1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755
|
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import
import math, os.path, sys
import numpy as np
# PHYSICAL CONSTANTS UNITS
GAS_CONSTANT = 8.3144621 # J / K / mol
J_TO_AU = 4.184 * 627.509541 * 1000.0 # UNIT CONVERSION
KCAL_TO_AU = 627.509541 # UNIT CONVERSION
class get_pes:
"""
Obtain relative thermochemistry between species and for reactions.
Routine that computes Boltzmann populations of conformer sets at each step of a reaction, obtaining
relative energetic and thermodynamic values for each step in a reaction pathway.
Determines reaction pathway from .yaml formatted file containing definitions for where files fit in pathway.
Attributes:
dec (int): decimal places to display after PES calculations.
units (str): units do display values in, choice of kcal/mol or kJ/mol.
boltz (str): allows for selectivity calculation to display to user.
path (list): list of strings defining each reaction pathway.
species (list): list of strings defining which files correspond to names given in reaction pathway.
spc_abs (list): list of relative single-point energy values.
e_abs (list): list of relative energy values.
zpe_abs (list): list of relative zero point energy values.
h_abs (list): list of relative enthalpy values.
qh_abs (list): list of relative quasi-harmonic enthalpy values.
s_abs (list): list of relative entropy values.
qs_abs (list): list of relative quasi-harmonic entropy values.
g_abs (list): list of relative Gibbs free energy values.
qhg_abs (list): list of relative quasi-harmonic Gibbs free energy values.
cosmo_qhg_abs (list): list of relative COSMO-RS solvation-corrected quasi-harmonic Gibbs free energy values.
spc_zero (list): list of single point energy "zero" species values to compare all other steps in pathway to.
e_zero (list): list of energy "zero" species values to compare all other steps in pathway to.
zpe_zero (list): list of zero point energy "zero" species values to compare all other steps in pathway to.
h_zero (list): list of enthalpy "zero" species values to compare all other steps in pathway to.
qh_zero (list): list of quasi-harmonic enthalpy "zero" species values to compare all other steps in pathway to.
ts_zero (list): list of T*entropy "zero" species values to compare all other steps in pathway to.
qhts_zero (list): list of quasi-harmonic T*entropy "zero" species values to compare all other steps in pathway to.
g_zero (list): list of Gibbs free energy "zero" species values to compare all other steps in pathway to.
qhg_zero (list): list of quasi-harmonic Gibbs free energy "zero" species values to compare all other steps in pathway to.
cosmo_qhg_zero (list): list of COSMO-RS solvation-corrected quasi-harmonic Gibbs free energy "zero" species values to compare all other steps in pathway to.
g_qhgvals (list): relative quasi-harmonic Gibbs free energy values used for graphing.
g_species_qhgzero (list):quasi-harmonic Gibbs free energy "zero" values used for graphing.
g_rel_val (list): relative Gibbs free energy values used for graphing.
