1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448
|
#!/usr/bin/python3
r'''A simple non-automated test script
This script makes some plots, and tests the error detection. One could run this
script, and make sure all the plots come up. This is NOT an automated test. For
a demo of the capabilities of gnuplotlib, see the guide at
https://github.com/dkogan/gnuplotlib/blob/master/guide/guide.org
'''
import numpy as np
import numpysane as nps
import time
import sys
import gnuplotlib as gp
# some simple infrastructure
def print_red(x):
"""print the message in red"""
sys.stdout.write("\x1b[31m" + x + "\x1b[0m\n")
def print_green(x):
"""Print the message in green"""
sys.stdout.write("\x1b[32m" + x + "\x1b[0m\n")
def check_expected_error(what, f):
sys.stderr.write(what + '\n')
sys.stderr.write("=================================\n")
try:
f()
except gp.GnuplotlibError as e:
print_green("OK! Got err I was supposed to get:\n[[[[[[[\n{}\n]]]]]]]".format(e))
except Exception as e:
print_red("ERROR! Got some other error I was NOT supposed to get: {}".format(e))
else:
print_red("ERROR! An error was supposed to be reported but it was not")
# data I use for 2D testing
x = np.arange(21) - 10
# data I use for 3D testing
th = np.linspace(0, np.pi*2, 30)
ph = np.linspace(-np.pi/2, np.pi*2, 30)[:,np.newaxis]
x_3d = (np.cos(ph) * np.cos(th)) .ravel()
y_3d = (np.cos(ph) * np.sin(th)) .ravel()
z_3d = (np.sin(ph) * np.ones( th.shape )) .ravel()
rho = np.linspace(0, 2*np.pi, 1000) # dim=( 1000,)
a = np.arange(-4,3)[:, np.newaxis] # dim=(7,1)
#################################
# Now the demos!
#################################
# first, some very basic stuff. Testing implicit domains, multiple curves in
# arguments, packed broadcastable data, etc
gp.plot(x**2, wait=1)
gp.plot(( np.transpose(nps.cat(x,x**2)),
dict(_with='linespoints pt 4 ps 2'),
),
( 5,60,
dict(tuplesize=2,
_with='linespoints pt 5 ps 2'),
),
( np.array((3,40)),
dict(_with='linespoints pt 6 ps 2'),
),
tuplesize = -2,
wait=1)
gp.plot(-x, x**3, wait=1)
gp.plot((x**2), wait=1)
gp.plot((-x, x**3, dict(_with = 'lines')), (x**2,), wait=1)
gp.plot( x, nps.cat(x**3, x**2) , wait=1)
gp.plot( nps.cat(-x**3, x**2), _with='lines' , wait=1)
gp.plot( (nps.cat(x**3, -x**2), dict(_with = 'points') ), wait=1)
gp.plot( (nps.cat(x**3, -x**2),
dict(_with = 'points') ),
y2 = np.array((0,1)),
title = 'Broadcasting on y2',
wait=1)
gp.plot( (nps.cat(x**3, -x**2),
dict(_with = 'points') ),
axes = np.array(('x1y1','x2y2')),
title = 'Broadcasting on axes',
wait=1)
# Make sure xrange settings don't get overridden. The label below should be out
# of bounds, and not visible
gp.plot( ( np.arange(10), ),
( np.array((5,),), np.array((2,),), np.array(("Seeing this is a bug!",),),
dict(_with = 'labels',
tuplesize = 3)),
( np.array((5,),), np.array((7,),), np.array(("This SHOULD be visible. Another label should be out-of-view, below the x-axis",),),
dict(_with = 'labels',
tuplesize = 3)),
_set = 'yrange [5:10]',
unset = 'grid',
wait = True)
# # This should make no plot at all, with a warning that all the data is out of
# # bounds. I haven't written a test harness to look at stderr output yet, so I
# # disable this check
# gp.plot( np.arange(10),
# _set = 'xrange [10:20]',
# wait = True)
#################################
# some more varied plotting, using the object-oriented interface
plot1 = gp.gnuplotlib(_with = 'linespoints',
xmin = -10,
title = 'Error bars and other things',
wait = 1)
plot1.plot( ( nps.cat(x, x*2, x*3), x**2 - 300,
dict(_with = 'lines lw 4',
y2 = True,
legend = 'parabolas')),
(x**2 * 10, x**2/40, x**2/2, # implicit domain
dict(_with = 'xyerrorbars',
tuplesize = 4)),
(x, nps.cat(x**3, x**3 - 100),
dict(_with = 'lines',
legend = 'shifted cubics',
tuplesize = 2)))
#################################
