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot(np.sin(th),
# use the cosine as the color
np.cos(th),
tuplesize = 3,
_with = 'linespoints palette')
#+END_SRC
#+RESULTS:
[[file:guide-5.svg]]
Finally, so far we have been passing in each dimension in a separate array. But
it is often far more convenient to pass in a single array where each point is
represented in a row corresponding to the last dimension in that array. This is
specifiable by passing in a negative =tuplesize=, and most easily explained with
an example. The circle plot from earlier can be made in this way:
#+BEGIN_SRC python :python python3 :results output :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
th = np.linspace(-np.pi, np.pi, 100)
points = nps.transpose(nps.cat(np.cos(th), np.sin(th)))
print(points.shape)
#+END_SRC
#+RESULTS:
: (100, 2)
I.e. we have 100 rows, each one of length 2.
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
# shape (100,)
th = np.linspace(-np.pi, np.pi, 100)
# shape (100, 2)
points = nps.transpose(nps.cat(np.cos(th), np.sin(th)))
gp.plot(points,
tuplesize = -2,
square = True)
# instead of
# gp.plot(points[:,0], points[:,1],
# tuplesize = 2,
# square = True)
#+END_SRC
#+RESULTS:
[[file:guide-7.svg]]
** Specifying multiple datasets
So far we were plotting a single dataset at a time. However, often we want to
plot multiple datasets in the same plot, together. Note that the code and
documentation uses the terms "dataset" and "curve" interchangeably.
As before, the whole plot is made with a single call to =plot()=. In its most
explicit form, each dataset is specified as a /tuple/. /plot options/ apply to
the whole plot, and are given as kwargs to the =plot()= call. /curve options/
apply to each dataset, and are passed as a =dict= in the last element of each
dataset tuple. So each =plot= command looks like
#+BEGIN_SRC python :results none :exports code
plot( curve, curve, ..., plot_options )
#+END_SRC
#+RESULTS:
where each =curve= is a =tuple=:
#+BEGIN_SRC python :results none :exports code
curve = (array, array, ..., curve_options)
#+END_SRC
#+RESULTS:
The data in each dataset is interpreted as described in the previous section.
Let's plot a sine and a cosine together, using the default styling for one, and
a specific styling for another. And let's set some common options.
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot( (
th, np.sin(th),
),
(
th, np.cos(th),
dict(_with = "points pt 7",
legend = "cosine")
),
xlabel = "Angle (rad)",
title = "Sine and cosine",
unset = 'grid')
#+END_SRC
#+RESULTS:
[[file:guide-10.svg]]
The =plot()= kwargs are the plot options, but curve options are allowed there as
well. These will be used as the default curve options for all curves that omit
those specific options. For instance, if I want to plot lots of things with
lines, except /one/, I can do this:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot( ( np.sin(th), ),
( np.cos(th), ),
( th, ),
( -th, dict(_with = 'points ps 0.5') ),
_with = 'lines')
#+END_SRC
#+RESULTS:
[[file:guide-11.svg]]
If we have just one dataset, each tuple can be inlined, which is why something
like =gp.plot(x, y)= works.
Unlike =matplotlib=, here we make a single =plot()= call instead of making a
separate call for each dataset and for each format setting. You can still
construct the plot piecemeal, however, but you use normal Python directives to
do that. For instance, the previous plot can be created instead like this:
#+BEGIN_SRC python :results none :exports code
datasets = []
th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
datasets.append(( np.sin(th), ),)
datasets.append(( np.cos(th), ),)
datasets.append(( th, ),)
datasets.append(( -th, dict(_with = 'points ps 0.5') ),)
plot_options = dict()
plot_options['with'] = 'lines'
gp.plot(*datasets, **plot_options)
#+END_SRC
#+RESULTS:
Finally, [[https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html][broadcasting]] is fully supported here, and can be used to simplify the
=plot()= call. Previously we plotted two sinusoids together using a tuple for
each dataset. With broadcasting, we can avoid that:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
gp.plot( th,
nps.cat(np.sin(th),
np.cos(th)),
legend = np.array( ("sin", "cos"), ) )
#+END_SRC
#+RESULTS:
[[file:guide-13.svg]]
I passed in an aray of shape =(100,)= for the x, and an array of shape
=(2,100,)= for the y. The broadcasting logic kicks in, and we get a plot of two
separate datasets, one for each row of y. The curve options broadcast as well:
the =legend= is expecting a scalar, but I gave it an array of shape =(2,)=, so
it uses a different legend for each of the two plotted datasets.