"""
def __init__(self, file, thermo_data, log, temperature, gconf, QH, cosmo=None, cosmo_int=None):
# Default values
self.dec, self.units, self.boltz = 2, 'kcal/mol', False
with open(file) as f:
data = f.readlines()
folder, program, names, files, zeros, pes_list = None, None, [], [], [], []
for i, dline in enumerate(data):
if dline.strip().find('PES') > -1:
for j, line in enumerate(data[i + 1:]):
if line.strip().startswith('#'):
pass
elif len(line) <= 2:
pass
elif line.strip().startswith('---'):
break
elif line.strip() != '':
pathway, pes = line.strip().replace(':', '=').split("=")
# Auto-grab first species as zero unless specified
pes_list.append(pes)
zeros.append(pes.strip().lstrip('[').rstrip(']').split(',')[0])
# Look at SPECIES block to determine filenames
if dline.strip().find('SPECIES') > -1:
for j, line in enumerate(data[i + 1:]):
if line.strip().startswith('---'):
break
else:
if line.lower().strip().find('folder') > -1:
try:
folder = line.strip().replace('#', '=').split("=")[1].strip()
except IndexError:
pass
else:
try:
n, f = (line.strip().replace(':', '=').split("="))
# Check the specified filename is also one that GoodVibes has thermochemistry for:
if f.find('*') == -1 and f not in pes_list:
match = None
for key in thermo_data:
if os.path.splitext(os.path.basename(key))[0] in f.replace('[', '').replace(']', '').replace('+', ',').replace(' ', '').split(','):
match = key
if match:
names.append(n.strip())
files.append(match)
else:
log.write(" Warning! " + f.strip() + ' is specified in ' + file +
' but no thermochemistry data found\n')
elif f not in pes_list:
match = []
for key in thermo_data:
if os.path.splitext(os.path.basename(key))[0].find(f.strip().strip('*')) == 0:
match.append(key)
if len(match) > 0:
names.append(n.strip())
files.append(match)
else:
log.write(" Warning! " + f.strip() + ' is specified in ' + file +
' but no thermochemistry data found\n')
except ValueError:
if line.isspace():
pass
elif line.strip().find('#') > -1:
pass
elif len(line) > 2:
warn = " Warning! " + file + ' input is incorrectly formatted for line:\n\t' + line
log.write(warn)
# Look at FORMAT block to see if user has specified any formatting rules
if dline.strip().find('FORMAT') > -1:
for j, line in enumerate(data[i + 1:]):
if line.strip().find('dec') > -1:
try:
self.dec = int(line.strip().replace(':', '=').split("=")[1].strip())
except IndexError:
pass
if line.strip().find('zero') > -1:
zeros = []
try:
zeros.append(line.strip().replace(':', '=').split("=")[1].strip())
except IndexError:
pass
if line.strip().find('units') > -1:
try:
self.units = line.strip().replace(':', '=').split("=")[1].strip()
except IndexError:
pass
if line.strip().find('boltz') > -1:
try:
self.boltz = line.strip().replace(':', '=').split("=")[1].strip()
except IndexError:
pass
for i in range(len(files)):
if len(files[i]) == 1:
files[i] = files[i][0]
species = dict(zip(names, files))
self.path, self.species = [], []
self.spc_abs, self.e_abs, self.zpe_abs, self.h_abs, self.qh_abs, self.s_abs, self.qs_abs, self.g_abs, self.qhg_abs, self.cosmo_qhg_abs = [], [], [], [], [], [], [], [], [], []
self.spc_zero, self.e_zero, self.zpe_zero, self.h_zero, self.qh_zero, self.ts_zero, self.qhts_zero, self.g_zero, self.qhg_zero, self.cosmo_qhg_zero = [], [], [], [], [], [], [], [], [], []
self.g_qhgvals, self.g_species_qhgzero, self.g_rel_val = [], [], []
# Loop over .yaml file, grab energies, populate arrays and compute Boltzmann factors
with open(file) as f:
data = f.readlines()
for i, dline in enumerate(data):
