File: gnuplotlib.py

package info (click to toggle)
python-gnuplotlib 0.46-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 5,900 kB
  • sloc: python: 2,444; lisp: 102; makefile: 32
file content (3071 lines) | stat: -rwxr-xr-x 124,244 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
#!/usr/bin/python

r'''a gnuplot-based plotting backend for numpy

* SYNOPSIS

    import numpy      as np
    import gnuplotlib as gp

    x = np.arange(101) - 50
    gp.plot(x**2)
    [ basic parabola plot pops up ]


    g1 = gp.gnuplotlib(title = 'Parabola with error bars',
                       _with = 'xyerrorbars')
    g1.plot( x**2 * 10, np.abs(x)/10, np.abs(x)*25,
             legend    = 'Parabola',
             tuplesize = 4 )
    [ parabola with x,y errobars pops up in a new window ]


    x,y = np.ogrid[-10:11,-10:11]
    gp.plot( x**2 + y**2,
             title     = 'Heat map',
             unset     = 'grid',
             cmds      = 'set view map',
             square    = True,
             _with     = 'image',
             tuplesize = 3)
    [ Heat map pops up where first parabola used to be ]


    theta = np.linspace(0, 6*np.pi, 200)
    z     = np.linspace(0, 5,       200)
    g2 = gp.gnuplotlib(_3d = True)
    g2.plot( np.cos(theta),
             np.vstack((np.sin(theta), -np.sin(theta))),
             z )
    [ Two 3D spirals together in a new window ]


    x = np.arange(1000)
    gp.plot( (x*x, dict(histogram= True,
                        binwidth = 20000,
                        legend   = 'Frequency')),
             (x*x, dict(histogram='cumulative',
                        legend   = 'Cumulative',
                        y2       = True )),
             ylabel  = 'Histogram frequency',
             y2label = 'Cumulative sum')
    [ A density and cumulative histogram of x^2 are plotted on the same plot ]

    gp.plot( (x*x, dict(histogram=True,
                        binwidth =20000,
                        legend   = 'Frequency')),
             (x*x, dict(histogram='cumulative',
                        legend   = 'Cumulative')),
             _xmin=0, _xmax=1e6,
             multiplot='title "multiplot histograms" layout 2,1',
             _set='lmargin at screen 0.05')
    [ Same histograms, but plotted on two separate plots ]

* DESCRIPTION
For an introductory tutorial and some demos, please see the guide:

https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org

This module allows numpy data to be plotted using Gnuplot as a backend. As much
as was possible, this module acts as a passive pass-through to Gnuplot, thus
making available the full power and flexibility of the Gnuplot backend. Gnuplot
is described in great detail at its upstream website: http://www.gnuplot.info

gnuplotlib has an object-oriented interface (via class gnuplotlib) and a few
global class-less functions (plot(), plot3d(), plotimage()). Each instance of
class gnuplotlib has a separate gnuplot process and a plot window. If multiple
simultaneous plot windows are desired, create a separate class gnuplotlib object
for each.

The global functions reuse a single global gnuplotlib instance, so each such
invocation rewrites over the previous gnuplot window.

The object-oriented interface is used like this:

    import gnuplotlib as gp
    g = gp.gnuplotlib(options)
    g.plot( curve, curve, .... )

The global functions consolidate this into a single call:

    import gnuplotlib as gp
    gp.plot( curve, curve, ...., options )

** Option arguments

Each gnuplotlib object controls ONE gnuplot process. And each gnuplot process
produces ONE plot window (or hardcopy) at a time. Each process usually produces
ONE subplot at a time (unless we asked for a multiplot). And each subplot
contains multiple datasets (referred to as "curves").

These 3 objects (process, subplot, curve) are controlled by their own set of
options, specified as a python dict. A FULL (much more verbose than you would
ever be) non-multiplot plot command looks like

    import gnuplotlib as gp
    g = gp.gnuplotlib( subplot_options, process_options )

    curve_options0 = dict(...)
    curve_options1 = dict(...)

    curve0 = (x0, y0, curve_options0)
    curve1 = (x1, y1, curve_options1)

    g.plot( curve0, curve1 )

and a FULL multiplot command wraps this once more:

    import gnuplotlib as gp
    g = gp.gnuplotlib( process_options, multiplot=... )

    curve_options0   = dict(...)
    curve_options1   = dict(...)
    curve0           = (x0, y0, curve_options0)
    curve1           = (x1, y1, curve_options1)
    subplot_options0 = dict(...)
    subplot0         = (curve0, curve1, subplot_options0)

    curve_options2   = dict(...)
    curve_options3   = dict(...)
    curve2           = (x2, y2, curve_options2)
    curve3           = (x3, y3, curve_options3)
    subplot_options1 = dict(...)
    subplot1         = (curve2, curve3, subplot_options1)

    g.plot( subplot0, subplot1 )

This is verbose, and rarely will you actually specify everything in this much
detail:

- Anywhere that expects process options, you can pass the DEFAULT subplot
  options and the DEFAULT curve options for all the children. These defaults may
  be overridden in the appropriate place

- Anywhere that expects plot options you can pass DEFAULT curve options for all
  the child curves. And these can be overridden also

- Broadcasting (see below) reduces the number of curves you have to explicitly
  specify

- Implicit domains (see below) reduce the number of numpy arrays you need to
  pass when specifying each curve

- If only a single curve tuple is to be plotted, it can be inlined

The following are all equivalent ways of making the same plot:

    import gnuplotlib as gp
    import numpy      as np
    x = np.arange(10)
    y = x*x

    # Global function. Non-inlined curves. Separate curve and subplot options
    gp.plot( (x,y, dict(_with = 'lines')), title = 'parabola')

    # Global function. Inlined curves (possible because we have only one curve).
    # The curve, subplot options given together
    gp.plot( x,y, _with = 'lines', title = 'parabola' )

    # Object-oriented function. Non-inlined curves.
    p1 = gp.gnuplotlib(title = 'parabola')
    p1.plot((x,y, dict(_with = 'lines')),)

    # Object-oriented function. Inlined curves.
    p2 = gp.gnuplotlib(title = 'parabola')
    p2.plot(x,y, _with = 'lines')

If multiple curves are to be drawn on the same plot, then each 'curve' must live
in a separate tuple, or we can use broadcasting to stack the extra data in new
numpy array dimensions. Identical ways to make the same plot:

    import gnuplotlib as gp
    import numpy      as np
    import numpysane  as nps

    x = np.arange(10)
    y = x*x
    z = x*x*x

    # Object-oriented function. Separate curve and subplot options
    p = gp.gnuplotlib(title = 'parabola and cubic')
    p.plot((x,y, dict(_with = 'lines', legend = 'parabola')),
           (x,z, dict(_with = 'lines', legend = 'cubic')))

    # Global function. Separate curve and subplot options
    gp.plot( (x,y, dict(_with = 'lines', legend = 'parabola')),
             (x,z, dict(_with = 'lines', legend = 'cubic')),
             title = 'parabola and cubic')

    # Global function. Using the default _with
    gp.plot( (x,y, dict(legend = 'parabola')),
             (x,z, dict(legend = 'cubic')),
             _with = 'lines',
             title = 'parabola and cubic')

    # Global function. Using the default _with, inlining the curve options, omitting
    # the 'x' array, and using the implicit domain instead
    gp.plot( (y, dict(legend = 'parabola')),
             (z, dict(legend = 'cubic')),
             _with = 'lines',
             title = 'parabola and cubic')

    # Global function. Using the default _with, inlining the curve options, omitting
    # the 'x' array, and using the implicit domain instead. Using broadcasting for
    # the data and for the legend, inlining the one curve
    gp.plot( nps.cat(y,z),
             legend = np.array(('parabola','cubic')),
             _with  = 'lines',
             title  = 'parabola and cubic')

When making a multiplot (see below) we have multiple subplots in a plot. For
instance I can plot a sin() and a cos() on top of each other:

    import gnuplotlib as gp
    import numpy      as np
    th = np.linspace(0, np.pi*2, 30)

    gp.plot( (th, np.cos(th), dict(title="cos")),
             (th, np.sin(th), dict(title="sin")),
             _xrange = [0,2.*np.pi],
             _yrange = [-1,1],
             multiplot='title "multiplot sin,cos" layout 2,1')

Process options are parameters that affect the whole plot window, like the
output filename, whether to test each gnuplot command, etc. We have ONE set of
process options for ALL the subplots. These are passed into the gnuplotlib
constructor or appear as keyword arguments in a global plot() call. All of these
are described below in "Process options".

Subplot options are parameters that affect a subplot. Unless we're
multiplotting, there's only one subplot, so we have a single set of process
options and a single set of subplot options. Together these are sometimes
referred to as "plot options". Examples are the title of the plot, the axis
labels, the extents, 2D/3D selection, etc. If we aren't multiplotting, these are
passed into the gnuplotlib constructor or appear as keyword arguments in a
global plot() call. In a multiplot, these are passed as a python dict in the last
element of each subplot tuple. Or the default values can be given where process
options usually live. All of these are described below in "Subplot options".

Curve options: parameters that affect only a single curve. These are given as a
python dict in the last element of each curve tuple. Or the defaults can appear
where process or subplot options are expected. Each is described below in "Curve
options".

A few helper global functions are available:

    plot3d(...)

is equivalent to

    plot(..., _3d=True)

And

    plotimage(...)

is equivalent to

    plot(..., _with='image', tuplesize=3)

** Data arguments

The 'curve' arguments in the plot(...) argument list represent the actual data
being plotted. Each output data point is a tuple (set of values, not a python
"tuple") whose size varies depending on what is being plotted. For example if
we're making a simple 2D x-y plot, each tuple has 2 values. If we're making a 3D
plot with each point having variable size and color, each tuple has 5 values:
(x,y,z,size,color). When passing data to plot(), each tuple element is passed
separately by default (unless we have a negative tuplesize; see below). So if we
want to plot N 2D points we pass the two numpy arrays of shape (N,):

    gp.plot( x,y )

By default, gnuplotlib assumes tuplesize==2 when plotting in 2D and tuplesize==3
when plotting in 3D. If we're doing anything else, then the 'tuplesize' curve
option MUST be passed in:

    gp.plot( x,y,z,size,color,
             tuplesize = 5,
             _3d = True,
             _with = 'points ps variable palette' )

This is required because you may be using implicit domains (see below) and/or
broadcasting, so gnuplotlib has no way to know the intended tuplesize.

*** Broadcasting

Broadcasting (https://docs.scipy.org/doc/numpy/user/basics.broadcasting.html) is
fully supported, so multiple curves can be plotted by stacking data inside the
passed-in arrays. Broadcasting works across curve options also, so things like
curve labels and styles can also be stacked inside arrays:

    th    = np.linspace(0, 6*np.pi, 200)
    z     = np.linspace(0, 5,       200)
    size  = 0.5 + np.abs(np.cos(th))
    color = np.sin(2*th)


    # without broadcasting:
    gp.plot3d( (  np.cos(th),  np.sin(th),
                 z, size, color,
                 dict(legend = 'spiral 1') ),

               ( -np.cos(th), -np.sin(th),
                 z, size, color,
                 dict(legend = 'spiral 2') ),

               tuplesize = 5,
               title = 'double helix',
               _with = 'points pointsize variable pointtype 7 palette' )


    # identical plot using broadcasting:
    gp.plot3d( ( np.cos(th) * np.array([[1,-1]]).T,
                 np.sin(th) * np.array([[1,-1]]).T,
                 z, size, color,
                 dict( legend = np.array(('spiral 1', 'spiral 2')))),

               tuplesize = 5,
               title = 'double helix',
               _with = 'points pointsize variable pointtype 7 palette' )

This is a 3D plot with variable size and color. There are 5 values in the tuple,
which we specify. The first 2 arrays have shape (2,N); all the other arrays have
shape (N,). Thus the broadcasting rules generate 2 distinct curves, with varying
values for x,y and identical values for z, size and color. We label the curves
differently by passing an array for the 'legend' curve option. This array
contains strings, and is broadcast like everything else.

*** Negative tuplesize

If we have all the data elements in a single array, plotting them is a bit
awkward. Here're two ways:

    xy = .... # Array of shape (N,2). Each slice is (x,y)

    gp.plot(xy[:,0], xy[:,1])

    gp.plot(*xy.T)

The *xy.T version is concise, but is only possible if we're plotting one curve:
python syntax doesn't allow any arguments after and *-expanded tuple. With more
than one curve you're left with the first version, which is really verbose,
especially with a large tuplesize. gnuplotlib handles this case with a
shorthand: negative tuplesize. The above can be represented nicely like this:

    gp.plot(xy, tuplesize = -2)

This means that each point has 2 values, but that instead of reading each one in
a separate array, we have ONE array, with the values in the last dimension.

*** Implicit domains

gnuplotlib looks for tuplesize different arrays for each curve. It is common for
the first few arrays to be predictable by gnuplotlib, and in those cases it's a
chore to require for the user to pass those in. Thus, if there are fewer than
tuplesize arrays available, gnuplotlib will try to use an implicit domain. This
happens if we are EXACTLY 1 or 2 arrays short (usually when making 2D and 3D
plots respectively).

If exactly 1 dimension is missing, gnuplotlib will use np.arange(N) as the
domain: we plot the given values in a row, one after another. Thus

    gp.plot(np.array([1,5,3,4,4]))

is equivalent to

    gp.plot(np.arange(5), np.array([1,5,3,4,4]) )

Only 1 array was given, but the default tuplesize is 2, so we are 1 array short.

