1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import
import os.path
import numpy as np
from cclib.io import ccread
from cclib.parser.utils import convertor
# PHYSICAL CONSTANTS UNITS
KCAL_TO_AU = 627.509541 # UNIT CONVERSION
# Radii used to determine connectivity in symmetry corrections
# Covalent radii taken from Cambridge Structural Database
RADII = {'H': 0.32, 'He': 0.93, 'Li': 1.23, 'Be': 0.90, 'B': 0.82, 'C': 0.77, 'N': 0.75, 'O': 0.73, 'F': 0.72,
'Ne': 0.71, 'Na': 1.54, 'Mg': 1.36, 'Al': 1.18, 'Si': 1.11, 'P': 1.06, 'S': 1.02, 'Cl': 0.99, 'Ar': 0.98,
'K': 2.03, 'Ca': 1.74, 'Sc': 1.44, 'Ti': 1.32, 'V': 1.22, 'Cr': 1.18, 'Mn': 1.17, 'Fe': 1.17, 'Co': 1.16,
'Ni': 1.15, 'Cu': 1.17, 'Zn': 1.25, 'Ga': 1.26, 'Ge': 1.22, 'As': 1.20, 'Se': 1.16, 'Br': 1.14, 'Kr': 1.12,
'Rb': 2.16, 'Sr': 1.91, 'Y': 1.62, 'Zr': 1.45, 'Nb': 1.34, 'Mo': 1.30, 'Tc': 1.27, 'Ru': 1.25, 'Rh': 1.25,
'Pd': 1.28, 'Ag': 1.34, 'Cd': 1.48, 'In': 1.44, 'Sn': 1.41, 'Sb': 1.40, 'Te': 1.36, 'I': 1.33, 'Xe': 1.31,
'Cs': 2.35, 'Ba': 1.98, 'La': 1.69, 'Lu': 1.60, 'Hf': 1.44, 'Ta': 1.34, 'W': 1.30, 'Re': 1.28, 'Os': 1.26,
'Ir': 1.27, 'Pt': 1.30, 'Au': 1.34, 'Hg': 1.49, 'Tl': 1.48, 'Pb': 1.47, 'Bi': 1.46, 'X': 0}
# Bondi van der Waals radii for all atoms from: Bondi, A. J. Phys. Chem. 1964, 68, 441-452,
# except hydrogen, which is taken from Rowland, R. S.; Taylor, R. J. Phys. Chem. 1996, 100, 7384-7391.
# Radii unavailable in either of these publications are set to 2 Angstrom
# (Unfinished)
BONDI = {'H': 1.09, 'He': 1.40, 'Li': 1.82, 'Be': 2.00, 'B': 2.00, 'C': 1.70, 'N': 1.55, 'O': 1.52, 'F': 1.47,
'Ne': 1.54}
# Some useful arrays
periodictable = ["", "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne", "Na", "Mg", "Al", "Si",
"P", "S", "Cl", "Ar", "K", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn",
"Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd",
"Ag", "Cd", "In", "Sn", "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd", "Pm", "Sm",
"Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt",
"Au", "Hg", "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", "Pa", "U", "Np", "Pu",
"Am", "Cm", "Bk", "Cf", "Es", "Fm", "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt", "Ds",
"Rg", "Uub", "Uut", "Uuq", "Uup", "Uuh", "Uus", "Uuo"]
def element_id(massno, num=False):
"""
Get element symbol from mass number.
Used in parsing output files to determine elements present in file.
Parameter:
massno (int): mass of element.
Returns:
str: element symbol, or 'XX' if not found in periodic table.
"""
try:
if num:
return periodictable.index(massno)
return periodictable[massno]
except IndexError:
return "XX"
class xyz_out:
"""
Enables output of optimized coordinates to a single xyz-formatted file.
Writes Cartesian coordinates of parsed chemical input.
Attributes:
xyz (file object): path in current working directory to write Cartesian coordinates.
"""
def __init__(self, filein, suffix, append):
self.xyz = open('{}_{}.{}'.format(filein, append, suffix), 'w')
def write_text(self, message):
self.xyz.write(message + "\n")
def write_coords(self, atoms, coords):
for n, carts in enumerate(coords):
self.xyz.write('{:>1}'.format(atoms[n]))
for cart in carts:
self.xyz.write('{:13.6f}'.format(cart))
self.xyz.write('\n')
def finalize(self):
self.xyz.close()
class getoutData:
"""
Read molecule data from a computational chemistry output file.