if dline.strip().find('PES') > -1:
n = 0
for j, line in enumerate(data[i + 1:]):
if line.strip().startswith('#') == True:
pass
elif len(line) <= 2:
pass
elif line.strip().startswith('---') == True:
break
elif line.strip() != '':
try:
self.e_zero.append([])
self.spc_zero.append([])
self.zpe_zero.append([])
self.h_zero.append([])
self.qh_zero.append([])
self.ts_zero.append([])
self.qhts_zero.append([])
self.g_zero.append([])
self.qhg_zero.append([])
self.cosmo_qhg_zero.append([])
min_conf = False
spc_zero, e_zero, zpe_zero, h_zero, qh_zero, s_zero, qs_zero, g_zero, qhg_zero = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
h_conf, h_tot, s_conf, s_tot, qh_conf, qh_tot, qs_conf, qs_tot, cosmo_qhg_zero = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
zero_structures = zeros[n].replace(' ', '').split('+')
# Routine for 'zero' values
for structure in zero_structures:
try:
if not isinstance(species[structure], list):
if hasattr(thermo_data[species[structure]], "sp_energy"):
spc_zero += thermo_data[species[structure]].sp_energy
e_zero += thermo_data[species[structure]].scf_energy
zpe_zero += thermo_data[species[structure]].zpe
h_zero += thermo_data[species[structure]].enthalpy
qh_zero += thermo_data[species[structure]].qh_enthalpy
s_zero += thermo_data[species[structure]].entropy
qs_zero += thermo_data[species[structure]].qh_entropy
g_zero += thermo_data[species[structure]].gibbs_free_energy
qhg_zero += thermo_data[species[structure]].qh_gibbs_free_energy
cosmo_qhg_zero += thermo_data[species[structure]].cosmo_qhg
else: # If we have a list of different kinds of structures: loop over conformers
g_min, boltz_sum = sys.float_info.max, 0.0
for conformer in species[
structure]: # Find minimum G, along with associated enthalpy and entropy
if cosmo:
if thermo_data[conformer].cosmo_qhg <= g_min:
min_conf = thermo_data[conformer]
g_min = thermo_data[conformer].cosmo_qhg
else:
if thermo_data[conformer].qh_gibbs_free_energy <= g_min:
min_conf = thermo_data[conformer]
g_min = thermo_data[conformer].qh_gibbs_free_energy
for conformer in species[structure]: # Get a Boltzmann sum for conformers
if cosmo:
g_rel = thermo_data[conformer].cosmo_qhg - g_min
else:
g_rel = thermo_data[conformer].qh_gibbs_free_energy - g_min
boltz_fac = math.exp(-g_rel * J_TO_AU / GAS_CONSTANT / temperature)
boltz_sum += boltz_fac
for conformer in species[
structure]: # Calculate relative data based on Gmin and the Boltzmann sum
if cosmo:
g_rel = thermo_data[conformer].cosmo_qhg - g_min
else:
g_rel = thermo_data[conformer].qh_gibbs_free_energy - g_min
boltz_fac = math.exp(-g_rel * J_TO_AU / GAS_CONSTANT / temperature)
boltz_prob = boltz_fac / boltz_sum
#if no contribution, skip further calculations
if boltz_prob == 0.0:
continue
if hasattr(thermo_data[conformer], "sp_energy") and thermo_data[
conformer].sp_energy != '!':
spc_zero += thermo_data[conformer].sp_energy * boltz_prob
if hasattr(thermo_data[conformer], "sp_energy") and thermo_data[
conformer].sp_energy == '!':
sys.exit(
"Not all files contain a SPC value, relative values will not be calculated.")
e_zero += thermo_data[conformer].scf_energy * boltz_prob
zpe_zero += thermo_data[conformer].zpe * boltz_prob
# Default calculate gconf correction for conformers, skip if no contribution
if gconf and boltz_prob > 0.0 and boltz_prob != 1.0:
h_conf += thermo_data[conformer].enthalpy * boltz_prob
s_conf += thermo_data[conformer].entropy * boltz_prob
s_conf += -GAS_CONSTANT / J_TO_AU * boltz_prob * math.log(boltz_prob)
qh_conf += thermo_data[conformer].qh_enthalpy * boltz_prob