If we are exactly 2 arrays short, gnuplotlib will use a 2D grid as a domain.
Example:

    xy = np.arange(21*21).reshape(21*21)
    gp.plot( xy, _with = 'points', _3d=True)

Here the only given array has dimensions (21,21). This is a 3D plot, so we are
exactly 2 arrays short. Thus, gnuplotlib generates an implicit domain,
corresponding to a 21-by-21 grid. Note that in all other cases, each curve takes
in tuplesize 1-dimensional arrays, while here it takes tuplesize-2 2-dimensional
arrays.

Also, note that while the DEFAULT tuplesize depends on whether we're making a 3D
plot, once a tuplesize is given, the logic doesn't care if a 3D plot is being
made. It can make sense to have a 2D implicit domain when making 2D plots. For
example, one can be plotting a color map from an array of shape (H,W):

    x,y = np.ogrid[-10:11,-10:11]
    gp.plot( x**2 + y**2,
             title     = 'Heat map',
             _with     = 'image',
             tuplesize = 3)

Or a full-color image from an array of shape (H,W,3)

    gp.plot( *nps.mv(image, -1,0),
             title     = 'Full-color image',
             _with     = 'rgbimage',
             tuplesize = 5)

Also note that the 'tuplesize' curve option is independent of implicit domains.
This option specifies not how many data arrays we have, but how many values
represent each data point. For example, if we want a 2D line plot with varying
colors plotted with an implicit domain, set tuplesize=3 as before (x,y,color),
but pass in only 2 arrays (y, color).

** Multiplots

Usually each gnuplotlib object makes one plot at a time. And as a result, we
have one set of process options and subplot options at a time (known together as
"plot options"). Sometimes this isn't enough, and we really want to draw
multiple plots in a single window (or hardcopy) with a gnuplotlib.plot() call.
This situation is called a "multiplot". We enter this mode by passing a
"multiplot" process option, which is a string passed directly to gnuplot in its
"set multiplot ..." command. See the corresponding gnuplot documentation for
details:

    gnuplot -e "help multiplot"

Normally we make plots like this:

    gp.plot( (x0, y0, curve_options0),
             (x1, y1, curve_options1),
             ...,
             subplot_options, process_options)

In multiplot mode, the gnuplotlib.plot() command takes on one more level of
indirection:

    gp.plot( ( (x0, y0, curve_options0),
               (x1, y1, curve_options1),
               ...
               subplot_options0 ),

             ( (x2, y2, curve_options2),
               (x3, y3, curve_options3),
               ...
               subplot_options1 ),
             ...,
             process_options )

The process options can appear at the end of the gp.plot() global call, or in
the gnuplotlib() constructor. Subplot option and curve option defaults can
appear there too. Subplot options and curve option defaults appear at the end of
each subplot tuple.

A few options are valid as both process and subplot options: 'cmds', 'set',
'unset'. If one of these ('set' for instance) is given as BOTH a process and
subplot option, we execute BOTH of them. This is different from the normal
behavior, where the outer option is treated as a default to be overridden,
instead of contributed to.

Multiplot mode is useful, but has a number of limitations and quirks. For
instance, interactive zooming, measuring isn't possible. And since each subplot
is independent, extra commands may be needed to align axes in different
subplots: "help margin" in gnuplot to see how to do this. Do read the gnuplot
docs in detail when touching any of this. Sample to plot two sinusoids above one another:

    import gnuplotlib as gp
    import numpy      as np
    th = np.linspace(0, np.pi*2, 30)

    gp.plot( (th, np.cos(th), dict(title="cos")),
             (th, np.sin(th), dict(title="sin")),
             _xrange = [0,2.*np.pi],
             _yrange = [-1,1],
             multiplot='title "multiplot sin,cos" layout 2,1')

** Symbolic equations

Gnuplot can plot both data and equations. This module exists largely for the
data-plotting case, but sometimes it can be useful to plot equations together
with some data. This is supported by the 'equation...' subplot option. This is
either a string (for a single equation) or a list/tuple containing multiple
strings for multiple equations. An example:

    import numpy as np
    import numpy.random as nr
    import numpy.linalg
    import gnuplotlib as gp

    # generate data
    x     = np.arange(100)
    c     = np.array([1, 1800, -100, 0.8])   # coefficients
    m     = x[:, np.newaxis] ** np.arange(4) # 1, x, x**2, ...
    noise = 1e4 * nr.random(x.shape)
    y     = np.dot( m, c) + noise            # polynomial corrupted by noise

    c_fit = np.dot(numpy.linalg.pinv(m), y)  # coefficients obtained by a curve fit

    # generate a string that describes the curve-fitted equation
    fit_equation = '+'.join( '{} * {}'.format(c,m) for c,m in zip( c_fit.tolist(), ('x**0','x**1','x**2','x**3')))

    # plot the data points and the fitted curve
    gp.plot(x, y, _with='points', equation = fit_equation)

Here I generated some data, performed a curve fit to it, and plotted the data
points together with the best-fitting curve. Here the best-fitting curve was
plotted by gnuplot as an equation, so gnuplot was free to choose the proper
sampling frequency. And as we zoom around the plot, the sampling frequency is
adjusted to keep things looking nice.

Note that the various styles and options set by the other options do NOT apply
to these equation plots. Instead, the string is passed to gnuplot directly, and
any styling can be applied there. For instance, to plot a parabola with thick
lines, you can issue

    gp.plot( ....., equation = 'x**2 with lines linewidth 2')

As before, see the gnuplot documentation for details. You can do fancy things:

    x   = np.arange(100, dtype=float) / 100 * np.pi * 2;
    c,s = np.cos(x), np.sin(x)

    gp.plot( c,s,
             square=1, _with='points',
             set = ('parametric', 'trange [0:2*3.14]'),
             equation = "sin(t),cos(t)" )

Here the data are points evently spaced around a unit circle. Along with these
points we plot a unit circle as a parametric equation.

** Histograms

It is possible to use gnuplot's internal histogram support, which uses gnuplot
to handle all the binning. A simple example:

    x = np.arange(1000)
    gp.plot( (x*x, dict(histogram = 'freq',       binwidth=10000)),
             (x*x, dict(histogram = 'cumulative', y2=1))

To use this, pass 'histogram = HISTOGRAM_TYPE' as a curve option. If the type is
any non-string that evaluates to True, we use the 'freq' type: a basic frequency
histogram. Otherwise, the types are whatever gnuplot supports. See the output of
'help smooth' in gnuplot. The most common types are

- freq:       frequency
- cumulative: integral of freq. Runs from 0 to N, where N is the number of samples
- cnormal:    like 'cumulative', but rescaled to run from 0 to 1

The 'binwidth' curve option specifies the size of the bins. This must match for
ALL histogram curves in a plot. If omitted, this is assumed to be 1. As usual,
the user can specify whatever styles they want using the 'with' curve option. If
omitted, you get reasonable defaults: boxes for 'freq' histograms and lines for
cumulative ones.

This only makes sense with 2D plots with tuplesize=1

** Plot persistence and blocking

As currently written, gnuplotlib does NOT block and the plot windows do NOT
persist. I.e.

- the 'plot()' functions return immediately, and the user interacts with the
  plot WHILE THE REST OF THE PYTHON PROGRAM IS RUNNING

- when the python program exits, the gnuplot process and any visible plots go
  away

If you want to write a program that just shows a plot, and exits when the user
closes the plot window, you should do any of

- add wait=True to the process options dict
- call wait() on your gnuplotlib object
- call the global gnuplotlib.wait(), if you have a global plot

Please note that it's not at all trivial to detect if a current plot window
exists. If not, this function will end up waiting forever, and the user will
need to Ctrl-C.

* OPTIONS

** Process options

The process options are a dictionary, passed as the keyword arguments to the
global plot() function or to the gnuplotlib contructor. The supported keys of
this dict are as follows:

- hardcopy, output

These are synonymous. Instead of drawing a plot on screen, plot into a file
instead. The output filename is the value associated with this key. If the
"terminal" plot option is given, that sets the output format; otherwise the
output format is inferred from the filename. Currently only eps, ps, pdf, png,
svg, gp are supported with some default sets of options. For any other formats
you MUST provide the 'terminal' option as well. Example:

    plot(..., hardcopy="plot.pdf")
    [ Plots into that file ]

Note that the ".gp" format is special. Instead of asking gnuplot to make a plot
using a specific terminal, writing to "xxx.gp" will create a self-plotting data
file that is visualized with gnuplot.

- terminal

Selects the gnuplot terminal (backend). This determines how Gnuplot generates
its output. Common terminals are 'x11', 'qt', 'pdf', 'dumb' and so on. See the
Gnuplot docs for all the details.

There are several gnuplot terminals that are known to be interactive: "x11",
"qt" and so on. For these no "output" setting is desired. For noninteractive
terminals ("pdf", "dumb" and so on) the output will go to the file defined by
the output/hardcopy key. If this plot option isn't defined or set to the empty
string, the output will be redirected to the standard output of the python
process calling gnuplotlib.

    >>> gp.plot( np.linspace(-5,5,30)**2,
    ...          unset='grid', terminal='dumb 80 40' )

    25 A-+---------+-----------+-----------+----------+-----------+---------A-+
       *           +           +           +          +           +        *  +
       |*                                                                  *  |
       |*                                                                 *   |
       | *                                                                *   |
       | A                                                               A    |
       |  *                                                              *    |
    20 +-+ *                                                            *   +-+
       |   *                                                            *     |
       |    A                                                          A      |
       |     *                                                         *      |
       |     *                                                        *       |
       |      *                                                       *       |
       |      A                                                      A        |
    15 +-+     *                                                    *       +-+
       |       *                                                    *         |
       |        *                                                  *          |
       |        A                                                 A           |
       |         *                                               *            |
       |          *                                              *            |
       |           A                                            A             |
    10 +-+          *                                          *            +-+
       |            *                                         *               |
       |             A                                       A                |
       |              *                                     *                 |
       |               *                                    *                 |
       |                A                                  A                  |
       |                 *                                *                   |
     5 +-+                A                              A                  +-+
       |                   *                           **                     |
       |                    A**                       A                       |
       |                                             *                        |
       |                       A*                  *A                         |
       |                         A*              *A                           |
       +           +           +   A**     +  *A*     +           +           +
     0 +-+---------+-----------+------A*A**A*A--------+-----------+---------+-+
       0           5           10          15         20          25          30

- set/unset

Either a string or a list/tuple; if given a list/tuple, each element is used in
separate set/unset command. Example:

    plot(..., set='grid', unset=['xtics', 'ytics])
    [ turns on the grid, turns off the x and y axis tics ]

This is both a process and a subplot option. If both are given, BOTH are used,
instead of the normal behavior of a subplot option overriding the process option

- cmds

Either a string or a list/tuple; if given a list/tuple, each element is used in
separate command. Arbitrary extra commands to pass to gnuplot before the plots
are created. These are passed directly to gnuplot, without any validation.

This is both a process and a subplot option. If both are given, BOTH are used,
instead of the normal behavior of a subplot option overriding the process option

- dump

Used for debugging. If true, writes out the gnuplot commands to STDOUT instead
of writing to a gnuplot process. Useful to see what commands would be sent to
gnuplot. This is a dry run. Note that this dump will contain binary data unless
ascii-only plotting is enabled (see below). This is also useful to generate
gnuplot scripts since the dumped output can be sent to gnuplot later, manually
if desired. Look at the 'notest' option for a less verbose dump.

- log

Used for debugging. If true, writes out the gnuplot commands and various
progress logs to STDERR in addition to writing to a gnuplot process. This is NOT
a dry run: data is sent to gnuplot AND to the log. Useful for debugging I/O
issues. Note that this log will contain binary data unless ascii-only plotting
is enabled (see below)

- ascii

If set, ASCII data is passed to gnuplot instead of binary data. Binary is the
default because it is much more efficient (and thus faster). Any time you're
plotting something that isn't just numbers (labels, time/date strings, etc)
ascii communication is required instead. gnuplotlib tries to auto-detect when
this is needed, but sometimes you do have to specify this manually.

- notest

Don't check for failure after each gnuplot command. And don't test all the plot
options before creating the plot. This is generally only useful for debugging or
for more sparse 'dump' functionality.

- wait

When we're done asking gnuplot to make a plot, we ask gnuplot to tell us when
the user closes the interactive plot window that popped up. The python process
will block until the user is done looking at the data. This can also be achieved
by calling the wait() gnuplotlib method or the global gnuplotlib.wait()
function.


** Subplot options

The subplot options are a dictionary, passed as the keyword arguments to the
global plot() function or to the gnuplotlib contructor (when making single
plots) or as the last element in each subplot tuple (when making multiplots).
Default subplot options may be passed-in together with the process options. The
supported keys of this dict are as follows:

- title

Specifies the title of the plot

- 3d

If true, a 3D plot is constructed. This changes the default tuple size from 2 to
3

- _3d

Identical to '3d'. In python, keyword argument keys cannot start with a number,
so '_3d' is accepted for that purpose. Same issue exists with with/_with

- set/unset

Either a string or a list/tuple; if given a list/tuple, each element is used in
separate set/unset command. Example:

    plot(..., set='grid', unset=['xtics', 'ytics])
    [ turns on the grid, turns off the x and y axis tics ]

This is both a process and a subplot option. If both are given, BOTH are used,
instead of the normal behavior of a subplot option overriding the process option

- cmds

Either a string or a list/tuple; if given a list/tuple, each element is used in
separate command. Arbitrary extra commands to pass to gnuplot before the plots
are created. These are passed directly to gnuplot, without any validation.