Attributes:
FREQS (list): list of frequencies parsed from Gaussian file.
REDMASS (list): list of reduced masses parsed from Gaussian file.
FORCECONST (list): list of force constants parsed from Gaussian file.
NORMALMODE (list): list of normal modes parsed from Gaussian file.
atom_nums (list): list of atom number IDs.
atom_types (list): list of atom element symbols.
cartesians (list): list of cartesian coordinates for each atom.
connectivity (list): list of atomic connectivity in a molecule, based on covalent radii
"""
def __init__(self, filename):
data = ccread(filename)
try:
self.FREQS = data.vibfreqs.tolist()
self.REDMASS = data.vibrmasses.tolist()
self.FORCECONST = data.vibfconsts.tolist()
self.NORMALMODE = data.vibdisps.tolist()
except:
pass
self.atom_nums = data.atomnos.tolist()
self.atom_types = [periodictable[atomnum] for atomnum in self.atom_nums]
# Assuming that the output file doesn't contain a geometry
# optimization at the beginning, we take the first set of atomic
# coordinates rather than the last, in the even that a finite
# difference frequency calculation was performed and the displaced
# geometries are printed.
self.cartesians = data.atomcoords[0].tolist()
# Convert coordinates to string that can be used by the symmetry.c program
def coords_string(self):
xyzstring = str(len(self.atom_nums)) + '\n'
for atom, xyz in zip(self.atom_nums, self.cartesians):
xyzstring += "{0} {1:.6f} {2:.6f} {3:.6f}\n".format(atom, *xyz)
return xyzstring
# Obtain molecule connectivity to be used for internal symmetry determination
def get_connectivity(self):
connectivity = []
tolerance = 0.2
for i, ai in enumerate(self.atom_types):
row = []
for j, aj in enumerate(self.atom_types):
if i == j:
continue
cutoff = RADII[ai] + RADII[aj] + tolerance
distance = np.linalg.norm(np.array(self.cartesians[i]) - np.array(self.cartesians[j]))
if distance < cutoff:
row.append(j)
connectivity.append(row)
self.connectivity = connectivity
def cosmo_rs_out(datfile, names, interval=False):
"""
Read solvation free energies from a COSMO-RS data file
Parameters:
datfile (str): name of COSMO-RS output file.
names (list): list of species in COSMO-RS file that correspond to names of other computational output files.
interval (bool): flag for parser to read COSMO-RS temperature interval calculation.
"""
gsolv = {}
if os.path.exists(datfile):
with open(datfile) as f:
data = f.readlines()
else:
raise ValueError("File {} does not exist".format(datfile))
temp = 0
t_interval = []
gsolv_dicts = []
found = False
oldtemp = 0
gsolv_temp = {}
if interval:
for i, line in enumerate(data):
for name in names:
if line.find('(' + name.split('.')[0] + ')') > -1 and line.find('Compound') > -1:
if data[i - 5].find('Temperature') > -1:
temp = data[i - 5].split()[2]
if float(temp) > float(interval[0]) and float(temp) < float(interval[1]):
if float(temp) not in t_interval:
t_interval.append(float(temp))
if data[i + 10].find('Gibbs') > -1:
gsolv = float(data[i + 10].split()[6].strip()) / KCAL_TO_AU
gsolv_temp[name] = gsolv
found = True
if found:
if oldtemp == 0:
oldtemp = temp
if temp is not oldtemp:
gsolv_dicts.append(gsolv) # Store dict at one temp
gsolv = {} # Clear gsolv
gsolv.update(gsolv_temp) # Grab the first one for the new temp
oldtemp = temp
gsolv.update(gsolv_temp)
gsolv_temp = {}
found = False
gsolv_dicts.append(gsolv) # Grab last dict
else:
for i, line in enumerate(data):
for name in names:
if line.find('(' + name.split('.')[0] + ')') > -1 and line.find('Compound') > -1:
if data[i + 11].find('Gibbs') > -1:
gsolv = float(data[i + 11].split()[6].strip()) / KCAL_TO_AU
gsolv[name] = gsolv
if interval:
return t_interval, gsolv_dicts
else:
return gsolv
def parse_data(file):
"""
Read computational chemistry output file.