** Specifying multiple plots
If we want multiple plot windows, the object-oriented =gnuplotlib= interface
provides this. Each =gnuplotlib= object represents a separate =gnuplot= process
and a separate plot window. All the one-call =plot()= commands shown so far
reuse a single global =gnuplotlib= object for convenience. So if we want
multiple simultaneous plot windows, we explicitly create and use separate
=gnuplotlib= objects. The general sequence is:
#+BEGIN_SRC python :results none :exports code
plot1 = gp.gnuplotlib(plot_options_and_default_curve_options)
plot1.plot(curves)
plot2 = gp.gnuplotlib(plot_options_and_default_curve_options)
plot2.plot(curves)
...
#+END_SRC
#+RESULTS:
A trivial example:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(-2.*np.pi, 2.*np.pi, 100)
plot1 = gp.gnuplotlib( title = 'sinusoid',
xlabel = 'Angle (rad)')
plot1.plot(th, np.sin(th),
_with = 'lines',
legend = 'sine')
#+END_SRC
#+RESULTS:
[[file:guide-15.svg]]
Or if we want /one plot window/ containing /multiple/ plots, we can use the
/multiplot/ interface. This extends the previous structure where
- a plot (configured with plot options) contains datasets (configured with curve
options)
so that we instead have
- a process (configured with process options) contains plots (configured with
plot options) contains datasets (configured with curve options)
In the usual non-multiplot case, process options are lumped into the larger set
of plot options. When making a multiplot, we still have a single =plot()=
command, but now each /plot/ lives in a separate tuple. We have similar
semantics as before: default plot options can be given together with the process
options. Plot options can be given as a =dict= in the last element of that
plot's tuple. Example. Two sinusoids together, in a multiplot:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(0, np.pi*2, 30)
gp.plot( (th, np.cos(th), dict(title="cos",
_xrange = [0,2.*np.pi],
_yrange = [-1,1],)),
(th, np.sin(th), dict(title="sin",
_xrange = [0,2.*np.pi],
_yrange = [-1,1])),
multiplot='title "multiplot sin,cos" layout 2,1',)
#+END_SRC
#+RESULTS:
[[file:guide-16.svg]]
We get a multiplot if we pass in a =multiplot= process option. The value of this
option is given directly to =gnuplot= in a =set multiplot= command. As before,
see the =gnuplot= documentation for all the details: run
#+BEGIN_SRC shell :results none :exports code
gnuplot -e 'help multiplot'
#+END_SRC
* Recipes
This is a good overview of the syntax. Now let's demo some fancy plots to
serve as a cookbook.
Since the actual plotting is handled by =gnuplot=, its documentation and [[http://www.gnuplot.info/demo/][demos]]
are the primary reference on how to do stuff.
** Line, point sizes, thicknesses, styles
Most often, we're plotting lines or points. The most common styling keywords
are:
- =pt= (or equivalently =pointtype=)
- =ps= (or equivalently =pointsize=)
- =lt= (or equivalently =linetype=)
- =lw= (or equivalently =linewidth=)
- =lc= (or equivalently =linecolor=)
- =dt= (or equivalently =dashtype=)
For details about these and all other styles, see the =gnuplot= documentation.