This is both a process and a subplot option. If both are given, BOTH are used,
instead of the normal behavior of a subplot option overriding the process option

- with

If no 'with' curve option is given, use this as a default. See the description
of the 'with' curve option for more detail

- _with

Identical to 'with'. In python 'with' is a reserved word so it is illegal to use
it as a keyword arg key, so '_with' exists as an alias. Same issue exists with
3d/_3d

- square, square_xy, square-xy, squarexy

If True, these request a square aspect ratio. For 3D plots, square_xy plots with
a square aspect ratio in x and y, but scales z. square_xy and square-xy and
squarexy are synonyms. In 2D, these are all synonyms. Using any of these in 3D
requires Gnuplot >= 4.4

- {x,x2y,y2,z,cb}{min,max,range,inv}

If given, these set the extents of the plot window for the requested axes.
Either min/max or range can be given but not both. min/max are numerical values.
'*range' is a string 'min:max' with either one allowed to be omitted; it can
also be a [min,max] tuple or list. '*inv' is a boolean that reverses this axis.
If the bounds are known, this can also be accomplished by setting max < min.
Passing in both max < min AND inv also results in a reversed axis.

If no information about a range is given, it is not touched: the previous zoom
settings are preserved.

The y2 axis is the secondary y-axis that is enabled by the 'y2' curve option.
The 'cb' axis represents the color axis, used when color-coded plots are being
generated

- xlabel, x2label, ylabel, zlabel, y2label, cblabel

These specify axis labels

- rgbimage

This should be set to a path containing an image file on disk. The data is then
plotted on top of this image, which is very useful for annotations, computer
vision, etc. Note that when plotting data, the y axis usually points up, but
when looking at images, the y axis of the pixel coordinates points down instead.
Thus, if the y axis extents aren't given and an rgbimage IS specified,
gnuplotlib will flip the y axis to make things look reasonable. If any y-axis
ranges are given, however (with any of the ymin,ymax,yrange,yinv subplot
options), then it is up to the user to flip the axis, if that's what they want.

- equation, equation_above, equation_below

Either a string or a list/tuple; if given a list/tuple, each element is used in
separate equation to plot. These options allows equations represented as formula
strings to be plotted along with data passed in as numpy arrays. See the
"Symbolic equations" section above.

By default, the equations are plotted BEFORE other data, so the data plotted
later may obscure some of the equation. Depending on what we're doing, this may
or may not be what we want. To plot the equations AFTER other data, use
'equation_above' instead of 'equation'. The 'equation_below' option is a synonym
for 'equation'


** Curve options

The curve options describe details of specific curves. They are in a dict, whose
keys are as follows:

- legend

Specifies the legend label for this curve

- with

Specifies the style for this curve. The value is passed to gnuplot using its
'with' keyword, so valid values are whatever gnuplot supports. Read the gnuplot
documentation for the 'with' keyword for more information

- _with

Identical to 'with'. In python 'with' is a reserved word so it is illegal to use
it as a keyword arg key, so '_with' exists as an alias

- axes

One of: ('x1y1','x1y2','x2y1','x2y2'). Specifies which xy axes in the plot
should define this curve. This is the left/right and up/down axes in the plot.
Only applies to 2D plots. Exclusive with the "y2" option

- y2

If true, requests that this curve be plotted on the x1y2 axes instead of the
default x1y1 axes. This is a special case of the "axes" option, and is exclusive
with it

- tuplesize

Described in the "Data arguments" section above. Specifies how many values
represent each data point. For 2D plots this defaults to 2; for 3D plots this
defaults to 3. These defaults are correct for simple plots. For each curve we
expect to get tuplesize separate arrays of data unless any of these are true

  - If tuplesize < 0, we expect to get a single numpy array, with each data
    tuple in the last dimension. See the "Negative tuplesize" section above for
    detail.

  - If we receive fewer than tuplesize arrays, we may be using "Implicit
    domains". See the "Implicit domains" section above for detail.

- using

Overrides the 'using' directive we pass to gnuplot. No error checking is
performed, and the string is passed to gnuplot verbatim. This option is very
rarely needed. The most common usage is to apply a function to an implicit
domain. For instance, this basic command plots a line (linearly increasing
values) against a linearly-increasing line number::

    gp.plot(np.arange(100))

We can plot the same values against the square-root of the line number to get a
parabola:

    gp.plot(np.arange(100), using='(sqrt($1)):2')

- histogram

If given and if it evaluates to True, gnuplot will plot the histogram of this
data instead of the data itself. See the "Histograms" section above for more
details. If this curve option is a string, it's expected to be one of the
smoothing style gnuplot understands (see 'help smooth'). Otherwise we assume the
most common style: a frequency histogram. This only makes sense with 2D plots
and tuplesize=1

- binwidth

Used for the histogram support. See the "Histograms" section above for more
details. This sets the width of the histogram bins. If omitted, the width is set
to 1.

* INTERFACE

** class gnuplotlib

A gnuplotlib object abstracts a gnuplot process and a plot window. A basic
non-multiplot invocation:

    import gnuplotlib as gp
    g = gp.gnuplotlib(subplot_options, process_options)
    g.plot( curve, curve, .... )

The subplot options are passed into the constructor; the curve options and the data
are passed into the plot() method. One advantage of making plots this way is
that there's a gnuplot process associated with each gnuplotlib instance, so as
long as the object exists, the plot will be interactive. Calling 'g.plot()'
multiple times reuses the plot window instead of creating a new one.

** global plot(...)

The convenience plotting routine in gnuplotlib. Invocation:

    import gnuplotlib as gp
    gp.plot( curve, curve, ...., subplot_and_default_curve_options )

Each 'plot()' call reuses the same window.

** global plot3d(...)

Generates 3D plots. Shorthand for 'plot(..., _3d=True)'

** global plotimage(...)

Generates an image plot. Shorthand for 'plot(..., _with='image', tuplesize=3)'

** global wait(...)

Blocks until the user closes the interactive plot window. Useful for python
applications that want blocking plotting behavior. This can also be achieved by
calling the wait() gnuplotlib method or by adding wait=1 to the process options
dict

* RECIPES
Some very brief usage notes appear here. For a tutorial and more in-depth
recipes, please see the guide:

https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org

** 2D plotting

If we're plotting y-values sequentially (implicit domain), all you need is

    plot(y)

If we also have a corresponding x domain, we can plot y vs. x with

    plot(x, y)

*** Simple style control

To change line thickness:

    plot(x,y, _with='lines linewidth 3')

To change point size and point type:

    gp.plot(x,y, _with='points pointtype 4 pointsize 8')

Everything (like _with) feeds directly into Gnuplot, so look at the Gnuplot docs
to know how to change thicknesses, styles and such.

*** Errorbars

To plot errorbars that show y +- 1, plotted with an implicit domain

    plot( y, np.ones(y.shape), _with = 'yerrorbars', tuplesize = 3 )

Same with an explicit x domain:

    plot( x, y, np.ones(y.shape), _with = 'yerrorbars', tuplesize = 3 )

Symmetric errorbars on both x and y. x +- 1, y +- 2:

    plot( x, y, np.ones(x.shape), 2*np.ones(y.shape), _with = 'xyerrorbars', tuplesize = 4 )

To plot asymmetric errorbars that show the range y-1 to y+2 (note that here you
must specify the actual errorbar-end positions, NOT just their deviations from
the center; this is how Gnuplot does it)

    plot( y, y - np.ones(y.shape), y + 2*np.ones(y.shape),
         _with = 'yerrorbars', tuplesize = 4 )

*** More multi-value styles

Plotting with variable-size circles (size given in plot units, requires Gnuplot >= 4.4)

    plot(x, y, radii,
         _with = 'circles', tuplesize = 3)

Plotting with an variably-sized arbitrary point type (size given in multiples of
the "default" point size)

    plot(x, y, sizes,
         _with = 'points pointtype 7 pointsize variable', tuplesize = 3 )

Color-coded points

    plot(x, y, colors,
         _with = 'points palette', tuplesize = 3 )

Variable-size AND color-coded circles. A Gnuplot (4.4.0) quirk makes it
necessary to specify the color range here

    plot(x, y, radii, colors,
         cbmin = mincolor, cbmax = maxcolor,
         _with = 'circles palette', tuplesize = 4 )

*** Broadcasting example

Let's plot the Conchoids of de Sluze. The whole family of curves is generated
all at once, and plotted all at once with broadcasting. Broadcasting is also
used to generate the labels. Generally these would be strings, but here just
printing the numerical value of the parameter is sufficient.

    theta = np.linspace(0, 2*np.pi, 1000)  # dim=(  1000,)
    a     = np.arange(-4,3)[:, np.newaxis] # dim=(7,1)

    gp.plot( theta,
             1./np.cos(theta) + a*np.cos(theta), # broadcasted. dim=(7,1000)

             _with  = 'lines',
             set    = 'polar',
             square = True,
             yrange = [-5,5],
             legend = a.ravel() )

** 3D plotting

General style control works identically for 3D plots as in 2D plots.

To plot a set of 3D points, with a square aspect ratio (squareness requires
Gnuplot >= 4.4):

    plot3d(x, y, z, square = 1)

If xy is a 2D array, we can plot it as a height map on an implicit domain

    plot3d(xy)

Ellipse and sphere plotted together, using broadcasting:

    th   = np.linspace(0,        np.pi*2, 30)
    ph   = np.linspace(-np.pi/2, np.pi*2, 30)[:,np.newaxis]

    x_3d = (np.cos(ph) * np.cos(th))          .ravel()
    y_3d = (np.cos(ph) * np.sin(th))          .ravel()
    z_3d = (np.sin(ph) * np.ones( th.shape )) .ravel()

    gp.plot3d( (x_3d * np.array([[1,2]]).T,
                y_3d * np.array([[1,2]]).T,
                z_3d,
                { 'legend': np.array(('sphere', 'ellipse'))}),

               title  = 'sphere, ellipse',
               square = True,
               _with  = 'points')

Image arrays plots can be plotted as a heat map:

    x,y = np.ogrid[-10:11,-10:11]
    gp.plot( x**2 + y**2,
             title     = 'Heat map',
             _with     = 'image',
             tuplesize = 3)

Data plotted on top of an existing image. Useful for image annotations.

    gp.plot( x, y,
             title    = 'Points on top of an image',
             _with    = 'points',
             square   = 1,
             rgbimage = 'image.png')

** Hardcopies

To send any plot to a file, instead of to the screen, one can simply do

    plot(x, y,
         hardcopy = 'output.pdf')

For common output formats, the gnuplot terminal is inferred the filename. If
this isn't possible or if we want to tightly control the output, the 'terminal'
plot option can be given explicitly. For example to generate a PDF of a
particular size with a particular font size for the text, one can do

    plot(x, y,
         terminal = 'pdfcairo solid color font ",10" size 11in,8.5in',
         hardcopy = 'output.pdf')

This command is equivalent to the 'hardcopy' shorthand used previously, but the
fonts and sizes have been changed.

If we write to a ".gp" file:

    plot(x, y,
         hardcopy = 'data.gp')

then instead of running gnuplot, we create a self-plotting file. gnuplot is
invoked when we execute that file.

'''



from __future__ import print_function

import subprocess
import time
import sys
import os
import re
import select
import numbers
import numpy as np
import numpysane as nps


gnuplot_executable='gnuplot'

# setup.py assumes the version is a simple string in '' quotes
__version__ = '0.46'

# In a multiplot, the "process" options apply to the larger plot containing all
# the subplots, and the "subplot" options apply to each invididual plot.
#
# In a "normal" plot (not multiplot), the plot options are a union of the
# process and subplot options. There's exactly one subplot
knownProcessOptions = frozenset(('cmds',   # both process and subplot
                                 'set',    # both process and subplot
                                 'unset',  # both process and subplot
                                 'dump', 'ascii', 'log', 'notest', 'wait',
                                 'hardcopy', 'terminal', 'output',
                                 'multiplot'))
knownSubplotOptions   = frozenset(('cmds',   # both process and subplot
                                   'set',    # both process and subplot
                                   'unset',  # both process and subplot
                                   '3d',
                                   'square', 'square_xy', 'square-xy', 'squarexy',
                                   'title',
                                   'with',   # both a plot option and a curve option
                                   'rgbimage',
                                   'equation', 'equation_above', 'equation_below',
                                   'xmax',  'xmin',  'xrange',  'xinv',  'xlabel',
                                   'x2max', 'x2min', 'x2range', 'x2inv', 'x2label',
                                   'ymax',  'ymin',  'yrange',  'yinv',  'ylabel',
                                   'y2max', 'y2min', 'y2range', 'y2inv', 'y2label',
                                   'zmax',  'zmin',  'zrange',  'zinv',  'zlabel',
                                   'cbmax', 'cbmin', 'cbrange', 'cblabel'))

knownCurveOptions = frozenset(( 'with',   # both a plot option and a curve option
                                'legend', 'axes', 'y2', 'tuplesize', 'using',
                                'histogram', 'binwidth'))

knownInteractiveTerminals = frozenset(('x11', 'wxt', 'qt', 'aquaterm'))

knownAxes = frozenset(('x1y1','x1y2','x2y1','x2y2'))


keysAcceptingIterable = frozenset(('cmds','set','unset','equation','equation_below','equation_above'))