qs_conf += thermo_data[conformer].qh_entropy * boltz_prob
qs_conf += -GAS_CONSTANT / J_TO_AU * boltz_prob * math.log(boltz_prob)
elif gconf and boltz_prob == 1.0:
h_conf += thermo_data[conformer].enthalpy
s_conf += thermo_data[conformer].entropy
qh_conf += thermo_data[conformer].qh_enthalpy
qs_conf += thermo_data[conformer].qh_entropy
else:
h_zero += thermo_data[conformer].enthalpy * boltz_prob
s_zero += thermo_data[conformer].entropy * boltz_prob
g_zero += thermo_data[conformer].gibbs_free_energy * boltz_prob
qh_zero += thermo_data[conformer].qh_enthalpy * boltz_prob
qs_zero += thermo_data[conformer].qh_entropy * boltz_prob
qhg_zero += thermo_data[conformer].qh_gibbs_free_energy * boltz_prob
cosmo_qhg_zero += thermo_data[conformer].cosmo_qhg * boltz_prob
if gconf:
h_adj = h_conf - min_conf.enthalpy
h_tot = min_conf.enthalpy + h_adj
s_adj = s_conf - min_conf.entropy
s_tot = min_conf.entropy + s_adj
g_corr = h_tot - temperature * s_tot
qh_adj = qh_conf - min_conf.qh_enthalpy
qh_tot = min_conf.qh_enthalpy + qh_adj
qs_adj = qs_conf - min_conf.qh_entropy
qs_tot = min_conf.qh_entropy + qs_adj
if QH:
qg_corr = qh_tot - temperature * qs_tot
else:
qg_corr = h_tot - temperature * qs_tot
except KeyError:
log.write(
" Warning! Structure " + structure + ' has not been defined correctly as energy-zero in ' + file + '\n')
log.write(
" Make sure this structure matches one of the SPECIES defined in the same file\n")
sys.exit(" Please edit " + file + " and try again\n")
# Set zero vals here
conformers, single_structure, mix = False, False, False
for structure in zero_structures:
if not isinstance(species[structure], list):
single_structure = True
else:
conformers = True
if conformers and single_structure:
mix = True
if gconf and min_conf is not False:
if mix:
h_mix = h_tot + h_zero
s_mix = s_tot + s_zero
g_mix = g_corr + g_zero
qh_mix = qh_tot + qh_zero
qs_mix = qs_tot + qs_zero
qg_mix = qg_corr + qhg_zero
cosmo_qhg_mix = qg_corr + cosmo_qhg_zero
self.h_zero[n].append(h_mix)
self.ts_zero[n].append(s_mix)
self.g_zero[n].append(g_mix)
self.qh_zero[n].append(qh_mix)
self.qhts_zero[n].append(qs_mix)
self.qhg_zero[n].append(qg_mix)
self.cosmo_qhg_zero[n].append(cosmo_qhg_mix)
elif conformers:
self.h_zero[n].append(h_tot)
self.ts_zero[n].append(s_tot)
self.g_zero[n].append(g_corr)
self.qh_zero[n].append(qh_tot)
self.qhts_zero[n].append(qs_tot)
self.qhg_zero[n].append(qg_corr)
self.cosmo_qhg_zero[n].append(qg_corr)
else:
self.h_zero[n].append(h_zero)
self.ts_zero[n].append(s_zero)
self.g_zero[n].append(g_zero)
self.qh_zero[n].append(qh_zero)
self.qhts_zero[n].append(qs_zero)
self.qhg_zero[n].append(qhg_zero)
self.cosmo_qhg_zero[n].append(cosmo_qhg_zero)
self.spc_zero[n].append(spc_zero)
self.e_zero[n].append(e_zero)
self.zpe_zero[n].append(zpe_zero)
self.species.append([])
self.e_abs.append([])
self.spc_abs.append([])
self.zpe_abs.append([])
self.h_abs.append([])
self.qh_abs.append([])
self.s_abs.append([])
self.g_abs.append([])
self.qs_abs.append([])
self.qhg_abs.append([])
self.cosmo_qhg_abs.append([])
self.g_qhgvals.append([])
self.g_species_qhgzero.append([])
self.g_rel_val.append([]) # graphing
pathway, pes = line.strip().replace(':', '=').split("=")
pes = pes.strip()
points = [entry.strip() for entry in pes.lstrip('[').rstrip(']').split(',')]
self.path.append(pathway.strip())
# Obtain relative values for each species
for i, point in enumerate(points):
if point != '':
# Create values to populate
point_structures = point.replace(' ', '').split('+')