For instance, the first little bit of the docs about the different line widths:
#+BEGIN_SRC shell :results output verbatim :exports both
gnuplot -e 'help linewidth' | head -n 20
#+END_SRC
#+RESULTS:
#+begin_example
Each terminal has a default set of line and point types, which can be seen
by using the command `test`. `set style line` defines a set of line types
and widths and point types and sizes so that you can refer to them later by
an index instead of repeating all the information at each invocation.
Syntax:
set style line <index> default
set style line <index> {{linetype | lt} <line_type> | <colorspec>}
{{linecolor | lc} <colorspec>}
{{linewidth | lw} <line_width>}
{{pointtype | pt} <point_type>}
{{pointsize | ps} <point_size>}
{{pointinterval | pi} <interval>}
{{pointnumber | pn} <max_symbols>}
{{dashtype | dt} <dashtype>}
{palette}
unset style line
show style line
`default` sets all line style parameters to those of the linetype with
#+end_example
gnuplot has a =test= command, which produces a demo of the various available
styles. This documentation uses the =svg= terminal (what gnuplot calls a
"backend"). So for the =svg= terminal, the various styles look like this:
#+begin_src gnuplot :results file link :session gnuplotlib-guide-gnuplot :exports both :file gnuplot-terminal-test.svg
test
#+end_src
#+RESULTS:
[[file:gnuplot-terminal-test.svg]]
So for instance if you plot something with =linespoints pt 4 dt 2 lc 7= you'll
get a red dashed line with square points. By default you'd be using one of the
interactive graphical terminals (=x11= or =qt=), which would have largely
similar styling.
Let's make a plot with some variable colors and point sizes:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
x = np.arange(21) - 10
gp.plot( ( x**2, np.abs(x)/2, x*50,
dict(_with = 'points pointtype 7 pointsize variable palette',
tuplesize = 4) ),
( 3*x + 30,
dict(_with = 'lines lw 3 lc "red" dashtype 2')),
cbrange = '-600:600',)
#+END_SRC
#+RESULTS:
[[file:guide-17.svg]]
Let's now plot two datasets, one with variable color, the other with variable
size. We have =tuplesize=3= for both, but I'm passing in /one/ array. So the xy
domain is a regular grid of the appropriate size.
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
y,x = np.mgrid[-10:11, -8:2]
r = np.sqrt(x*x + y*y)
gp.plot( nps.cat(x,r / 5.),
tuplesize = 3,
_with = np.array(('points palette pt 7',
'points ps variable pt 6')),
square = True)
#+END_SRC
#+RESULTS:
[[file:guide-18.svg]]
To see a sampling of all the availble line and point styles, run the =test=
command in =gnuplot=.
** Error bars
As before, the =gnuplot= documentation has the styling details:
#+BEGIN_SRC shell :results none :exports code
gnuplot -e 'help xerrorbars'
gnuplot -e 'help yerrorbars'
gnuplot -e 'help xyerrorbars'
#+END_SRC
For brevity, I'm not including the contents of those help pages here. These tell
us how to specify errorbars: how many columns to pass in, what they mean, etc.