# when testing plots with ASCII i/o, this is the unit of test data
testdataunit_ascii = 10



def _getGnuplotFeatures():

    # Be careful talking to gnuplot here. If you use a tty then gnuplot messes
    # with the tty settings where it should NOT. For example it turns on the
    # local echo. So make sure to not use a tty. Furthermore, I turn off the
    # DISPLAY. I'm not actually plotting anything, so a DISPLAY can try to
    # X-forward and be really slow pointlessly

    # I pass in the current environment, but with DISPLAY turned off
    env = os.environ.copy()
    env['DISPLAY'] = ''

    # first, I run 'gnuplot --help' to extract all the cmdline options as features
    try:
        helpstring = subprocess.check_output([gnuplot_executable, '--help'],
                                             stderr=subprocess.STDOUT,
                                             env=env).decode()
    except FileNotFoundError:
        print("Couldn't run gnuplot. Is it installed? Is it findable in the PATH?",
              file=sys.stderr)
        raise

    features = set( re.findall(r'--([a-zA-Z0-9_]+)', helpstring) )


    # then I try to set a square aspect ratio for 3D to see if it works
    equal_3d_works = True
    try:
        out = subprocess.check_output((gnuplot_executable, '-e', "set view equal"),
                                      stderr=subprocess.STDOUT,
                                      env=env).decode()
        if re.search(r"(undefined variable)|(unrecognized option)", out, re.I):
            equal_3d_works = False
    except:
        equal_3d_works = False

    if equal_3d_works:
        features.add('equal_3d')

    return frozenset(features)


features = _getGnuplotFeatures()



def _normalize_options_dict(d):
    r'''Normalizes a dict of options to handle human-targeted conveniences

The options we accept allow some things that make life easier for humans, but
complicate it for computers. This function takes care of these. It ingests a
dict passed-in by the user, and outputs a massaged dict with these changes:

- All keys that start with an '_' are renamed to omit the '_'

- All keys that accept either an iterable or a value (those in
  keysAcceptingIterable) are converted to always contain an iterable

- Any keys with a value of None or (None,) are removed: checking for a value of
  None ends up being identical to checking for the existence of a value

- Similarly, any iterable-supporting keys with [] or () are removed

    '''

    d2 = {}
    for key in d:
        add_plot_option(d2, key, d[key])
    return d2

class GnuplotlibError(Exception):
    def __init__(self, err): self.err = err
    def __str__(self):       return self.err



def _data_dump_only(processOptions):
    '''Returns True if we're dumping a script, NOT actually running gnuplot'''
    def is_gp():
        h = processOptions.get('hardcopy')
        return \
            type(h) is str and \
            re.match(r".*\.gp$", h)
    return \
        processOptions.get('dump') or \
        processOptions.get('terminal') == 'gp' or \
        is_gp()

def is_knownInteractiveTerminal(t):
    # I check the first word in the terminal string. This is the terminal type.
    # Everything else is options
    return t.split(maxsplit=1)[0] in knownInteractiveTerminals

def _split_dict(d, *keysets):
    r'''Given a dict and some sets of keys, split into sub-dicts with keys

    Can be used to split a combined plot/curve options dict into separate dicts.
    If an option exists in multiple sets, the first matching one is used. If an
    option does not appear in ANY of the given sets, I barf

    '''

    dicts = [{} for _ in keysets]

    for k in d:

        for i in range(len(keysets)):
            keyset,setname = keysets[i]

            if k in keyset:
                dicts[i][k] = d[k]
                break
        else:
            # k not found in any of the keysets
            raise GnuplotlibError("Option '{}' not not known in any '{}' options sets". \
                                  format(k, [kn[1] for kn in keysets]))
    return dicts


def _get_cmds__setunset(cmds,options):
    for setunset in ('set', 'unset'):
        if setunset in options:
            cmds += [ setunset + ' ' + setting for setting in options[setunset] ]

def _massageProcessOptionsAndGetCmds(processOptions):
    r'''Compute commands to set the given process options, and massage the input, as
    needed

    '''

    for option in processOptions:
        if not option in knownProcessOptions:
            raise GnuplotlibError(option + ' is not a valid process option')

    cmds = []

    _get_cmds__setunset(cmds, processOptions)

    # "hardcopy" and "output" are synonyms. Use "output" from this point on
    if processOptions.get('hardcopy') is not None:
        if processOptions.get('output') is not None:
            raise GnuplotlibError("Pass in at most ONE of 'hardcopy' and 'output'")
        processOptions['output'] = processOptions['hardcopy']
        del processOptions['hardcopy']

    if processOptions.get('output') is not None and \
       processOptions.get('terminal') is None:

        outputfile = processOptions['output']
        m = re.search(r'\.(eps|ps|pdf|png|svg|gp)$', outputfile)
        if not m:
            raise GnuplotlibError("Only .eps, .ps, .pdf, .png, .svg and .gp output filenames are supported if no 'terminal' plot option is given")

        outputfileType = m.group(1)

        terminalOpts = { 'eps': 'postscript noenhanced solid color eps',
                         'ps':  'postscript noenhanced solid color landscape 12',
                         'pdf': 'pdfcairo noenhanced solid color font ",12" size 8in,6in',
                         'png': 'pngcairo noenhanced size 1024,768 transparent crop font ",12"',
                         'svg': 'svg noenhanced solid dynamic size 800,600 font ",14"',
                         'gp':  'gp'}

        processOptions['terminal'] = terminalOpts[outputfileType]

    if processOptions.get('terminal') is not None:
        if is_knownInteractiveTerminal(processOptions['terminal']):
            # known interactive terminal
            if processOptions.get('output', '') != '':
                sys.stderr.write("Warning: requested a known-interactive gnuplot terminal AND an output file. Is this REALLY what you want?\n")

        if processOptions['terminal'] == 'gp':
            processOptions['dump'  ] = 1
            processOptions['notest'] = 1

    if 'cmds' in processOptions: cmds += processOptions['cmds']
    return cmds


def _massageSubplotOptionsAndGetCmds(subplotOptions):
    r'''Compute commands to set the given subplot options, and massage the input, as
    needed

    '''

    for option in subplotOptions:
        if not option in knownSubplotOptions:
            raise GnuplotlibError('"{}" is not a valid subplot option'.format(option))

    # set some defaults
    # plot with lines and points by default
    if not 'with' in subplotOptions:
        subplotOptions['with'] = 'linespoints'

    # make sure I'm not passed invalid combinations of options

    # At most 1 'square...' option may be given
    Nsquare = 0
    for opt in ('square', 'square_xy', 'square-xy', 'squarexy'):
        if subplotOptions.get(opt):
            Nsquare += 1
    if Nsquare > 1:
        raise GnuplotlibError("At most 1 'square...' option could be enabled. Instead I got {}".format(Nsquare))

    # square_xy and square-xy and squarexy are synonyms. Map all these to
    # square_xy
    if subplotOptions.get('square-xy') or subplotOptions.get('squarexy'):
        subplotOptions['square_xy'] = True

    if subplotOptions.get('3d'):
        if 'y2min' in subplotOptions or 'y2max' in subplotOptions:
            raise GnuplotlibError("'3d' does not make sense with 'y2...'")

        if not 'equal_3d' in features and \
           ( subplotOptions.get('square_xy') or subplotOptions.get('square') ):

            sys.stderr.write("Your gnuplot doesn't support square aspect ratios for 3D plots, so I'm ignoring that\n")
            if 'square_xy' in subplotOptions: del subplotOptions['square_xy']
            if 'square'    in subplotOptions: del subplotOptions['square'   ]
    else:
        # In 2D square_xy is the same as square
        if subplotOptions.get('square_xy'):
            subplotOptions['square'] = True


    # grid on by default
    cmds = ['set grid']

    # set the curve labels
    for axis in ('x', 'x2', 'y', 'y2', 'z', 'cb'):
        if axis + 'label' in subplotOptions:
            cmds.append('set {axis}label "{label}"'.format(axis = axis,
                                                           label = subplotOptions[axis + 'label']))

    have_set_range = set()
    for axis in ('x', 'x2', 'y', 'y2', 'z', 'cb'):
        if subplotOptions.get('set') and \
           any ( re.match(rf" *{axis}range[\s=]", s) for s in subplotOptions['set'] ):
            have_set_range.add(axis)
        elif subplotOptions.get('cmds') and \
             any ( re.search(rf"^ *set +{axis}range[\s=]", s, flags=re.M) for s in subplotOptions.get('cmds') ):
            have_set_range.add(axis)

    have_set_link = set()
    for axis in ('x','y'):
        if subplotOptions.get('set') and \
           any ( re.match(rf" *link +{axis}", s) for s in subplotOptions['set'] ):
            have_set_link.add(axis)
        elif subplotOptions.get('cmds') and \
             any ( re.search(rf"^ *set +link +{axis}", s, flags=re.M) for s in subplotOptions.get('cmds') ):
            have_set_link.add(axis)


    # set the plot bounds
    ranges         = dict()
    ranges_default = dict()
    for axis in ('x', 'x2', 'y', 'y2', 'z', 'cb'):
        # I deal with range bounds here. These can be given for the various
        # axes by variables (W-axis here; replace W with x, y, z, etc):
        #
        #   Wmin, Wmax, Winv, Wrange
        #
        # Wrange is mutually exclusive with Wmin and Wmax. Winv turns
        # reverses the direction of the axis. This can also be achieved by
        # passing in Wmin>Wmax or Wrange[0]>Wrange[1]. If this is done then
        # Winv has no effect, i.e. setting Wmin>Wmax AND Winv results in a
        # flipped axis.

        # This axis was set up with the 'set' plot option, so I don't touch
        # it
        if axis in have_set_range:
            ranges_default[axis] = False
            continue

        # images generally have the origin at the top-left instead of the
        # bottom-left, so given nothing else, I flip the y axis
        if 'rgbimage' in subplotOptions and \
           axis == 'y' and \
           not any ( ('y'+what) in subplotOptions \
                     for what in ('min','max','range','inv')):
            ranges[axis] = "set yrange [:] reverse"
            ranges_default[axis] = True
            continue

        opt_min   = subplotOptions.get( axis + 'min'   )
        opt_max   = subplotOptions.get( axis + 'max'   )
        opt_range = subplotOptions.get( axis + 'range' )
        opt_inv   = subplotOptions.get( axis + 'inv'   )

        if (opt_min is not None or opt_max is not None) and opt_range is not None:
            raise GnuplotlibError("{0}min/{0}max and {0}range are mutually exclusive".format(axis))

        # if we have a range, copy it to min/max and just work with those
        if opt_range is not None:
            if not isinstance(opt_range, (list, tuple)):
                opt_range = [ None if x == '*' else float(x) for x in opt_range.split(':')]
            if len(opt_range) != 2:
                raise GnuplotlibError('{}range should have exactly 2 elements'.format(axis))
            opt_min,opt_max = opt_range
            opt_range = None

        # apply the axis inversion. It's only needed if we're given both
        # bounds and they aren't flipped
        if opt_inv:
            if opt_min is not None and opt_max is not None and opt_min < opt_max:
                opt_min,opt_max = opt_max,opt_min

        ranges[axis] = \
                     "set {}range [{}:{}] {}reverse". \
                     format(axis,
                            '*' if opt_min is None else opt_min,
                            '*' if opt_max is None else opt_max,
                            '' if opt_inv else 'no')
        ranges_default[axis] = \
            opt_min is None and \
            opt_max is None and \
            opt_inv is None

    # If we have linked axes, do NOT set the default axis parameters, since the
    # other axis will control it. Otherwise we hit
    # https://sourceforge.net/p/gnuplot/bugs/2783/ and surprising behaviors can
    # be triggered
    for axis in ('x','y'):
        axis2 = f"{axis}2"
        if axis in have_set_link:
            if axis  in ranges and not ranges_default[axis ] and \
               axis2 in ranges and not ranges_default[axis2]:
                raise GnuplotlibError(f"We're linking {axis},{axis2} so the range of at most one of these may be given")
            if axis in ranges and ranges_default[axis ]:
                del ranges[axis]
            if axis2 in ranges and ranges_default[axis2]:
                del ranges[axis2]

    cmds.extend(ranges.values())

    # set the title
    if 'title' in subplotOptions:
        cmds.append('set title "' + subplotOptions['title'] + '"')

    # handle a requested square aspect ratio
    # set a square aspect ratio. Gnuplot does this differently for 2D and 3D plots
    if subplotOptions.get('3d'):
        if subplotOptions.get('square'):
            cmds.append("set view equal xyz")
        elif subplotOptions.get('square_xy'):
            cmds.append("set view equal xy")
    else:
        if subplotOptions.get('square'):
            cmds.append("set size ratio -1")

    _get_cmds__setunset(cmds, subplotOptions)
    if 'cmds' in subplotOptions: cmds += subplotOptions['cmds']
    return cmds


class gnuplotlib:

    def __init__(self, **plotOptions):