Attempt to obtain single point energy, program type, program version, solvation_model,
charge, empirical_dispersion, and multiplicity from file.
Parameter:
file (str): name of file to be parsed.
Returns:
float: single point energy.
str: program used to run calculation.
str: version of program used to run calculation.
str: solvation model used in chemical calculation (if any).
str: original filename parsed.
int: overall charge of molecule or chemical system.
str: empirical dispersion used in chemical calculation (if any).
int: multiplicity of molecule or chemical system.
"""
spe, program, data, version_program, solvation_model, keyword_line, a, charge, multiplicity = 'none', 'none', [], '', '', '', 0, None, None
data = None
stub = os.path.splitext(file)[0]
possible_filenames = (stub + ".log", stub + ".out")
for possible_filename in possible_filenames:
if os.path.exists(possible_filename):
with open(possible_filename) as f:
data = f.readlines()
if data is None:
raise ValueError("File {} does not exist".format(file))
for line in data:
if "Gaussian" in line:
program = "Gaussian"
break
if "* O R C A *" in line:
program = "Orca"
break
if "NWChem" in line:
program = "NWChem"
break
repeated_link1 = 0
if program != "Orca":
try:
possible_filenames = (stub + ".log", stub + ".out")
for possible_filename in possible_filenames:
if os.path.exists(possible_filename):
ccdata = ccread(possible_filename)
except IndexError:
ccdata = None
if ccdata:
try:
spe = ccdata.scfenergies[-1]
if hasattr(ccdata, "mpenergies"):
spe = ccdata.mpenergies[-1]
if hasattr(ccdata, "ccenergies"):
spe = ccdata.ccenergies[-1]
spe = convertor(spe, "eV", "hartree")
charge = ccdata.charge
multiplicity = ccdata.mult
except AttributeError:
pass
for line in data:
if program == "Gaussian":
if line.strip().startswith('E2('):
spe_value = line.strip().split()[-1]
spe = float(spe_value.replace('D','E'))
elif line.strip().startswith('Counterpoise corrected energy'):
spe = float(line.strip().split()[4])
# For ONIOM calculations use the extrapolated value rather than SCF value
elif "ONIOM: extrapolated energy" in line.strip():
spe = (float(line.strip().split()[4]))
# For G4 calculations look for G4 energies (Gaussian16a bug prints G4(0 K) as DE(HF)) --Brian modified to work for G16c-where bug is fixed.
elif line.strip().startswith('G4(0 K)'):
spe = float(line.strip().split()[2])
spe -= zero_point_corr_G4 #Remove G4 ZPE
elif line.strip().startswith('E(ZPE)='): #Get G4 ZPE
zero_point_corr_G4 = float(line.strip().split()[1])
# For TD calculations look for SCF energies of the first excited state
elif 'E(TD-HF/TD-DFT)' in line.strip():
spe = float(line.strip().split()[4])
# For Semi-empirical or Molecular Mechanics calculations
elif "Energy= " in line.strip() and "Predicted" not in line.strip() and "Thermal" not in line.strip() and "G4" not in line.strip():
spe = (float(line.strip().split()[1]))
elif "Gaussian" in line and "Revision" in line and repeated_link1 == 0:
for i in range(len(line.strip(",").split(",")) - 1):
line.strip(",").split(",")[i]
version_program += line.strip(",").split(",")[i]
repeated_link1 = 1
version_program = version_program[1:]
elif program == "Orca":
if 'Program Version' in line.strip():
version_program = "ORCA version " + line.split()[2]
if line.strip().startswith('FINAL SINGLE POINT ENERGY'):
spe = float(line.strip().split()[4])
if "Total Charge" in line.strip() and "...." in line.strip():
charge = int(line.strip("=").split()[-1])
if "Multiplicity" in line.strip() and "...." in line.strip():
multiplicity = int(line.strip("=").split()[-1])
elif program == "NWChem":
if 'nwchem branch' in line.strip():
version_program = "NWChem version " + line.split()[3]
if ccdata == None:
if line.strip().startswith('Total DFT energy'):