# a way to control the point size
gp.plot( x**2, np.abs(x)/2, x*50,
cbrange = '-600:600',
_with = 'points pointtype 7 pointsize variable palette',
tuplesize = 4,
wait = 1)
# labels
gp.plot(np.arange(5),np.arange(5)+1,
np.array( ['{} {}'.format(x,x+1) for x in range(5)], dtype=str),
_with='labels', tuplesize=3, ascii=1,
wait = 1)
# Conchoids of de Sluze. Broadcasting example
gp.plot( rho,
1./np.cos(rho) + a*np.cos(rho), # broadcasted. dim=(7,1000)
_with = 'lines',
set = 'polar',
square = True,
yrange = [-5,5],
legend = a.ravel(),
wait = 1)
################################
# some 3d stuff
################################
# gp.plot a sphere
gp.plot3d( x_3d, y_3d, z_3d,
_with = 'points',
title = 'sphere',
square = True,
legend = 'sphere',
wait = 1)
# sphere, ellipse together
gp.plot3d( (x_3d * nps.transpose(np.array([[1,2]])),
y_3d * nps.transpose(np.array([[1,2]])),
z_3d,
dict( legend = np.array(('sphere', 'ellipse')))),
title = 'sphere, ellipse',
square = True,
_with = 'points',
wait = 1)
# similar, written to a png
gp.plot3d( (x_3d * nps.transpose(np.array([[1,2]])),
y_3d * nps.transpose(np.array([[1,2]])),
z_3d,
dict( legend = np.array(('sphere', 'ellipse')))),
title = 'sphere, ellipse',
square = True,
_with = 'points',
hardcopy = 'spheres.png',
wait = 1)
# some paraboloids plotted on an implicit 2D domain
xx,yy = np.ogrid[-10:11, -10:11]
zz = xx*xx + yy*yy
gp.plot3d( ( zz, dict(legend = 'zplus')),
(-zz, dict(legend = 'zminus')),
(zz*2, dict(legend = 'zplus2')),
_with = 'points', title = 'gridded paraboloids', ascii=True,
wait = 1)
# 3d, variable color, variable pointsize
th2 = np.linspace(0, 6*np.pi, 200)
zz = np.linspace(0, 5, 200)
size = 0.5 + np.abs(np.cos(th2))
color = np.sin(2*th2)
gp.plot3d( ( np.cos(th2) * nps.transpose(np.array([[1,-1]])),
np.sin(th2) * nps.transpose(np.array([[1,-1]])),
zz, size, color, dict( legend = np.array(('spiral 1', 'spiral 2')))),
title = 'double helix',
tuplesize = 5,
_with = 'points pointsize variable pointtype 7 palette',
wait = 1)
# implicit domain heat map
xx,yy = np.ogrid[-10:11, -10:11]
zz = xx*xx + yy*yy
gp.plot3d(zz,
title = 'Paraboloid heat map',
set = 'view map',
_with = 'image',
wait = 1)
# same, but as a 2d gp.plot, _with a curve drawn on top for good measure
xx,yy = np.ogrid[-10:11, -10:11]
zz = xx*xx + yy*yy
xx = np.linspace(0,20,100)
gp.plot( ( zz, dict(tuplesize = 3,
_with = 'image')),
(xx, 20*np.cos(xx/20 * np.pi/2),
dict(tuplesize = 2,
_with = 'lines')),
title = 'Paraboloid heat map, 2D',
xmin = 0,
xmax = 20,
ymin = 0,
ymax = 20,
wait = 1)
################################
# 2D implicit domain demos
################################
xx,yy = np.mgrid[-10:11, -10:11]
zz = np.sqrt(xx*xx + yy*yy)
xx = xx[:, 2:12]
zz = zz[:, 2:12]
# single 3d matrix curve
gp.plot(zz,
title = 'Single 3D matrix plot. Binary.',
square = 1,
tuplesize = 3,
_with = 'points palette pt 7',
ascii = False,
wait = 1)
# 4d matrix curve
gp.plot(zz, xx,
title = '4D matrix plot. Binary.',
square = 1,
tuplesize = 4,
_with = 'points palette ps variable pt 7',
ascii = False,
wait = 1)
# Using broadcasting to plot each slice with a different style
gp.plot((nps.cat(xx,zz),
dict(tuplesize = 3,
_with = np.array(('points palette pt 7','points ps variable pt 6')))),
title = 'Two 3D matrix plots. Binary.',
square = 1,
ascii = False,
wait = 1)
# # Gnuplot doesn't support this
# gp.plot(z, x,
# title = '4D matrix plot. Binary.',
# square = 1,
# tuplesize = 4,
# _with = 'points palette ps variable pt 7',
# ascii = True,
# wait = 1)
#
# 2 3d matrix curves
gp.plot((nps.cat(xx,zz),
dict(tuplesize = 3,
_with = np.array(('points palette pt 7','points ps variable pt 6')))),
title = 'Two 3D matrix plots. Binary.',
square = 1,
ascii = True,
wait = 1)
###################################
# fancy contours just because I can
###################################
yy,xx = np.mgrid[0:61,0:61]