Example:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
x = np.arange(21) - 10
y = x**2 * 10 + 20
gp.plot( ( x + 1,
y + 20,
dict(_with = 'lines') ),
( x + 1,
y + 20,
x**2/80,
x**2/4,
dict(legend = "using the 'x y xdelta ydelta' style",
_with = 'xyerrorbars',
tuplesize = 4) ),
( x,
y,
x - x**2/80,
x + x**2/40,
y - x**2/4,
y + x**2/4 / 2,
dict(legend = "using the 'x y xlow xhigh ylow yhigh' style",
_with = 'xyerrorbars',
tuplesize = 6)),
( x, x*20 + 500., np.ones(x.shape) * 40,
dict(legend = "using the 'x y ydelta' style; constant ydelta",
_with = 'yerrorbars',
tuplesize = 3)),
xmin = 1 + x[0],
xmax = 1 + x[-1],
set = 'key box opaque')
#+END_SRC
#+RESULTS:
[[file:guide-19.svg]]
** Polar coordinates
See
#+BEGIN_SRC shell :results none :exports code
gnuplot -e 'help polar'
#+END_SRC
Let's plot the [[https://en.wikipedia.org/wiki/Conchoid_of_de_Sluze][Conchoids of de Sluze]] using broadcasting:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
rho = np.linspace(0, 2*np.pi, 1000) # dim=( 1000,)
a = np.arange(-4,3)[:, np.newaxis] # dim=(7,1)
gp.plot( rho,
1./np.cos(rho) + a*np.cos(rho), # broadcasted. dim=(7,1000)
_with = 'lines',
set = 'polar',
square = True,
yrange = [-5,5],
legend = np.array(["a = {}".format(_) for _ in a.ravel()]) )
#+END_SRC
#+RESULTS:
[[file:guide-20.svg]]
** Labels
Docs:
#+BEGIN_SRC shell :results none :exports code
gnuplot -e 'help labels'
gnuplot -e 'help set label'
#+END_SRC
Basic example:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
x = np.arange(5)
y = x+1
gp.plot(x, y,
np.array( ['At x={}'.format(_) for _ in x], dtype=str),
_with = 'labels',
tuplesize = 3,
unset = 'grid')
#+END_SRC
#+RESULTS:
[[file:guide-21.svg]]
More complex example:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
x = np.arange(5, dtype=float)
y = x+1
gp.plot(x, y,
np.array( ['At x={}'.format(_) for _ in x], dtype=str),
x / 4 * 90, # Angles, in degrees
x, # Mapped to colors
_with = 'labels rotate variable textcolor palette',
tuplesize = 5,
unset = 'grid')
#+END_SRC
#+RESULTS:
[[file:guide-22.svg]]
** 3D plots
We can plot in 3D by passing in the plot option =_3d = True= or by calling
=plot3d()= instead of =plot()=. The latter is simply a convenience function to
set the =_3d= plot option. When plotting interactively, you can use the mouse to
rotate the plot, and look at it from different directions. Otherwise, the
viewing angle can be set with the =view= setting. See
#+BEGIN_SRC shell :results none :exports code
gnuplot -e 'help set view'
#+END_SRC
In general there're lots of ways to plot images, meshes, contours, and so on.
Please see the =gnuplot= docs.
Let's plot a sphere:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
th = np.linspace(0, np.pi*2, 30)
ph = np.linspace(-np.pi/2, np.pi*2, 30)[:,np.newaxis]
x = (np.cos(ph) * np.cos(th)) .ravel()
y = (np.cos(ph) * np.sin(th)) .ravel()
z = (np.sin(ph) * np.ones( th.shape )) .ravel()
gp.plot3d( x, y, z,
_with = 'points',
title = 'sphere',
square = True)
#+END_SRC
#+RESULTS:
[[file:guide-23.svg]]
A double-helix with variable color and variable pointsize
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
th = np.linspace(0, 6*np.pi, 200)
z = np.linspace(0, 5, 200)
size = 0.5 + np.abs(np.cos(th))
color = np.sin(2*th)
gp.plot3d( np.cos(th) * nps.transpose(np.array((1,-1))),
np.sin(th) * nps.transpose(np.array((1,-1))),
z,
size,
color,
legend = np.array(('spiral 1', 'spiral 2')),
tuplesize = 5,
_with = 'points pointsize variable pointtype 7 palette',
title = 'Double helix',
squarexy = True)
#+END_SRC
#+RESULTS:
[[file:guide-24.svg]]
** 3D plots: meshes and contours
Both of these are plots of discrete 3D points. If we pass in exactly
=tuplesize-2= arrays, then we will use an implicit grid as our xy domain. Let's
create a mesh, and plot it:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 60
# shape (N+1,N+1,2). Linear values from -1 to 1
xy = nps.mv(np.mgrid[0:N+1,0:N+1], 0, -1)/(N/2.) - 1.