spe = float(line.strip().split()[4])
if "charge" in line.strip():
charge = int(line.strip().split()[-1])
if "mult " in line.strip():
multiplicity = int(line.strip().split()[-1])
# Solvation model and empirical dispersion detection
if 'Gaussian' in version_program.strip():
for i, line in enumerate(data):
if '#' in line.strip() and a == 0:
for j, line in enumerate(data[i:i + 10]):
if '--' in line.strip():
a = a + 1
break
if a != 0:
break
else:
for k in range(len(line.strip().split("\n"))):
line.strip().split("\n")[k]
keyword_line += line.strip().split("\n")[k]
keyword_line = keyword_line.lower()
if 'scrf' not in keyword_line.strip():
solvation_model = "gas phase"
else:
start_scrf = keyword_line.strip().find('scrf') + 4
if '(' in keyword_line[start_scrf:start_scrf + 4]:
start_scrf += keyword_line[start_scrf:start_scrf + 4].find('(') + 1
end_scrf = keyword_line.find(")", start_scrf)
display_solvation_model = "scrf=(" + ','.join(
keyword_line[start_scrf:end_scrf].lower().split(',')) + ')'
sorted_solvation_model = "scrf=(" + ','.join(
sorted(keyword_line[start_scrf:end_scrf].lower().split(','))) + ')'
else:
if ' = ' in keyword_line[start_scrf:start_scrf + 4]:
start_scrf += keyword_line[start_scrf:start_scrf + 4].find(' = ') + 3
elif ' =' in keyword_line[start_scrf:start_scrf + 4]:
start_scrf += keyword_line[start_scrf:start_scrf + 4].find(' =') + 2
elif '=' in keyword_line[start_scrf:start_scrf + 4]:
start_scrf += keyword_line[start_scrf:start_scrf + 4].find('=') + 1
end_scrf = keyword_line.find(" ", start_scrf)
if end_scrf == -1:
display_solvation_model = "scrf=(" + ','.join(keyword_line[start_scrf:].lower().split(',')) + ')'
sorted_solvation_model = "scrf=(" + ','.join(
sorted(keyword_line[start_scrf:].lower().split(','))) + ')'
else:
display_solvation_model = "scrf=(" + ','.join(
keyword_line[start_scrf:end_scrf].lower().split(',')) + ')'
sorted_solvation_model = "scrf=(" + ','.join(
sorted(keyword_line[start_scrf:end_scrf].lower().split(','))) + ')'
if solvation_model != "gas phase":
solvation_model = [sorted_solvation_model, display_solvation_model]
empirical_dispersion = ''
if keyword_line.strip().find('empiricaldispersion') == -1 and keyword_line.strip().find(
'emp=') == -1 and keyword_line.strip().find('emp =') == -1 and keyword_line.strip().find('emp(') == -1:
empirical_dispersion = "No empirical dispersion detected"
elif keyword_line.strip().find('empiricaldispersion') > -1:
start_emp_disp = keyword_line.strip().find('empiricaldispersion') + 19
if '(' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find('(') + 1
end_emp_disp = keyword_line.find(")", start_emp_disp)
empirical_dispersion = 'empiricaldispersion=(' + ','.join(
sorted(keyword_line[start_emp_disp:end_emp_disp].lower().split(','))) + ')'
else:
if ' = ' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find(' = ') + 3
elif ' =' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find(' =') + 2
elif '=' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find('=') + 1
end_emp_disp = keyword_line.find(" ", start_emp_disp)
if end_emp_disp == -1:
empirical_dispersion = "empiricaldispersion=(" + ','.join(
sorted(keyword_line[start_emp_disp:].lower().split(','))) + ')'
else:
empirical_dispersion = "empiricaldispersion=(" + ','.join(
sorted(keyword_line[start_emp_disp:end_emp_disp].lower().split(','))) + ')'
elif keyword_line.strip().find('emp=') > -1 or keyword_line.strip().find(
'emp =') > -1 or keyword_line.strip().find('emp(') > -1:
# Check for temp keyword
temp, emp_e, emp_p = False, False, False
check_temp = keyword_line.strip().find('emp=')
start_emp_disp = keyword_line.strip().find('emp=')
if check_temp == -1:
check_temp = keyword_line.strip().find('emp =')
start_emp_disp = keyword_line.strip().find('emp =')