xx -= 30
yy -= 30
zz = np.sin(xx / 4.0) * yy
# single 3d matrix curve. Two plots: the image and the contours together.
# Broadcasting the styles
gp.plot3d( (zz, dict(tuplesize = 3,
_with = np.array(('image','lines')))),
title = 'matrix plot with contours',
_set = [ 'contours base',
'cntrparam bspline',
'cntrparam levels 15',
'view 0,0'],
unset = 'grid',
_unset = 'surface',
square = 1,
wait = 1)
################################
# multiplot
################################
# basics
gp.plot( th, nps.cat( np.cos(th), np.sin(th)),
title = 'broadcasting sin, cos',
_xrange = [0,2.*np.pi],
_yrange = [-1,1],
wait = 1)
gp.plot( (th, np.cos(th)),
(th, np.sin(th)),
title = 'separate plots for sin, cos',
_xrange = [0,2.*np.pi],
_yrange = [-1,1],
wait = 1)
gp.plot( (th, np.cos(th), dict(title="cos",
_xrange = [0,2.*np.pi],
_yrange = [-1,1],)),
(th, np.sin(th), dict(title="sin",
_xrange = [0,2.*np.pi],
_yrange = [-1,1])),
multiplot='title "multiplot sin,cos" layout 2,1',
wait = 1)
gp.plot( (x**2,),
(-x, x**3),
( rho,
1./np.cos(rho) + a*np.cos(rho), # broadcasted. dim=(7,1000)
dict( _with = 'lines',
set = 'polar',
square = True,
yrange = [-5,5],
legend = a.ravel())),
(x_3d, y_3d, z_3d,
dict( _with = 'points',
title = 'sphere',
square = True,
legend = 'sphere',
_3d = True)),
wait=1,
multiplot='title "basic multiplot" layout 2,2', )
# fancy contours stacked on top of one another. Using multiplot to render
# several plots directly onto one another
xx,yy = np.meshgrid(np.linspace(-5,5,100),
np.linspace(-5,5,100))
zz0 = np.sin(xx) + yy*yy/8.
zz1 = np.sin(xx) + yy*yy/10.
zz2 = np.sin(xx) + yy*yy/12.
commonset = ( 'origin 0,0',
'size 1,1',
'view 60,20,1,1',
'xrange [0:100]',
'yrange [0:100]',
'zrange [0:150]',
'contour base' )
for hardcopy in (None, "stacked-contours.png", "stacked-contours.gp",):
gp.plot3d( (zz0, dict(_set = commonset + ('xyplane at 10',))),
(zz1, dict(_set = commonset + ('xyplane at 80', 'border 15'), unset=('ztics',))),
(zz2, dict(_set = commonset + ('xyplane at 150', 'border 15'), unset=('ztics',))),
tuplesize=3,
_with = np.array(('lines nosurface',
'labels boxed nosurface')),
square=1,
wait=True,
hardcopy=hardcopy,
multiplot=True)
################################
# testing some error detection
################################
sys.stderr.write("\n\n\n")
sys.stderr.write("==== Testing error detection ====\n")
check_expected_error('I should complain about an invalid "with"',
lambda: gp.plot(np.arange(5), _with = 'bogusstyle'))
check_expected_error('Error detection in multiplots',
lambda: gp.plot( (x**2,),
(-x, x**3),
( rho,
1./np.cos(rho) + a*np.cos(rho), # broadcasted. dim=(7,1000)
dict( _with = 'lines',
set = 'poflar',
square = True,
yrange = [-5,5],
legend = a.ravel())),
(x_3d, y_3d, z_3d,
dict( _with = 'points',
title = 'sphere',
square = True,
legend = 'sphere',
_3d = True)),
wait=1,
multiplot='title "basic multiplot" layout 2,2', ) )
check_expected_error('gnuplotlib can detect I/O hangs. Here I ask for a delay, so I should detect this and quit after a few seconds...',
lambda: gp.plot( np.arange(5), cmds = 'pause 20' ))
|