# shape (N+1,N+1)
r = nps.mag(xy)
z = np.exp(-r * 2.) * np.sin(xy[...,0]*6) * np.sin(xy[...,1]*6)
gp.plot3d(z,
squarexy = True)
#+END_SRC
#+RESULTS:
[[file:guide-25.svg]]
By default we plot with lines (meaning "wireframe" here) and points. Probably
just the wireframe would be nicer. And let's use variable colors to encode z.
And let's rotate it
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 60
# shape (N+1,N+1,2). Linear values from -1 to 1
xy = nps.mv(np.mgrid[0:N+1,0:N+1], 0, -1)/(N/2.) - 1.
# shape (N+1,N+1)
r = nps.mag(xy)
z = np.exp(-r * 2.) * np.sin(xy[...,0]*6) * np.sin(xy[...,1]*6)
gp.plot3d(z, z,
_with = 'lines palette',
tuplesize = 4,
set = ('view 50,30', 'view equal xy')
)
#+END_SRC
#+RESULTS:
[[file:guide-26.svg]]
Let's add some contours beneath
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 60
# shape (N+1,N+1,2). Linear values from -1 to 1
xy = nps.mv(np.mgrid[0:N+1,0:N+1], 0, -1)/(N/2.) - 1.
# shape (N+1,N+1)
r = nps.mag(xy)
z = np.exp(-r * 2.) * np.sin(xy[...,0]*6) * np.sin(xy[...,1]*6)
gp.plot3d(z,
_with = 'lines',
set = ('view 60,30', 'view equal xy',
'contour base')
)
#+END_SRC
#+RESULTS:
[[file:guide-27.svg]]
When looking at contour plots I generally find them to be much more legible as a
top-down view, without the 3D component. So I usually do something like this
instead:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 60
# shape (N+1,N+1,2). Linear values from -1 to 1
xy = nps.mv(np.mgrid[0:N+1,0:N+1], 0, -1)/(N/2.) - 1.
# shape (N+1,N+1)
r = nps.mag(xy)
z = np.exp(-r * 2.) * np.sin(xy[...,0]*6) * np.sin(xy[...,1]*6)
gp.plot3d(z,
_with = np.array(('image', 'lines lw 2 nosurface')),
legend = np.array(('surface', '')),
set = ('key outside',
'view 0,0',
'view equal xy',
'contour base',
'cntrparam bspline',
'cntrparam levels 15'),
unset=('grid', 'colorbox') )
#+END_SRC
#+RESULTS:
[[file:guide-28.svg]]
This is technically a 3D plot, but we're looking at it straight down, from the
top. The 3D plot processing is required to make contours. If we just want to
draw a colormapped grid, we can do this as a 2D plot. Let's do that, and also
use a grayscale colormap
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 60
# shape (N+1,N+1,2). Linear values from -1 to 1
xy = nps.mv(np.mgrid[0:N+1,0:N+1], 0, -1)/(N/2.) - 1.
# shape (N+1,N+1)
r = nps.mag(xy)
z = np.exp(-r * 2.) * np.sin(xy[...,0]*6) * np.sin(xy[...,1]*6)
gp.plot(z,
_with = 'image pixels',
tuplesize = 3,
set = 'palette grey',
unset = 'grid',
square = True)
#+END_SRC
#+RESULTS:
[[file:guide-29.svg]]
This is very useful for annotating images. Note that above I used the =image
pixels= instead of =image=. This is a compabilitity mode that is required to
work around a bug in github's .svg display. Usually you'd use the normal =image=
style.
Finally, in these few examples we used an implicit 2D grid as our domain. This
implicit grid is regular, and uses integers 0, 1, 2, ... in each dimension. What
if this grid isn't exactly what we want?
One method is to set up a transformation in the =using= directive. Here the
=image= style works properly only when a linear transformation is involved. With
a nonlinear transformation, the =pm3d= style is needed. It resamples the input
in a grid, so it's able to handle this.