if check_temp == -1:
check_temp = keyword_line.strip().find('emp=(')
start_emp_disp = keyword_line.strip().find('emp(')
check_temp += -1
if keyword_line[check_temp].lower() == 't':
temp = True # Look for a new one
if keyword_line.strip().find('emp=', check_temp + 5) > -1:
emp_e = True
start_emp_disp = keyword_line.strip().find('emp=', check_temp + 5) + 3
elif keyword_line.strip().find('emp =', check_temp + 5) > -1:
emp_e = True
start_emp_disp = keyword_line.strip().find('emp =', check_temp + 5) + 3
elif keyword_line.strip().find('emp(', check_temp + 5) > -1:
emp_p = True
start_emp_disp = keyword_line.strip().find('emp(', check_temp + 5) + 3
else:
empirical_dispersion = "No empirical dispersion detected"
else:
start_emp_disp += 3
if (temp and emp_e) or (not temp and keyword_line.strip().find('emp=') > -1) or (
not temp and keyword_line.strip().find('emp =')):
if '(' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find('(') + 1
end_emp_disp = keyword_line.find(")", start_emp_disp)
empirical_dispersion = 'empiricaldispersion=(' + ','.join(
sorted(keyword_line[start_emp_disp:end_emp_disp].lower().split(','))) + ')'
else:
if ' = ' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find(' = ') + 3
elif ' =' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find(' =') + 2
elif '=' in keyword_line[start_emp_disp:start_emp_disp + 4]:
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find('=') + 1
end_emp_disp = keyword_line.find(" ", start_emp_disp)
if end_emp_disp == -1:
empirical_dispersion = "empiricaldispersion=(" + ','.join(
sorted(keyword_line[start_emp_disp:].lower().split(','))) + ')'
else:
empirical_dispersion = "empiricaldispersion=(" + ','.join(
sorted(keyword_line[start_emp_disp:end_emp_disp].lower().split(','))) + ')'
elif (temp and emp_p) or (not temp and keyword_line.strip().find('emp(') > -1):
start_emp_disp += keyword_line[start_emp_disp:start_emp_disp + 4].find('(') + 1
end_emp_disp = keyword_line.find(")", start_emp_disp)
empirical_dispersion = 'empiricaldispersion=(' + ','.join(
sorted(keyword_line[start_emp_disp:end_emp_disp].lower().split(','))) + ')'
if 'ORCA' in version_program.strip():
keyword_line_1 = "gas phase"
keyword_line_2 = ''
keyword_line_3 = ''
for i, line in enumerate(data):
if 'CPCM SOLVATION MODEL' in line.strip():
keyword_line_1 = "CPCM,"
if 'SMD CDS free energy correction energy' in line.strip():
keyword_line_2 = "SMD,"
if "Solvent: " in line.strip():
keyword_line_3 = line.strip().split()[-1]
solvation_model = keyword_line_1 + keyword_line_2 + keyword_line_3
empirical_dispersion1 = 'No empirical dispersion detected'
empirical_dispersion2 = ''
empirical_dispersion3 = ''
for i, line in enumerate(data):
if keyword_line.strip().find('DFT DISPERSION CORRECTION') > -1:
empirical_dispersion1 = ''
if keyword_line.strip().find('DFTD3') > -1:
empirical_dispersion2 = "D3"
if keyword_line.strip().find('USING zero damping') > -1:
empirical_dispersion3 = ' with zero damping'
empirical_dispersion = empirical_dispersion1 + empirical_dispersion2 + empirical_dispersion3
if 'NWChem' in version_program.strip():
empirical_dispersion1 = 'No empirical dispersion detected'
empirical_dispersion2 = ''
empirical_dispersion3 = ''
for i, line in enumerate(data):
if keyword_line.strip().find('Dispersion correction') > -1:
empirical_dispersion1 = ''
if keyword_line.strip().find('disp vdw 3') > -1:
empirical_dispersion2 = "D3"
if keyword_line.strip().find('disp vdw 4') > -1:
empirical_dispersion2 = "D3BJ"
empirical_dispersion = empirical_dispersion1 + empirical_dispersion2 + empirical_dispersion3
return spe, program, version_program, solvation_model, file, charge, empirical_dispersion, multiplicity
def sp_cpu(file):
"""Read single-point output for cpu time."""