        # some defaults
        self._dumpPipe        = None
        self.t0               = time.time()
        self.checkpoint_stuck = False
        self.sync_count       = 1

        plotOptions = _normalize_options_dict(plotOptions)

        self.curveOptions_base,self.subplotOptions_base,self.processOptions = \
            _split_dict(plotOptions,
                        (knownCurveOptions,   'curve'),
                        (knownSubplotOptions, 'subplot'),
                        (knownProcessOptions, 'process'))

        self.processOptionsCmds = _massageProcessOptionsAndGetCmds(self.processOptions)

        if _data_dump_only(self.processOptions):
            self.gnuplotProcess = None
            self.terminal_default = 'x11'
        else:
            # if we already have a gnuplot process, reset it. Otherwise make a new
            # one
            if hasattr(self, 'gnuplotProcess') and self.gnuplotProcess:
                self._printGnuplotPipe( "unset multiplot\nreset\nset output\n" )
                self._checkpoint()
            else:
                self.gnuplotProcess = None
                self._startgnuplot()
                self._logEvent("_startgnuplot() finished")


    def _startgnuplot(self):

        self._logEvent("_startgnuplot()")

        cmd = [gnuplot_executable]

        # I dup the handle to standard output. The main use for this is the dumb
        # terminal. I want it to write to the console. Normally "set dumb"
        # writes to gnuplot's stdout, which normally IS the console. But when
        # talking to gnuplotlib, gnuplot's stdout is my control pipe. So when
        # using the dumb terminal I tell gnuplot to write to python's stdout
        try:
            self.fdDupSTDOUT = os.dup(sys.stdout.fileno())
        except:
            self.fdDupSTDOUT = None


        # I need this to make fdDupSTDOUT available to the child gnuplot. This
        # would happen by default, but in python3 I need to do this extra thing
        # for some reason. And it's a new thing that didn't exist in python2, so
        # I need to explicitly allow this to fail in python2
        if self.fdDupSTDOUT is not None:
            try:
                os.set_inheritable(self.fdDupSTDOUT, True)
            except AttributeError:
                pass

        self.gnuplotProcess = \
            subprocess.Popen(cmd, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE,

                             # required to "autoflush" writes
                             bufsize=0,

                             # I need this to make fdDupSTDOUT available to the
                             # child gnuplot. close_fds=False was default in
                             # python2, but was changed in python3
                             close_fds = False,

                             # This was helpful in python3 to implicitly
                             # encode() strings, but it broke the
                             # select()/read() mechanism: select() would
                             # look at the OS file descriptor, but read()
                             # would look at some buffer, so you'd get into
                             # a situation where
                             #
                             # - data was read from the OS into a buffer, and is available to be read()
                             # - select() blocks waiting for MORE data
                             #
                             # I guess I leave this off and manully
                             # encode/decode everything

                             #encoding = 'utf-8',
            )

        # What is the default terminal?
        self._printGnuplotPipe( "show terminal\n" )
        errorMessage, warnings = self._checkpoint('printwarnings')
        m = re.match(r"terminal type is +(.+?) +", errorMessage, re.I)
        if m:
            self.terminal_default = m.group(1)
        else:
            self.terminal_default = None

        # save the default terminal
        self._safelyWriteToPipe("set terminal push", 'terminal')


    def __del__(self):
        if hasattr(self, 'gnuplotProcess') and self.gnuplotProcess:

            try:
                self.gnuplotProcess.terminate()
            except:
                pass

            try:
                # Sometimes I see the terminate() call do nothing, and
                # explicitly asking gnuplot to exit is needed
                self._printGnuplotPipe('exit\n')
                self.gnuplotProcess.wait()
            except:
                pass
            self.gnuplotProcess = None

            if self.fdDupSTDOUT is not None:
                # When running inside IPython I sometimes see "os" set to None
                # at exit for some reason, so I let that fail silently
                try:
                    os.close(self.fdDupSTDOUT)
                except:
                    pass
                self.fdDupSTDOUT = None






    def _safelyWriteToPipe(self, input, flags=''):

        def barfOnDisallowedCommands(line):
            # I use STDERR as the backchannel, so I don't allow any "set print"
            # commands, since those can disable that
            if re.match(r'''(?: .*;)?       # optionally wait for a semicolon
                            \s*
                            set\s+print\b''',
                        line, re.X):
                raise GnuplotlibError("Please don't 'set print' since I use gnuplot's STDERR for error detection")

            if re.match(r'''(?: .*;)?       # optionally wait for a semicolon
                            \s*
                             print\b''',
                        line, re.X):
                 raise GnuplotlibError("Please don't ask gnuplot to 'print' anything since this can confuse my error detection")


            if re.match(r'''(?: .*;)?       # optionally wait for a semicolon
                            \s*
                            set\s+terminal\b''',
                        line, re.X) and flags != 'terminal':
                raise GnuplotlibError("Please do not 'set terminal' manually. Use the 'terminal' plot option instead")

            if re.match(r'''(?: .*;)?       # optionally wait for a semicolon
                            \s*
                            set\s+output\b''',
                        line, re.X) and not re.match('output', flags):
                raise GnuplotlibError("Please do not 'set output' manually. Use the 'output' plot option instead")




        if not isinstance(input, (list,tuple)):
            input = (input,)

        for cmd in input:
            barfOnDisallowedCommands(cmd)

            self._printGnuplotPipe( cmd + '\n' )

            errorMessage, warnings = self._checkpoint('printwarnings')
            if errorMessage:
                barfmsg = "Gnuplot error: '\n{}\n' while sending cmd '{}'\n".format(errorMessage, cmd)
                if warnings:
                    barfmsg += "Warnings:\n" + str(warnings)
                raise GnuplotlibError(barfmsg)




    def _gnuplotStdin(self):
        if self.gnuplotProcess:
            return self.gnuplotProcess.stdin

        # In python2 I just return stdout. But the python3 people have no idea
        # what they're doing. The normal pipe return by Popen is a FileIO, so I
        # can ONLY write bytes to it; if I write a string to it, it barfs. So I
        # normally need to do the encode/decode dance. But sys.stdout is a
        # TextIOWrapper, which means that I must write STRINGS and it'll barf if
        # I write bytes. I can apparently reach inside and grab the
        # corresponding FileIO object to make it work like the pipe, so I do
        # that
        # debug dump. I return stdout
        if self._dumpPipe:
            try:
                return self._dumpPipe.buffer.raw
            except:
                return self._dumpPipe

        try:
            return sys.stdout.buffer.raw
        except:
            return sys.stdout

    def _printGnuplotPipe(self, string):

        self._gnuplotStdin().write( string.encode() )
        self._logEvent("Sent to child process {} bytes ==========\n{}=========================".
                       format(len(string), string))


    def _receive_until_checkpoint_or_timeout(self, checkpoint, waitforever):

        fromerr = ''
        while not fromerr.endswith(checkpoint):
            # if no data received in 5 seconds, the gnuplot process is stuck. This
            # usually happens if the gnuplot process is not in a command mode, but in
            # a data-receiving mode. I'm careful to avoid this situation, but bugs in
            # this module and/or in gnuplot itself can make this happen

            self._logEvent("Trying to read byte from gnuplot")

            rlist,wlist,xlist = select.select([self.gnuplotProcess.stderr],[], [],
                                              None if waitforever else 15)

            if not rlist:
                self._logEvent("Gnuplot read timed out")
                self.checkpoint_stuck = True

                raise GnuplotlibError(
                    r'''Gnuplot process no longer responding. This shouldn't happen... Is your X connection working?''')

            # read a byte. I'd like to read "as many bytes as are
            # available", but I don't know how to this in a very portable
            # way (I just know there will be windows users complaining if I
            # simply do a non-blocking read). Very little data will be
            # coming in anyway, so doing this a byte at a time is an
            # irrelevant inefficiency
            byte = self.gnuplotProcess.stderr.read(1)
            if len(byte) == 0:
                # Did the child process die?
                returncode = self.gnuplotProcess.poll()
                if returncode is not None:
                    # Yep. It died.
                    raise Exception(f"gnuplot child died. returncode = {returncode}")
                self._logEvent("read() returned no data")
                continue

            byte = byte.decode()
            fromerr += byte
            self._logEvent("Read byte '{}' ({}) from gnuplot child process".format(byte,
                                                                                   hex(ord(byte))))

        self._logEvent(f"Read string from gnuplot: '{fromerr}'")
        return fromerr

    # syncronizes the child and parent processes. After _checkpoint() returns, I
    # know that I've read all the data from the child. Extra data that represents
    # errors is returned. Warnings are explicitly stripped out
    def _checkpoint(self, flags=''):

        if _data_dump_only(self.processOptions):
            # There is no child process. There's nothing to checkpoint
            return None, None

        # I have no way of knowing if the child process has sent its error data
        # yet. It may be that an error has already occurred, but the message hasn't
        # yet arrived. I thus print out a checkpoint message and keep reading the
        # child's STDERR pipe until I get that message back. Any errors would have
        # been printed before this
        waitforever                = re.search(r'waitforever',                flags)
        final                      = re.search(r'final',                      flags)
        printwarnings              = re.search(r'printwarnings',              flags)
        ignore_known_test_failures = re.search(r'ignore_known_test_failures', flags)

        # I always checkpoint() before exiting. Even if notest==1. Without this
        # 'set terminal dumb' plots don't end up rendering anything: we kill the
        # process before it has time to make the plot
        if self.processOptions.get('notest') and not waitforever and not final and not printwarnings:
            return None, None

        checkpoint = f"gpsync{self.sync_count}xxx"
        self.sync_count += 1

        self._printGnuplotPipe( 'print "{}"\n'.format(checkpoint) )

        # if no error pipe exists, we can't check for errors, so we're done.
        # Usually happens if(we're dumping)
        if not self.gnuplotProcess or not self.gnuplotProcess.stderr:
            return '',[]

        fromerr = self._receive_until_checkpoint_or_timeout(checkpoint, waitforever)

        m = re.search(rf'\s*(.*?)\s*{checkpoint}$', fromerr, re.M + re.S)
        if m is None:
            raise Exception(f"checkpoint '{checkpoint}' not found in received string '{fromerr}'")
        fromerr = m.group(1)

        warningre = re.compile(r'^\s*(.*?(?:warning|undefined).*?)\s*$', re.M + re.I)
        warnings  = warningre.findall(fromerr)

        if printwarnings:
            for w in warnings:
                sys.stderr.write("Gnuplot warns: {}\n".format(w))

        # if asked, ignore and get rid of all the errors known to happen during
        # plot-command testing. These include
        #
        # 1. "invalid command" errors caused by the test data being sent to gnuplot
        #    as a command. The plot command itself will never be invalid, so this
        #    doesn't actually mask out any errors
        #
        # 2. "invalid range" and "Terminal canvas area too small to hold plot"
        #    errors caused by the data or labels being out of bounds. The point
        #    of the plot-command testing is to make sure the command is valid,
        #    so any out-of-boundedness of the test data is irrelevant
        #
        # 3. image grid complaints
        if ignore_known_test_failures:

            r = re.compile(r'''^gnuplot>\s*(?:{}|e\b).*$                  # report of the actual invalid command
                               \n^\s+\^\s*$                               # ^ mark pointing to where the error happened
                               \n^.*invalid\s+command.*$'''               # actual 'invalid command' complaint
                           .format(testdataunit_ascii),
                           re.X + re.M)
            fromerr = r.sub('', fromerr)

            # ignore a simple 'invalid range' error observed when, say only the
            # xmin bound is set and all the data is below it
            r = re.compile(r'''^gnuplot>\s*plot.*$                        # the test plot command
                               \n^\s+\^\s*$                               # ^ mark pointing to where the error happened
                               \n^.*range\s*is\s*invalid.*$''',           # actual 'invalid range' complaint
                           re.X + re.M)
            fromerr = r.sub('', fromerr)

            # fancier plots show a different 'invalid range' error. Observed when xmin
            # > xmax (inverted x axis) and when there's out-of-bounds data
            r = re.compile(r'''^gnuplot>\s*plot.*$                        # the test plot command
                               \n^\s+\^\s*$                               # ^ mark pointing to where the error happened
                               \n^.*all\s*points.*undefined.*$''',        # actual 'all points undefined' complaint
                           re.X + re.M)
            fromerr = r.sub('', fromerr)

            # Newer gnuplot sometimes says 'x_min should not equal x_max!' when
            # complaining about ranges. Ignore those here
            r = re.compile(r'^.*_min should not equal .*_max!.*$',        # actual 'min != max' complaint
                           re.M)
            fromerr = r.sub('', fromerr)

            # Labels or titles that are too long can complain about stuff being
            # too small to hold plot
            r = re.compile(r'''^.*too small to hold plot.*$''',
                           re.M)
            fromerr = r.sub('', fromerr)
            r = re.compile(r'''^.*Check plot boundary.*$''',
                           re.M)
            fromerr = r.sub('', fromerr)

            # 'with image' plots can complain about an uninteresting domain. Exact error:
            # GNUPLOT (plot_image):  Image grid must be at least 4 points (2 x 2).
            r = re.compile(r'^.*Image grid must be at least.*$',
                           re.X + re.M)
            fromerr = r.sub('', fromerr)

        # I've now read all the data up-to the checkpoint. Strip out all the warnings
        fromerr = warningre.sub('',fromerr)

        fromerr = fromerr.strip()

        return fromerr, warnings


    def _logEvent(self, event):

        # only log when asked
        if not self.processOptions.get('log'):
            return

        t = time.time() - self.t0

        print( "==== PID {} at t={:.4f}: {}".format(self.gnuplotProcess.pid if self.gnuplotProcess else '(none)',
                                                   t, event),
               file=sys.stderr )


    def _plotCurveInASCII(self, curve):
        '''Should this curve be plotted in ascii?