Linear transformation:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 60
# shape (N+1,N+1,2). Linear values from -1 to 1
xy = nps.mv(np.mgrid[0:N+1,0:N+1], 0, -1)/(N/2.) - 1.
# shape (N+1,N+1)
r = nps.mag(xy)
z = np.exp(-r * 2.) * np.sin(xy[...,0]*6) * np.sin(xy[...,1]*6)
gp.plot3d(z,
_with = np.array(('image', 'lines nosurface')),
set = ('view 0,0',
'view equal xy',
'contour base',
'cntrparam bspline',
'cntrparam levels 15'),
using = '(100+$1+$2):($1-$2):3',
ascii = True,
unset = 'grid' )
#+END_SRC
#+RESULTS:
[[file:guide-30.svg]]
Nonlinear transformation:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 60
# shape (N+1,N+1,2). Linear values from -1 to 1
xy = nps.mv(np.mgrid[0:N+1,0:N+1], 0, -1)/(N/2.) - 1.
# shape (N+1,N+1)
r = nps.mag(xy)
z = np.exp(-r * 2.) * np.sin(xy[...,0]*6) * np.sin(xy[...,1]*6)
gp.plot3d(z,
_with = 'pm3d',
set = ('view 0,0',
'contour base',
'cntrparam bspline',
'cntrparam levels 15'),
using = '($1*$1):2:3',
ascii = True,
unset = 'grid' )
#+END_SRC
#+RESULTS:
[[file:guide-31.svg]]
Some other techniques are possible using linked axes or passing in discrete
points, but I'm not going into those here.
What if we want multiple sets of contours in one plot? =gnuplot= doesn't
directly allow that. But you can use =multiplot= to draw the multiple contours
on top of one another, resulting in the plot we want:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import gnuplotlib as gp
x,y = np.meshgrid(np.linspace(-5,5,100),
np.linspace(-5,5,100))
z0 = np.sin(x) + y*y/8.
z1 = np.sin(x) + y*y/10.
z2 = np.sin(x) + y*y/12.
commonset = ( 'origin 0,0',
'size 1,1',
'view 60,20,1,1',
'xrange [0:100]',
'yrange [0:100]',
'zrange [0:150]',
'contour base' )
gp.plot3d( (z0, dict(_set = commonset + ('xyplane at 10',))),
(z1, dict(_set = commonset + ('xyplane at 80', 'border 15'), unset=('ztics',))),
(z2, dict(_set = commonset + ('xyplane at 150', 'border 15'), unset=('ztics',))),
tuplesize=3,
_with = np.array(('lines nosurface',
'labels boxed nosurface')),
square=1,
multiplot=True)
#+END_SRC
#+RESULTS:
[[file:guide-32.svg]]
** Histograms
=gnuplot= (and =gnuplotlib=) has support for histograms. So we can give it data,
and have it bin it for us. Or we can compute the histogram with =numpy=, and
just use =gnuplotlib= to plot the resulting bars. Let's sample a normal
distribution, and do it both ways. And let's compute the expected and observed
probability-density-functions, and plot those on top (as equations, evaluated by
=gnuplot=). With =gnuplotlib=:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
from scipy.special import erf
N = 500
x = np.random.randn(N)
binwidth = 0.5
def equation_gaussian(N = 0, mean = 0, sigma = 0, title = ''):
k = N * np.sqrt(2.*np.pi) * sigma * erf(binwidth/(2.*np.sqrt(2)*sigma))
return '{k}*exp(-(x-{mean})*(x-{mean})/(2.*{sigma}*{sigma})) / sqrt(2.*pi*{sigma}*{sigma}) title "{title}" with lines lw 2'. \
format(k = k,
mean = mean,
sigma = sigma,
title = title)
gp.plot(x,
histogram = True,
binwidth = binwidth,
equation_above = \
( equation_gaussian( mean = 0,
sigma = 1.0,
N = N,
title = 'Expected PDF',),
equation_gaussian( mean = np.mean(x),
sigma = np.std(x),
N = N,
title = 'Observed PDF',)))
#+END_SRC
#+RESULTS:
[[file:guide-33.svg]]
With =numpy=:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
from scipy.special import erf
N = 500
x = np.random.randn(N)
hist, bin_edges = np.histogram(x, bins = 10)
binwidth = bin_edges[1] - bin_edges[0]
bin_centers = bin_edges[1:] - binwidth/2.