spe, program, data, cpu = None, None, [], None
if os.path.exists(os.path.splitext(file)[0] + '.log'):
with open(os.path.splitext(file)[0] + '.log') as f:
data = f.readlines()
elif os.path.exists(os.path.splitext(file)[0] + '.out'):
with open(os.path.splitext(file)[0] + '.out') as f:
data = f.readlines()
else:
raise ValueError("File {} does not exist".format(file))
for line in data:
if line.find("Gaussian") > -1:
program = "Gaussian"
break
if line.find("* O R C A *") > -1:
program = "Orca"
break
if line.find("NWChem") > -1:
program = "NWChem"
break
for line in data:
if program == "Gaussian":
if line.strip().startswith('SCF Done:'):
spe = float(line.strip().split()[4])
if line.strip().find("Job cpu time") > -1:
days = int(line.split()[3])
hours = int(line.split()[5])
mins = int(line.split()[7])
secs = 0
msecs = int(float(line.split()[9]) * 1000.0)
cpu = [days, hours, mins, secs, msecs]
if program == "Orca":
if line.strip().startswith('FINAL SINGLE POINT ENERGY'):
spe = float(line.strip().split()[4])
if line.strip().find("TOTAL RUN TIME") > -1:
days = int(line.split()[3])
hours = int(line.split()[5])
mins = int(line.split()[7])
secs = int(line.split()[9])
msecs = float(line.split()[11])
cpu = [days, hours, mins, secs, msecs]
if program == "NWChem":
if line.strip().startswith('Total DFT energy ='):
spe = float(line.strip().split()[4])
if line.strip().find("Total times") > -1:
days = 0
hours = 0
mins = 0
secs = float(line.split()[3][0:-1])
msecs = 0
cpu = [days,hours,mins,secs,msecs]
return cpu
def level_of_theory(file):
"""Read output for the level of theory and basis set used."""
repeated_theory = 0
with open(file) as f:
data = f.readlines()
level, bs = 'none', 'none'
for line in data:
if line.strip().find('External calculation') > -1:
level, bs = 'ext', 'ext'
break
if '\\Freq\\' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("\\")[4:6])
repeated_theory = 1
except IndexError:
pass
elif '|Freq|' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("|")[4:6])
repeated_theory = 1
except IndexError:
pass
if '\\SP\\' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("\\")[4:6])
repeated_theory = 1
except IndexError:
pass
elif '|SP|' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("|")[4:6])
repeated_theory = 1
except IndexError:
pass
if 'DLPNO BASED TRIPLES CORRECTION' in line.strip():
level = 'DLPNO-CCSD(T)'
if 'Estimated CBS total energy' in line.strip():
try:
bs = ("Extrapol." + line.strip().split()[4])
except IndexError:
pass
# Remove the restricted R or unrestricted U label
if level[0] in ('R', 'U'):
level = level[1:]
level_of_theory = '/'.join([level, bs])
return level_of_theory
def read_initial(file):
"""At beginning of procedure, read level of theory, solvation model, and check for normal termination"""
with open(file) as f:
data = f.readlines()
level, bs, program, keyword_line = 'none', 'none', 'none', 'none'
progress, orientation = 'Incomplete', 'Input'
a, repeated_theory = 0, 0
no_grid = True
DFT, dft_used, level, bs, scf_iradan, cphf_iradan = False, 'F', 'none', 'none', False, False
grid_lookup = {1: 'sg1', 2: 'coarse', 4: 'fine', 5: 'ultrafine', 7: 'superfine'}
for line in data:
# Determine program
if "Gaussian" in line:
program = "Gaussian"
break
if "* O R C A *" in line:
program = "Orca"
break
if "NWChem" in line:
program = "NWChem"
break
for line in data:
# Grab pertinent information from file
if line.strip().find('External calculation') > -1:
level, bs = 'ext', 'ext'
if line.strip().find('Standard orientation:') > -1:
orientation = 'Standard'
if line.strip().find('IExCor=') > -1 and no_grid:
try:
dft_used = line.split('=')[2].split()[0]
grid = grid_lookup[int(dft_used)]
no_grid = False
except:
pass
if '\\Freq\\' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("\\")[4:6])
repeated_theory = 1
except IndexError:
pass