        Mostly this just looks at the plot-level setting. But 'with labels' is
        an exception: such curves are ascii-only

        '''
        return \
            self.processOptions.get('ascii') or \
            ( curve.get('with') and re.match(" *labels\\b", curve['with'], re.I) )


    def _sendCurve(self, curve):

        pipe = self._gnuplotStdin()

        if self._plotCurveInASCII(curve):

            if curve.get('matrix'):
                np.savetxt(pipe,
                           nps.glue(*curve['_data'], axis=-2).astype(np.float64,copy=False),
                           '%s')
                self._printGnuplotPipe( "\ne\n" )
            else:
                # Previously I was doing this:
                #     np.savetxt( pipe,
                #                 nps.glue(*curve['_data'], axis=-2).transpose().astype(np.float64,copy=False),
                #                 '%s' )
                #
                # That works in most cases, but sometimes we have disparate data
                # types in each column, so glueing the components together into
                # a single array is impossible (most notably when plotting 'with
                # labels' at some particular locations). Thus I loop myself
                # here. This is slow, but if we're plotting in ascii, we
                # probably aren't looking for maximal performance here. And
                # 'with labels' isn't super common
                Ncurves = len(curve['_data'])
                def write_element(e):
                    r'''Writes value to pipe. Encloses strings in "". This is required to support
labels with spaces in them

                    '''

                    # Numpy 2 broke this (no more np.string_), and this extra
                    # code is needed to work with both numpy 2 and numpy 1
                    try:    is_string = type(e) is np.string_
                    except: is_string = False
                    try:    is_bytes  = type(e) is np.bytes_
                    except: is_bytes  = False
                    if is_string or is_bytes or type(e) is np.str_:
                        pipe.write(b'"')
                        pipe.write(str(e).encode())
                        pipe.write(b'"')
                    else:
                        pipe.write(str(e).encode())

                for i in range(curve['_data'][0].shape[-1]):
                    for j in range(Ncurves-1):
                        write_element(curve['_data'][j][i])
                        pipe.write(b' ')
                    write_element(curve['_data'][Ncurves-1][i])
                    pipe.write(b'\n')


                self._printGnuplotPipe( "e\n" )

        else:
            nps.mv(nps.cat(*curve['_data']), 0, -1).astype(np.float64,copy=False).tofile(pipe)

        self._logEvent("Sent the data to child process (not logged)")


    def _getPlotCmd(self, curves, subplotOptions):

        def optioncmd(curve):
            cmd = ''

            if 'legend' in curve: cmd += 'title "{}" '.format(curve['legend'])
            else:                 cmd += 'notitle '

            # use the given per-curve 'with' style if there is one. Otherwise fall
            # back on the global
            _with = curve['with'] if 'with' in curve else subplotOptions['with']

            if _with: cmd += "with {} ".format(_with)

            axes = curve.get('axes')
            if axes is not None:
                cmd += f"axes {axes} "

            return cmd


        def binaryFormatcmd(curve):
            # I make 2 formats: one real, and another to test the plot cmd, in case it
            # fails
            tuplesize = curve['tuplesize']

            fmt = ''
            if curve.get('matrix'):
                fmt += 'binary array=({},{})'.format(curve['_data'][0].shape[-1],
                                                     curve['_data'][0].shape[-2])
                fmt += ' format="' + ('%double' * (tuplesize-2)) + '"'
            else:
                fmt += 'binary record=' + str(curve['_data'][0].shape[-1])
                fmt += ' format="' + ('%double' * tuplesize) + '"'


            # when doing fancy things, gnuplot can get confused if I don't
            # explicitly tell it the tuplesize. It has its own implicit-tuples
            # logic that I don't want kicking in. For instance, 3d matrix plots
            # with image do not work in binary without 'using':
            using_Ncolumns = tuplesize
            if curve.get('matrix'):
                using_Ncolumns -= 2

            using = curve.get('using')
            if using is None:
                using = ':'.join(str(x+1) for x in range(using_Ncolumns))
            fmt += ' using ' + using

            # to test the plot I plot a single record
            fmtTest = fmt
            fmtTest = re.sub(r'record=\d+',        'record=1',     fmtTest)
            fmtTest = re.sub(r'array=\(\d+,\d+\)', 'array=(2, 2)', fmtTest)

            return fmt,fmtTest


        def getTestDataLen(curve):
            # assuming sizeof(double)==8
            if curve.get('matrix'):
                return 8 * 2*2*(curve['tuplesize']-2)
            return 8 * curve['tuplesize']






        basecmd = ''

        if any( curve.get('axes','xxx')[-2:] == 'y2' for curve in curves ):
            basecmd += "set ytics nomirror\n"
            basecmd += "set y2tics\n"
        if any( curve.get('axes','xxx')[:2] == 'x2' for curve in curves ):
            basecmd += "set xtics nomirror\n"
            basecmd += "set x2tics\n"

        binwidth = None
        for curve in curves:
            if curve.get('histogram'):
                binwidth = 1 # default. Used if nothing else is specified
                if curve.get('binwidth'):
                    binwidth = curve['binwidth']
                    break
        if binwidth is not None:
            basecmd += \
                "set boxwidth {w}\nhistbin(x) = {w} * floor(0.5 + x/{w})\n".format(w=binwidth)

        if subplotOptions.get('3d'): basecmd += 'splot '
        else:                        basecmd += 'plot '

        plotCurveCmdsNonDataBefore = []
        plotCurveCmdsNonDataAfter  = []
        plotCurveCmds              = []
        plotCurveCmdsMinimal       = [] # same as above, but with a single data point per plot only

        # send all pre-data equations
        def set_equation(equation, cmds):
            if equation in subplotOptions:
                cmds += subplotOptions[equation]

        set_equation('equation',       plotCurveCmdsNonDataBefore)
        set_equation('equation_below', plotCurveCmdsNonDataBefore)

        if 'rgbimage' in subplotOptions:
            if not os.access     (subplotOptions['rgbimage'], os.R_OK) or \
               not os.path.isfile(subplotOptions['rgbimage']):
                raise GnuplotlibError("Requested image '{}' is not a readable file".format(subplotOptions['rgbimage']))

            plotCurveCmdsNonDataBefore.append('"{0}" binary filetype=auto flipy with rgbimage title "{0}"'.format(subplotOptions['rgbimage']))

        testData             = '' # data to make a minimal plot

        for curve in curves:
            optioncmds = optioncmd(curve)

            plot_pipe_name = '-'

            if not self._plotCurveInASCII(curve):
                # I get 2 formats: one real, and another to test the plot cmd, in case it
                # fails. The test command is the same, but with a minimal point count. I
                # also get the number of bytes in a single data point here
                formatFull,formatMinimal = binaryFormatcmd(curve)
                Ntestbytes_here          = getTestDataLen(curve)

                plotCurveCmds       .append( f"'{plot_pipe_name}' {formatFull}    {optioncmds}" )
                plotCurveCmdsMinimal.append( f"'{plot_pipe_name}' {formatMinimal} {optioncmds}" )

                # If there was an error, these whitespace commands will simply do
                # nothing. If there was no error, these are data that will be plotted in
                # some manner. I'm not actually looking at this plot so I don't care
                # what it is. Note that I'm not making assumptions about how long a
                # newline is (perl docs say it could be 0 bytes). I'm printing as many
                # spaces as the number of bytes that I need, so I'm potentially doubling
                # or even tripling the amount of needed data. This is OK, since gnuplot
                # will simply ignore the tail.
                testData += " \n" * Ntestbytes_here

            else:
                # for some things gnuplot has its own implicit-tuples logic; I want to
                # suppress this, so I explicitly tell gnuplot to use all the columns we
                # have
                using = curve.get('using')
                if using is None:
                    using = ':'.join(str(x+1) for x in range(curve['tuplesize']))
                using = ' using ' + using

                # I'm using ascii to talk to gnuplot, so the minimal and "normal" plot
                # commands are the same (point count is not in the plot command)
                matrix = ''
                if curve.get('matrix'): matrix =  'matrix'
                plotCurveCmds.append( f"'{plot_pipe_name}' {matrix} {using} {optioncmds}" )
                plotCurveCmdsMinimal.append( plotCurveCmds[-1] ) # same testing command

                testData_curve = ''
                if curve.get('matrix'):
                    testmatrix = "{0} {0}\n" + "{0} {0}\n" + "\ne\n"
                    testData_curve = testmatrix.format(testdataunit_ascii) * (curve['tuplesize'] - 2)
                else:
                    testData_curve = ' '.join( ['{}'.format(testdataunit_ascii)] * curve['tuplesize']) + \
                    "\n" + "e\n"

                testData += testData_curve

        set_equation('equation_above', plotCurveCmdsNonDataAfter)

        # the command to make the plot and to test the plot
        cmd        = basecmd + ','.join(plotCurveCmdsNonDataBefore + plotCurveCmds        + plotCurveCmdsNonDataAfter)
        cmdMinimal = basecmd + ','.join(plotCurveCmdsNonDataBefore + plotCurveCmdsMinimal + plotCurveCmdsNonDataAfter)

        return (cmd, cmdMinimal, testData)


    def _massageAndValidateArgs(self, curves, curveOptions_base, subplotOptions):

        # Collect all the passed data into a tuple of lists, one curve per list.
        # The input is either a bunch of numerical arrays, in which we have one
        # curve (ignoring broadcasting) or a bunch of tuples containing
        # numerical arrays, where each tuple represents a curve.
        #
        # These numerical arrays can be numpy arrays or scalars. If we see
        # scalars, we convert them to a numpy array so that everything
        # downstream can assume we have arrays

        # convert any scalars in the data list
        if len(curves):
            curves = [ np.array((c,)) if isinstance(c, numbers.Real) else c for c in curves ]
            if all( isinstance(curve,np.ndarray) for curve in curves):
                curves = (list(curves),)
            elif all(type(curve) is tuple for curve in curves):
                # we have a list of tuples. I convert this into a list of lists, and
                # each scalar in each list becomes a numpy array
                curves = [ [ np.array((c,)) if isinstance(c, numbers.Real) else c
                             for c in curve ]
                           for curve in curves ]
            else:
                raise GnuplotlibError("all data arguments should be of type ndarray (one curve) or tuples")

        # add an options dict if there isn't one, apply the base curve
        # options to each curve
        #
        # I convert the curve definition from a list of
        #    (data, data, data, ..., {options})
        # to a dict
        #    {options, '_data': (data, data, data, ....)}
        #
        # The former is nicer as a user interface, but the latter is easier for
        # the programmer (me!) to deal with.
        #
        # Also handle tuplesize<0 by splitting the innermost dimension
        #
        # Any curves that have no data in any of their arrays are reported as None
        def reformat(curve):

            if type(curve[-1]) is dict:
                d     = _normalize_options_dict(curve[-1])
                curve = curve[:-1]
            else:
                d = {}
            for k in curveOptions_base:
                if k not in d:
                    d[k] = curveOptions_base[k]

            if all( x.size <= 0 for x in curve ):
                # ALL the data arrays are empty. Throw away the entire curve
                return None

            for x in curve:
                if x.size <= 0:
                    # SOME of the data ararys are empty. I complain
                    raise GnuplotlibError("Received data where SOME (but not ALL) of the arrays had length-0. Giving up")

            if 'tuplesize' in d and d['tuplesize'] < 0:
                if len(curve) != 1:
                    raise GnuplotlibError("tuplesize<0 means that only a single numpy array of data should be given: all data is in this array")
                d['tuplesize'] = -d['tuplesize']
                d['_data']     = list(nps.mv(nps.atleast_dims(curve[0],-2), -1, 0))
            else:
                d['_data'] = list(curve)
            return d
        curves = [ reformat(curve) for curve in curves ]

        # throw out any "None" curves
        curves = [ curve for curve in curves if curve is not None ]

        binwidth = None
        for curve in curves:

            # make sure all the curve options are valid
            for opt in curve:
                if opt == '_data':
                    continue
                if not opt in knownCurveOptions:
                    raise GnuplotlibError("'{}' not a known curve option".format(opt))

            if curve.get('y2') is not None and \
               curve.get('axes') is not None:
                raise GnuplotlibError('"y2" and "axes" are mutually exclusive')

            # tuplesize is either given explicitly, or taken from the '3d' plot
            # option. 2d plots default to tuplesize=2 and 3d plots to
            # tuplesize=3. This means that the tuplesize can be omitted for
            # basic plots but MUST be given for anything fancy
            Ndata = len(curve['_data'])

            if curve.get('histogram'):

                if subplotOptions.get('3d'):
                    raise GnuplotlibError("histograms don't make sense in 3d")
                if 'tuplesize' in curve and curve['tuplesize'] != 1:
                    raise GnuplotlibError("histograms only make sense with tuplesize=1. I'll assume this if you don't specify a tuplesize")
                curve['tuplesize'] = 1

                if 'using' in curve:
                    raise GnuplotlibError("'using' cannot be given with 'histogram'. I'll make up my own 'using' in this case")

                if type(curve['histogram']) is not str:
                    curve['histogram'] = 'freq'
                histogram_type = curve['histogram']

                curve['using'] = '(histbin($1)):(1.0) smooth ' + histogram_type

                if 'with' not in curve:
                    if re.match(r'freq|fnorm', histogram_type) and 'with' not in curve:
                        curve['with'] = 'boxes fill solid border lt -1'
                    else:
                        curve['with'] = 'lines'

                if 'binwidth' in curve:
                    if binwidth is not None and binwidth != curve['binwidth']:
                        raise GnuplotlibError("Histogram binwidths must all match. This is a gnuplot limitation mostly. Got: {} and {}". \
                                              format(binwidth,curve['binwidth']))
                    binwidth = curve['binwidth']

            else:
                if 'binwidth' in curve:
                    raise GnuplotlibError("'binwidth' only makes sense with 'histogram'")

            if not 'tuplesize' in curve:
                curve['tuplesize'] = 3 if subplotOptions.get('3d') else 2

            if Ndata > curve['tuplesize']:
                raise GnuplotlibError("Got {} tuples, but the tuplesize is {}. Giving up". \
                    format(Ndata, curve['tuplesize']))

            if Ndata < curve['tuplesize']:
                # I got fewer data elements than I expected. Set up the implicit
                # domain if that makes sense

                if Ndata+1 == curve['tuplesize']:

                    # A plot is one data element short. Fill in a sequential
                    # domain 0,1,2,...
                    curve['_data'].insert(0, np.arange(curve['_data'][0].shape[-1]))

                elif Ndata+2 == curve['tuplesize']:
                    # a plot is 2 elements short. Use a grid as a domain. I simply set the
                    # 'matrix' flag and have gnuplot deal with it later
                    if self.processOptions.get('ascii') and curve['tuplesize'] > 3:
                        raise GnuplotlibError( \
                            "Can't make more than 3-dimensional plots on a implicit 2D domain\n" + \
                            "when sending ASCII data. I don't think gnuplot supports this. Use binary data\n" + \
                            "or explicitly specify the domain\n" )

                    curve['matrix'] = True

                else:
                    raise GnuplotlibError( \
                        "plot() needed {} data arrays, but only got {}".format(curve['tuplesize'],Ndata))



            # The curve is now set up. I look at the input matrices to make sure
            # the dimensions line up

            # Make sure the domain and ranges describe the same number of data points
            dim01 = [None, None]
            for datum in curve['_data']:

                if curve.get('matrix') and datum.ndim < 2:
                    raise GnuplotlibError("Tried to plot against an implicit 2D domain, but was given less than 2D data")

                def checkdim(idim):
                    dim_here = datum.shape[-1 - idim]
                    if dim01[idim]:
                        if dim_here != dim01[idim]:
                            raise GnuplotlibError("plot() was given mismatched tuples to plot. {} vs {}". \
                                                  format(dim01[idim], dim_here))
                    else:
                        dim01[idim] = dim_here

                checkdim(0)

                if curve.get('matrix'):
                    checkdim(1)


        # broadcast through the arguments AND all the options that are arrays
        curves_flattened = []
        for curve in curves:
            ndims_input = 2 if curve.get('matrix') else 1
            prototype_onearg = tuple('n{}'.format(i) for i in range(ndims_input))
            prototype = (prototype_onearg,) * len(curve['_data'])

            # grab all option keys that have numpy arrays as values. I broadcast
            # these as well
            np_options_keys = [ k for k in curve.keys()
                                if isinstance(curve[k], np.ndarray) ]
            N_options_keys = len(np_options_keys)
            prototype_np_options = ((),) * N_options_keys

            for args in nps.broadcast_generate( prototype + prototype_np_options,
                                                curve['_data'] + list(curve[k] for k in np_options_keys)):

                # make a copy of the options
                curve_slice = dict(curve)

                # replace the data with the slice
                curve_slice['_data'] = args[:-N_options_keys] if N_options_keys else args

                for ikey in range(N_options_keys):
                    curve_slice[np_options_keys[ikey]] = args[-N_options_keys + ikey]

                curves_flattened.append( curve_slice )

        curves = curves_flattened

        # if anything is to be plotted on the y2 axis, set it up
        for curve in curves:
            axes = curve.get('axes')
            if axes is not None:
                if not axes in knownAxes:
                    raise GnuplotlibError(f'"axes" must be one of {knownAxes}, but got {axes=}')
            if curve.get('y2'):
                del curve['y2']
                curve['axes'] = 'x1y2'

            if subplotOptions.get('3d') and axes is not None:
                raise GnuplotlibError("3d plots cannot have 'axes' specified")

        return curves


    def wait(self):
        r'''Waits until the open interactive plot window is closed

        Note: it's not at all trivial to detect if a current plot window exists.
        If not, this function will end up waiting forever, and the user will
        need to Ctrl-C

        '''

        self._printGnuplotPipe('pause mouse close\n')
        self._logEvent("Waiting for data from gnuplot")
        self._checkpoint('waitforever')


    def plot(self, *curves, **jointOptions):
        r'''Main gnuplotlib API entry point'''

        is_multiplot = self.processOptions.get('multiplot')


        def test_plot(testcmd, testdata):
            '''Test the plot command by making a dummy plot with the test command.'''

            # I send a test plot command. Gnuplot implicitly uses && if multiple
            # commands are present on the same line. Thus if I see the post-plot print
            # in the output, I know the plot command succeeded
            self._printGnuplotPipe( testcmd + "\n" )
            self._printGnuplotPipe( testdata )

            checkpointMessage,warnings = self._checkpoint('ignore_known_test_failures')
            if checkpointMessage:
                # There's a checkpoint message. I explicitly ignored and threw away all
                # errors that are allowed to occur during a test. Anything leftover
                # implies a plot failure.
                barfmsg = "Gnuplot error: '\n{}\n' while sending plotcmd '{}'\n".format(checkpointMessage, testcmd)
                if warnings:
                    barfmsg += "Warnings:\n" + "\n".join(warnings)
                raise GnuplotlibError(barfmsg)

        def plot_process_header():

            # I'm now ready to send the plot command. If the plot command fails,
            # I'll get an error message; if it succeeds, gnuplot will sit there
            # waiting for data. I don't want to have a timeout waiting for the error
            # message, so I try to run the plot command to see if it works. I make a
            # dummy plot into the 'dumb' terminal, and then _checkpoint() for
            # errors. To make this quick, the test plot command contains the minimum
            # number of data points

            if self.processOptions.get('terminal') == 'gp':
                self._dumpPipe = open(self.processOptions['output'],'w')
                os.chmod(self.processOptions['output'], 0o755)

                import distutils.spawn
                gnuplotpath = distutils.spawn.find_executable('gnuplot')

                self._safelyWriteToPipe('#!' + gnuplotpath)
                self._safelyWriteToPipe(self.processOptionsCmds)

            else:

                self._safelyWriteToPipe(self.processOptionsCmds)

                if 'terminal' in self.processOptions:
                    self._safelyWriteToPipe("set terminal " + self.processOptions['terminal'],
                                            'terminal')

                # I always set the output. If no plot option explicitly is given then I
                # either "set output" for a known interactive terminal, or redirect to
                # python's STDOUT otherwise
                if 'output' in self.processOptions:
                    if self.processOptions['output'] != '':
                        # user requested an explicit output
                        self._safelyWriteToPipe('set output "' + self.processOptions['output'] + '"',
                                                'output')
                    else:
                        # user requested null output
                        self._safelyWriteToPipe('set output',
                                                'output')
                else:
                    # user requested nothing. Is this a known interactive terminal or an
                    # unspecified terminal (unspecified terminal assumed to be
                    # interactive)? Then set the null output
                    if 'terminal' not in self.processOptions or \
                       is_knownInteractiveTerminal(self.processOptions['terminal']):
                        self._safelyWriteToPipe('set output',
                                                'output')
                    else:
                        if not _data_dump_only(self.processOptions):
                            if self.fdDupSTDOUT is None:
                                raise GnuplotlibError("I need to plot to STDOUT, but STDOUT wasn't available")
                            self.processOptions['output'] = '/dev/fd/' + str(self.fdDupSTDOUT)
                        else:
                            self.processOptions['output'] = '/dev/fd/DUMPONLY'
                        self._safelyWriteToPipe('set output "' + self.processOptions['output'] + '"',
                                                'output')

        def plot_subplot(plotcmd, curves):

            # all done. make the plot
            self._printGnuplotPipe( plotcmd + "\n")

            for curve in curves:
                self._sendCurve(curve)

            # There's some bug in gnuplot right now, where it sometimes reads too
            # many bytes after receiving inline data, which swallows the initial
            # bytes in a subsequent command, breaking things. I workaround by
            # stuffing newlines into the pipe. These don't do anything, and gnuplot
            # is allowed to steal some number of them without breaking anything. I
            # running gnuplot=5.2.6+dfsg1-1 on Debian. I can tickle the bug by doing
            # this:
            #   gp.plot(np.arange(5))
            # Error:
            # ...
            #   File "/home/dima/projects/gnuplotlib/gnuplotlib.py", line 1221, in _safelyWriteToPipe
            #     raise GnuplotlibError(barfmsg)
            # gnuplotlib.GnuplotlibError: Gnuplot error: '
            # "
            #          ^
            #          line 0: invalid command
            # ' while sending cmd 'set output'
            self._printGnuplotPipe('\n\n\n\n')

        def plot_process_footer():
            if self.processOptions.get('terminal') == 'gp':
                self._printGnuplotPipe('pause mouse close\n')
                self._dumpPipe.close()
                self._dumpPipe = None

            else:
                # read and report any warnings that happened during the plot
                self._checkpoint('printwarnings')

                # These are uncertain. These are True if I'm SURE that we are or
                # are not interactive. If I have some terminal not in
                # knownInteractiveTerminals, then I don't know, and these could
                # both be False. Note that a very common case is hardcopy=None
                # and terminal=None, which would mean the default which USUALLY
                # is interactive
                terminal = self.processOptions.get('terminal',
                                                   self.terminal_default)
                is_non_interactive = self.processOptions.get('output')
                is_interactive     = \
                    not self.processOptions.get('output') and \
                    is_knownInteractiveTerminal(terminal)

                # This is certain
                is_multiplot = self.processOptions.get('multiplot')

                if is_multiplot:
                    self._safelyWriteToPipe('unset multiplot')

                # Some noninteractive terminals need to be told we're done
                # plotting (set output) to actually write the data to disk in
                # full. For instance "svg" needs this to write out some closing
                # stanza

                # If we're using an unknown interactive terminal, this will 'set
                # output', and make multiplots break. Unknown interactive
                # terminals aren't likely to happen
                if not is_interactive:
                    self._safelyWriteToPipe('set output', 'output')

                # If I KNOW that I'm using a non-interactive terminal, I don't
                # bother to wait even if asked. If it's some unknown-to-me
                # terminal (is_non_interactive is False, incorrectly), then we
                # wait anyway. Changing "not is_non_interactive" to
                # "is_interactive" will make us not wait if we don't know
                if self.processOptions.get('wait') and \
                   not is_non_interactive:
                    self.wait()

            # I force gnuplot to tell me it's done before exiting. Without this 'set
            # terminal dumb' plots don't end up rendering anything: we kill the
            # process before it has time to do anything
            self._checkpoint('final printwarnings')

        def ingest_joint_options(jointOptions, subplotOptions_base, curveOptions_base):
            '''Takes in a set of joint options, and overrides a given base

            I have a some default plot,curve options that came from above
            (global plot(), __init__(), etc). I combine those defaults with the
            joint options I have HERE, and return the updated sets

            '''

            # process options are only allowed in self.__init__(), so I'm not
            # handling those here
            curveOptions_here, subplotOptions_here = \
                _split_dict( jointOptions,
                             (knownCurveOptions,   'curve'),
                             (knownSubplotOptions, 'subplot'),)

            subplotOptions = dict(subplotOptions_base)
            subplotOptions.update(subplotOptions_here)

            curveOptions = dict(curveOptions_base)
            curveOptions.update(curveOptions_here)

            return subplotOptions,curveOptions

        def make_subplot_data(subplotOptions_base,
                              curveOptions_base,
                              *curves, **jointOptions):

            subplotOptions,curveOptions = \
                ingest_joint_options( _normalize_options_dict(jointOptions),
                                      subplotOptions_base,
                                      curveOptions_base )

            subplotOptionsCmds = _massageSubplotOptionsAndGetCmds(subplotOptions)

            curves = self._massageAndValidateArgs(curves,
                                                  curveOptions,
                                                  subplotOptions)
            plotcmd_testcmd_testdata = self._getPlotCmd( curves, subplotOptions )
            return (curves,
                    subplotOptionsCmds,
                    plotcmd_testcmd_testdata[0],
                    plotcmd_testcmd_testdata[1],
                    plotcmd_testcmd_testdata[2],)




        if not is_multiplot:
            # basic case
            subplots = ( make_subplot_data( self.subplotOptions_base,
                                            self.curveOptions_base,
                                            *curves, **jointOptions), )
        else:
            # OK, this actually isn't just a plot, so the arguments are misnamed
            subplots = curves

            subplotOptions_base,curveOptions_base = \
                ingest_joint_options( _normalize_options_dict(jointOptions),
                                      self.subplotOptions_base,
                                      self.curveOptions_base )

            def make_subplot_data_embedded_kwargs(subplot):
                if type(subplot[-1]) is dict:
                    d = _normalize_options_dict(subplot[-1])
                    subplot = subplot[:-1]
                else:
                    d = {}
                return make_subplot_data(subplotOptions_base,
                                         curveOptions_base,
                                         *subplot, **d)
            subplots = [make_subplot_data_embedded_kwargs(subplot) for subplot in subplots]