def equation_gaussian(N = 0, mean = 0, sigma = 0, title = ''):
k = N * np.sqrt(2.*np.pi) * sigma * erf(binwidth/(2.*np.sqrt(2)*sigma))
return '{k}*exp(-(x-{mean})*(x-{mean})/(2.*{sigma}*{sigma})) / sqrt(2.*pi*{sigma}*{sigma}) title "{title}" with lines lw 2'. \
format(k = k,
mean = mean,
sigma = sigma,
title = title)
gp.plot(bin_centers, hist,
_with = 'boxes fill solid 1 border lt -1',
_set = 'boxwidth {}'.format(binwidth),
equation_above = \
( equation_gaussian( mean = 0,
sigma = 1.0,
N = N,
title = 'Expected PDF',),
equation_gaussian( mean = np.mean(x),
sigma = np.std(x),
N = N,
title = 'Observed PDF',)))
#+END_SRC
#+RESULTS:
[[file:guide-34.svg]]
If we want multiple histograms drawn on top of one another, the styling should
be adjusted so that they both remain visible. For instance:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
x1 = np.random.randn(1000)
x2 = np.random.randn(1000) / 2.0
binwidth = 0.2
gp.plot( nps.cat(x1,x2),
histogram = True,
binwidth = binwidth,
_with = \
np.array(('boxes fill transparent solid 0.3 border lt -1',
'boxes fill transparent pattern 1 border lt -1')))
#+END_SRC
#+RESULTS:
[[file:guide-35.svg]]
** Vector fields
Documentation in gnuplot available like this:
#+BEGIN_SRC shell :results none :exports code
gnuplot -e 'help vectors'
#+END_SRC
The docs say that in 2D we want 4 columns: =x, y, xdelta, ydelta= and in 3D we
want 6 columns: =x, y, z, xdelta, ydelta, zdelta=. And we can have a variable
arrowstyle. A vectorfield in 2D:
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
# shape (2, 100)
xy = nps.clump( nps.cat( *np.meshgrid(np.linspace(-5,5,10),
np.linspace(-5,5,10)) ),
n = -2 )
# each one has shape (100,)
x,y = xy
# shape (100,)
r = nps.mag( nps.transpose(xy) )
gp.plot( x, y, y/np.sqrt(r+0.1)*0.5, -x/np.sqrt(r+0.1)*0.5,
tuplesize = 4,
_with = 'vectors filled head',
square=1)
#+END_SRC
#+RESULTS:
[[file:guide-36.svg]]
** Ellipses
Let's say we have a bunch of points with covariance matrices associated with
each one. We can plot each point and its 1-sigma ellipses. Let's do it two ways:
- with ellipses (possible only in 2D)
- with points sampled around the edge of the ellipse (possible in 2D and 3D)
The documentation for ellipses is available with
#+BEGIN_SRC shell :results none :exports code
gnuplot -e 'help ellipses'
#+END_SRC
The docs say that our options are
#+begin_example
2 columns: x y
3 columns: x y major_diam
4 columns: x y major_diam minor_diam
5 columns: x y major_diam minor_diam angle
#+end_example
Let's do it by plotting ellipses
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 8
# The center of my ellipses
# shape (2, N*N)
xy = nps.clump( nps.cat( *np.meshgrid(np.linspace(-5,5,N),
np.linspace(-5,5,N)) ),
n = -2 )
# each one has shape (N*N,)
x,y = xy
# I want repeatable random numbers
np.random.seed(0)
# Let's make up some covariances
th = np.random.random((N*N,))
v0 = nps.transpose(nps.cat(np.sin(th), np.cos(th)))
v1 = nps.transpose(nps.cat(np.cos(th), -np.sin(th)))
l = (np.random.random((N*N,2)) + 0.2) / 4
# shape (N*N, 2,2)
C = \
nps.outer(v0*l[:,(0,)], v0*l[:,(0,)]) + \
nps.outer(v1*l[:,(1,)], v1*l[:,(1,)])