elif '|Freq|' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("|")[4:6])
repeated_theory = 1
except IndexError:
pass
if '\\SP\\' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("\\")[4:6])
repeated_theory = 1
except IndexError:
pass
elif '|SP|' in line.strip() and repeated_theory == 0:
try:
level, bs = (line.strip().split("|")[4:6])
repeated_theory = 1
except IndexError:
pass
if 'DLPNO BASED TRIPLES CORRECTION' in line.strip():
level = 'DLPNO-CCSD(T)'
if 'Estimated CBS total energy' in line.strip():
try:
bs = ("Extrapol." + line.strip().split()[4])
except IndexError:
pass
# Remove the restricted R or unrestricted U label
if level[0] in ('R', 'U'):
level = level[1:]
#NWChem specific parsing
if program == 'NWChem':
keyword_line_1 = "gas phase"
keyword_line_2 = ''
keyword_line_3 = ''
for i, line in enumerate(data):
if line.strip().startswith("xc "):
level=line.strip().split()[1]
if line.strip().startswith("* library "):
bs = line.strip().replace("* library ",'')
#need to update these tags for NWChem solvation later
if 'CPCM SOLVATION MODEL' in line.strip():
keyword_line_1 = "CPCM,"
if 'SMD CDS free energy correction energy' in line.strip():
keyword_line_2 = "SMD,"
if "Solvent: " in line.strip():
keyword_line_3 = line.strip().split()[-1]
#need to update NWChem keyword for error calculation
if 'Total times' in line:
progress = 'Normal'
elif 'error termination' in line:
progress = 'Error'
solvation_model = keyword_line_1 + keyword_line_2 + keyword_line_3
# Grab solvation models - Gaussian files
if program == 'Gaussian':
for i, line in enumerate(data):
if '#' in line.strip() and a == 0:
for j, line in enumerate(data[i:i + 10]):
if '--' in line.strip():
a = a + 1
break
if a != 0:
break
else:
for k in range(len(line.strip().split("\n"))):
keyword_line += line.strip().split("\n")[k]
if 'Normal termination' in line:
progress = 'Normal'
elif 'Error termination' in line:
progress = 'Error'
keyword_line = keyword_line.lower()
if 'scrf' not in keyword_line.strip():
solvation_model = "gas phase"
else:
start_scrf = keyword_line.strip().find('scrf') + 5
if keyword_line[start_scrf] == "(":
end_scrf = keyword_line.find(")", start_scrf)
solvation_model = "scrf=" + keyword_line[start_scrf:end_scrf]
if solvation_model[-1] != ")":
solvation_model = solvation_model + ")"
else:
start_scrf2 = keyword_line.strip().find('scrf') + 4
if keyword_line.find(" ", start_scrf) > -1:
end_scrf = keyword_line.find(" ", start_scrf)
else:
end_scrf = len(keyword_line)
if keyword_line[start_scrf2] == "(":
solvation_model = "scrf=(" + keyword_line[start_scrf:end_scrf]
if solvation_model[-1] != ")":
solvation_model = solvation_model + ")"
else:
if keyword_line.find(" ", start_scrf) > -1:
end_scrf = keyword_line.find(" ", start_scrf)
else:
end_scrf = len(keyword_line)
solvation_model = "scrf=" + keyword_line[start_scrf:end_scrf]
# ORCA parsing for solvation model
elif program == 'Orca':
keyword_line_1 = "gas phase"
keyword_line_2 = ''
keyword_line_3 = ''
for i, line in enumerate(data):
if 'CPCM SOLVATION MODEL' in line.strip():
keyword_line_1 = "CPCM,"
if 'SMD CDS free energy correction energy' in line.strip():
keyword_line_2 = "SMD,"
if "Solvent: " in line.strip():
keyword_line_3 = line.strip().split()[-1]
if 'ORCA TERMINATED NORMALLY' in line:
progress = 'Normal'
elif 'error termination' in line:
progress = 'Error'
solvation_model = keyword_line_1 + keyword_line_2 + keyword_line_3
level_of_theory = '/'.join([level, bs])
return level_of_theory, solvation_model, progress, orientation, dft_used
def gaussian_jobtype(filename):
"""Read the jobtype from a Gaussian archive string."""
job = ''
with open(filename) as f:
for line in f:
if line.strip().find('\\SP\\') > -1:
job += 'SP'
if line.strip().find('\\FOpt\\') > -1:
job += 'GS'
if line.strip().find('\\FTS\\') > -1:
job += 'TS'
if line.strip().find('\\Freq\\') > -1:
job += 'Freq'
return job
|