        # Test the plot
        if not self.processOptions.get('notest'):
            # I don't actually want to see the plot, I just want to make sure that
            # no errors are thrown. I thus send the output to /dev/null. Note that I
            # never actually read stdout, so if this test plot goes to the default
            # stdout output, then eventually the buffer fills up and gnuplot blocks.
            # So keep it going to /dev/null, or make sure to read the test plot from
            # stdout
            self._printGnuplotPipe( "set output '/dev/null'\n" )
            self._printGnuplotPipe( "set terminal dumb\n" )

            if self.processOptions.get('multiplot'):
                self._safelyWriteToPipe('set multiplot ' + \
                                        (self.processOptions['multiplot'] if type(self.processOptions['multiplot']) is str else ''))
            for curves,subplotOptionsCmds,plotcmd,testcmd,testdata in subplots:
                if self.processOptions.get('multiplot'):
                    # we're multiplotting, so I need to wipe the slate clean so
                    # that other subplots don't affect this one
                    self._safelyWriteToPipe('reset')
                self._safelyWriteToPipe(subplotOptionsCmds)
                test_plot(testcmd, testdata)
            if self.processOptions.get('multiplot'):
                self._safelyWriteToPipe('unset multiplot')

            # select the default terminal in case that's what we want
            self._safelyWriteToPipe("set terminal pop; set terminal push", 'terminal')

        # Testing done. Actually do the thing now
        plot_process_header()

        if self.processOptions.get('multiplot'):
            self._safelyWriteToPipe('set multiplot ' + \
                                    (self.processOptions['multiplot'] if type(self.processOptions['multiplot']) is str else ''))
        for curves,subplotOptionsCmds,plotcmd,testcmd,testdata in subplots:
            if self.processOptions.get('multiplot'):
                # we're multiplotting, so I need to wipe the slate clean so that
                # other subplots don't affect this one
                self._safelyWriteToPipe('reset')
            self._safelyWriteToPipe(subplotOptionsCmds)
            plot_subplot(plotcmd,curves)
        # I don't "unset multiplot" here. That would make my plot go away

        plot_process_footer()








globalplot = None

def plot(*curves, **jointOptions):

    r'''A simple wrapper around class gnuplotlib

    SYNOPSIS

        >>> import numpy as np
        >>> import gnuplotlib as gp

        >>> x = np.linspace(-5,5,100)

        >>> gp.plot( x, np.sin(x) )
        [ graphical plot pops up showing a simple sinusoid ]


        >>> gp.plot( (x, np.sin(x), {'with': 'boxes'}),
        ...          (x, np.cos(x), {'legend': 'cosine'}),

        ...          _with    = 'lines',
        ...          terminal = 'dumb 80,40',
        ...          unset    = 'grid')

        [ ascii plot printed on STDOUT]
           1 +-+---------+----------+-----------+-----------+----------+---------+-+
             +     +|||+ +          +         +++++   +++|||+          +           +
             |     |||||+                    +     +  +||||||       cosine +-----+ |
         0.8 +-+   ||||||                    +     + ++||||||+                   +-+
             |     ||||||+                  +       ++||||||||+                    |
             |     |||||||                  +       ++|||||||||                    |
             |     |||||||+                +        |||||||||||                    |
         0.6 +-+   ||||||||               +         +||||||||||+                 +-+
             |     ||||||||+              |        ++|||||||||||                   |
             |     |||||||||              +        |||||||||||||                   |
         0.4 +-+   |||||||||              |       ++||||||||||||+                +-+
             |     |||||||||             +        +||||||||||||||                  |
             |     |||||||||+            +        |||||||||||||||                  |
             |     ||||||||||+           |       ++||||||||||||||+           +     |
         0.2 +-+   |||||||||||          +        |||||||||||||||||           +   +-+
             |     |||||||||||          |        +||||||||||||||||+          |     |
             |     |||||||||||         +         ||||||||||||||||||         +      |
           0 +-+   +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++   +-+
             |       +        ||||||||||||||||||+         |       ++||||||||||     |
             |       |        +|||||||||||||||||          +        |||||||||||     |
             |       +        ++||||||||||||||||          |        +||||||||||     |
        -0.2 +-+      +        |||||||||||||||||          +        |||||||||||   +-+
             |        |        ++||||||||||||||+           |       ++|||||||||     |
             |        +         |||||||||||||||            +        ++||||||||     |
             |         |        +||||||||||||||            +         |||||||||     |
        -0.4 +-+       +        ++||||||||||||+             |        +||||||||   +-+
             |          +        |||||||||||||              +        |||||||||     |
             |          |        +|||||||||||+               +       ++|||||||     |
        -0.6 +-+        +        ++||||||||||                |        +|||||||   +-+
             |           +        |||||||||||                +        ++||||||     |
             |           +        +|||||||||+                 +        |||||||     |
             |            +       ++||||||||                  +       +++|||||     |
        -0.8 +-+          +      + ++||||||+                   +      + +|||||   +-+
             |             +    +   +||||||                     +    +  ++||||     |
             +           +  +  ++   ++|||++     +           +   ++  +  + ++|||     +
          -1 +-+---------+----------+-----------+-----------+----------+---------+-+
            -6          -4         -2           0           2          4           6


    DESCRIPTION

    class gnuplotlib provides full power and flexibility, but for simple plots this
    wrapper is easier to use. plot() uses a global instance of class gnuplotlib, so
    only a single plot can be made by plot() at a time: the one plot window is
    reused.

    Data is passed to plot() in exactly the same way as when using class gnuplotlib.
    The kwargs passed to this function are a combination of curve options and plot
    options. The curve options passed here are defaults for all the curves. Any
    specific options specified in each curve override the defaults given in the
    kwargs.

    See the documentation for class gnuplotlib for full details.

    '''


    global globalplot


    # I make a brand new gnuplot process if necessary. If one already exists, I
    # re-initialize it. If we're doing a data dump then I also create a new
    # object. There's no gnuplot session to reuse in that case, and otherwise
    # the dumping won't get activated
    if not globalplot or _data_dump_only(globalplot.processOptions):
        globalplot = gnuplotlib(**jointOptions)
    else:
        globalplot.__init__(**jointOptions)
    globalplot.plot(*curves)


def plot3d(*curves, **jointOptions):

    r'''A simple wrapper around class gnuplotlib to make 3d plots

    SYNOPSIS

        import numpy as np
        import gnuplotlib as gp

        th = np.linspace(0,10,1000)
        x  = np.cos(np.linspace(0,10,1000))
        y  = np.sin(np.linspace(0,10,1000))

        gp.plot3d( x, y, th )
        [ an interactive, graphical plot of a spiral pops up]

    DESCRIPTION

    class gnuplotlib provides full power and flexibility, but for simple 3d plots
    this wrapper is easier to use. plot3d() simply calls plot(..., _3d=True). See
    the documentation for plot() and class gnuplotlib for full details.

    '''
    jointOptions['3d'] = True
    plot(*curves, **jointOptions)


def plotimage(*curves, **jointOptions):

    r'''A simple wrapper around class gnuplotlib to plot image maps

    SYNOPSIS

        import numpy as np
        import gnuplotlib as gp

        x,y = np.ogrid[-10:11,-10:11]
        gp.plotimage( x**2 + y**2,
                      title     = 'Heat map')

    DESCRIPTION

    class gnuplotlib provides full power and flexibility, but for simple image-map
    plots this wrapper is easier to use. plotimage() simply calls plot(...,
    _with='image', tuplesize=3). See the documentation for plot() and class
    gnuplotlib for full details.

    '''

    jointOptions['_with']     = 'image'
    jointOptions['tuplesize'] = 3
    plot(*curves, **jointOptions)


def wait(*args):
    r'''Waits until the given interactive plot window(s) are closed

    SYNOPSIS

        import numpy as np
        import gnuplotlib as gp

        ### Waiting for the global plot window
        gp.plot(...)
        # interactive plot pops up
        gp.wait()
        # We get here when the user closes the plot window


        ### Waiting on some arbitrary plots
        plot0 = gp.gnuplotlib(...)
        plot1 = gp.gnuplotlib(...)
        plot0.plot(...)
        plot1.plot(...)
        gp.wait(plot0,plot1)
        # We get here when the user closes the plot windows


    DESCRIPTION

    Wait for the interactive plot window(s) to be closed by the user. Without
    any argument this applies to the global gnuplotlib object. Or the specific
    plots to wait for can be given in arguments (in-line or as a single
    iterable):

    - wait() waits on the global gnuplot object

    - wait(plot0,plot1)
    - wait((plot0,plot1),) both wait on the given gnuplotlib objects

    It's not at all trivial to detect if a plot object has an open plot window.
    If it does not, this function will end up waiting forever, and the user will
    need to Ctrl-C

    '''
    global globalplot

    if len(args) == 0:
        if not globalplot:
            raise GnuplotlibError("There isn't a plot to wait on")
        plots = (globalplot,)
    elif all(isinstance(p,gnuplotlib) for p in args):
        plots = args
    elif len(args) == 1:
        plots = args[0]
    else:
        raise Exception("gnuplotlib.wait() takes an inline list of plots or a single list-of-plots argumnent. Got neither")

    if len(plots) == 1:
        # Special-case if we have exactly one plot to wait on. Can avoid forking
        # in this case, so I do that
        plots[0].wait()
        return

    # N plots
    pids = [0] * len(plots)
    for i,plot in enumerate(plots):
        pid = os.fork()
        if pid == 0:
            # child
            plot.wait()
            os._exit(0)
        pids[i] = pid
    for pid in pids:
        os.waitpid(pid,0)


def add_plot_option(d,
                    key       = None,
                    values    = None,
                    overwrite = None,
                    **kwargs):
    r'''Ingests new key/value pairs into an option dict

SYNOPSIS

    # A baseline plot_options dict was given to us. We want to make the
    # plot, but make sure to omit the legend key
    gp.add_plot_option(plot_options, 'unset', 'key')

    gp.plot(..., **plot_options)

DESCRIPTION

Given a plot_options dict we can easily add a new option with

    plot_options[key] = value

This has several potential problems:

- If an option for this key already exists, the above will overwrite the old
  value instead of adding a NEW option

- All options may take a leading _ to avoid conflicting with Python reserved
  words (set, _set for instance). The above may unwittingly create a
  duplicate

- Some plot options support multiple values, which the simple call ignores
  completely

THIS function takes care of the _ in keys. And this function knows which
keys support multiple values. If a duplicate is given, it will either raise
an exception, or append to the existing list, as appropriate.

If the given key supports multiple values, they can be given in a single
call, as a list or a tuple.

Multiple key/values can be given using keyword arguments.

ARGUMENTS

- d: the plot options dict we're updating

- key: string. The key being set

- values: string (if setting a single value) or iterable (if setting multiple
  values)

- **kwargs: more key/value pairs to set. We set the key/value positional
  arguments first, and then move on to the kwargs

- overwrite: optional boolean that controls how we handle overwriting keys that
  do not accept multiple values. By default (overwrite is None), trying to set a
  key that is already set results in an exception. elif overwrite: we overwrite
  the previous values. elif not overwrite: we leave the previous value

    '''

    if kwargs:
        add_plot_option(d, key, values,
                        overwrite)
        for key in kwargs:
            add_plot_option(d, key, kwargs[key],
                            overwrite)
        return

    if key is None:
        if values is not None:
            raise Exception("key is None, but values is not. Giving up")
        return


    key_normalized = key if key[0] != '_' else key[1:]
    if not (key_normalized in keysAcceptingIterable and \
            isinstance(values, (list,tuple))):
        values = (values,)

    values = [v for v in values if v is not None]
    if len(values) == 0: return

    if key_normalized not in keysAcceptingIterable:
        if len(values) > 1:
            raise GnuplotlibError("plot options given multiple values for key '{}'".format(key_normalized))
        if key in d or key_normalized in d:
            # A value already exists. What do I do?
            if   (overwrite is not None) and overwrite:
                pass
            elif (overwrite is not None) and not overwrite:
                return
            else:
                # overwrite is None (the default). Barf.
                raise GnuplotlibError("plot options already have a value for key '{}'. Pass 'overwrite=False' to use the existing one of 'overwrite=True' to use the new one".format(key_normalized))

        d[key_normalized] = values[0]

    else:
        def listify(v):
            if isinstance(v, (list,tuple)): return v
            return [v]
        def accum(k,v):
            try:
                v += listify(d[k])
                del d[k]
            except KeyError: pass

        v = []
        accum(key,v)
        if key != key_normalized:
            accum(key_normalized,v)

        d[key_normalized] = v + values




if __name__ == '__main__':

    import numpy      as np
    import gnuplotlib as gp
    import time

    x = np.arange(101) - 50
    gp.plot(x**2, dump=0, ascii=0)
    time.sleep(1)


    g1 = gp.gnuplotlib(title = 'Parabola with error bars',
                       _with = 'xyerrorbars')
    g1.plot( x**2 * 10, np.abs(x)/10, np.abs(x)*5,
             legend    = 'Parabola',
             tuplesize = 4 )
    time.sleep(5)


    x,y = np.ogrid[-10:11,-10:11]
    gp.plot( x**2 + y**2,
             title     = 'Heat map',
             set       = 'view map',
             _with     = 'image',
             tuplesize = 3)
    time.sleep(5)


    theta = np.linspace(0, 6*np.pi, 200)
    z     = np.linspace(0, 5,       200)
    g2 = gp.gnuplotlib(_3d = True)
    g2.plot( (np.cos(theta),  np.sin(theta), z),
             (np.cos(theta), -np.sin(theta), z))
    time.sleep(60)