# Got covariances C (let's pretend I didn't make them up). For gnuplot I need to
# compute the major and minor axis lengths, and the angle off horizontal.
# np.linalg.eig and np.arctan2 support broadcasting, so I can use them directly
l,v = np.linalg.eig(C)
major_diam = np.sqrt(l[:,0]) * 2.0
minor_diam = np.sqrt(l[:,1]) * 2.0
v_major = v[:,:,0]
angle = np.arctan2(v_major[:,1], v_major[:,0]) * 180./np.pi
gp.plot( ( x, y, major_diam, minor_diam, angle,
dict(tuplesize = 5,
_with = 'ellipses')),
( x, y,
dict(_with = 'points ps 0.5')),
_set = ('xrange [-6:6]', 'yrange [-6:6]'),
square = True)
#+END_SRC
#+RESULTS:
[[file:guide-37.svg]]
And again, by sampling the angles, and plotting points. This is more work, but
can work in 3D too (we can remap a sphere). I'm using the same data here, so the
points should trace the same shape as the ellipses I just computed
#+BEGIN_SRC python :python python3 :results file link :session gnuplotlib-guide :exports both
import numpy as np
import numpysane as nps
import gnuplotlib as gp
N = 8
# The center of my ellipses
# shape (2, N*N)
xy = nps.clump( nps.cat( *np.meshgrid(np.linspace(-5,5,N),
np.linspace(-5,5,N)) ),
n = -2 )
# each one has shape (N*N,)
x,y = xy
# I want repeatable random numbers
np.random.seed(0)
# Let's make up some covariances
th = np.random.random((N*N,))
v0 = nps.transpose(nps.cat(np.sin(th), np.cos(th)))
v1 = nps.transpose(nps.cat(np.cos(th), -np.sin(th)))
l = (np.random.random((N*N,2)) + 0.2) / 4
# shape (N*N, 2,2)
C = \
nps.outer(v0*l[:,(0,)], v0*l[:,(0,)]) + \
nps.outer(v1*l[:,(1,)], v1*l[:,(1,)])
# Got covariances C (let's pretend I didn't make them up). I use this matrix to
# remap a circle, and plot the resulting points
l,v = np.linalg.eig(C)
# A = V sqrt(diag(l)) Vt
# numpy diag() function is weird, so I'm doing that myself here
A = nps.matmult(v * nps.dummy(np.sqrt(l), -2), nps.transpose(v))
th = np.linspace(0, 2.*np.pi, 20)
# shape (Nangles, 2)
v = nps.transpose(nps.cat(np.cos(th), np.sin(th)))
# shape (Nangles, N*N, 1, 2)
v = nps.matmult(nps.mv(v, -2, -4), A)
# shape (Nangles, N*N, 2)
xy_1sigma = nps.transpose(xy) + v[..., 0, :]
# shape (Nangles*N*N, 2)
xy_1sigma = nps.clump(xy_1sigma, n=2)
gp.plot( ( xy_1sigma,
dict(tuplesize = -2,
_with = 'dots')),
( x, y,
dict(_with = 'points ps 0.5')),
_set = ('xrange [-6:6]', 'yrange [-6:6]'),
square = True)
#+END_SRC
#+RESULTS:
[[file:guide-38.svg]]
|