e_abs, spc_abs, zpe_abs, h_abs, qh_abs, s_abs, g_abs, qs_abs, qhg_abs, cosmo_qhg_abs = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
qh_conf, qh_tot, qs_conf, qs_tot, h_conf, h_tot, s_conf, s_tot, g_corr, qg_corr = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
min_conf = False
rel_val = 0.0
self.g_qhgvals[n].append([])
self.g_species_qhgzero[n].append([])
try:
for j, structure in enumerate(point_structures): # Loop over structures, structures are species specified
zero_conf = 0.0
self.g_qhgvals[n][i].append([])
if not isinstance(species[structure], list): # Only one conf in structures
e_abs += thermo_data[species[structure]].scf_energy
if hasattr(thermo_data[species[structure]], "sp_energy"):
spc_abs += thermo_data[species[structure]].sp_energy
zpe_abs += thermo_data[species[structure]].zpe
h_abs += thermo_data[species[structure]].enthalpy
qh_abs += thermo_data[species[structure]].qh_enthalpy
s_abs += thermo_data[species[structure]].entropy
g_abs += thermo_data[species[structure]].gibbs_free_energy
qs_abs += thermo_data[species[structure]].qh_entropy
qhg_abs += thermo_data[species[structure]].qh_gibbs_free_energy
cosmo_qhg_abs += thermo_data[species[structure]].cosmo_qhg
zero_conf += thermo_data[species[structure]].qh_gibbs_free_energy
self.g_qhgvals[n][i][j].append(
thermo_data[species[structure]].qh_gibbs_free_energy)
rel_val += thermo_data[species[structure]].qh_gibbs_free_energy
else: # If we have a list of different kinds of structures: loop over conformers
g_min, boltz_sum = sys.float_info.max, 0.0
# Find minimum G, along with associated enthalpy and entropy
for conformer in species[structure]:
if cosmo:
if thermo_data[conformer].cosmo_qhg <= g_min:
min_conf = thermo_data[conformer]
g_min = thermo_data[conformer].cosmo_qhg
else:
if thermo_data[conformer].qh_gibbs_free_energy <= g_min:
min_conf = thermo_data[conformer]
g_min = thermo_data[conformer].qh_gibbs_free_energy
# Get a Boltzmann sum for conformers
for conformer in species[structure]:
if cosmo:
g_rel = thermo_data[conformer].cosmo_qhg - g_min
else:
g_rel = thermo_data[conformer].qh_gibbs_free_energy - g_min
boltz_fac = math.exp(-g_rel * J_TO_AU / GAS_CONSTANT / temperature)
boltz_sum += boltz_fac
# Calculate relative data based on Gmin and the Boltzmann sum
for conformer in species[structure]:
if cosmo:
g_rel = thermo_data[conformer].cosmo_qhg - g_min
else:
g_rel = thermo_data[conformer].qh_gibbs_free_energy - g_min
boltz_fac = math.exp(-g_rel * J_TO_AU / GAS_CONSTANT / temperature)
boltz_prob = boltz_fac / boltz_sum
if boltz_prob == 0.0:
continue
if hasattr(thermo_data[conformer], "sp_energy") and thermo_data[
conformer].sp_energy != '!':
spc_abs += thermo_data[conformer].sp_energy * boltz_prob
if hasattr(thermo_data[conformer], "sp_energy") and thermo_data[conformer].sp_energy == '!':
sys.exit("\n Not all files contain a SPC value, relative values will not be calculated.\n")
e_abs += thermo_data[conformer].scf_energy * boltz_prob
zpe_abs += thermo_data[conformer].zpe * boltz_prob
if cosmo:
zero_conf += thermo_data[conformer].cosmo_qhg * boltz_prob
rel_val += thermo_data[conformer].cosmo_qhg * boltz_prob
else:
zero_conf += thermo_data[
conformer].qh_gibbs_free_energy * boltz_prob
rel_val += thermo_data[
conformer].qh_gibbs_free_energy * boltz_prob
# Default calculate gconf correction for conformers, skip if no contribution
if gconf and boltz_prob > 0.0 and boltz_prob != 1.0:
h_conf += thermo_data[conformer].enthalpy * boltz_prob
s_conf += thermo_data[conformer].entropy * boltz_prob
s_conf += -GAS_CONSTANT / J_TO_AU * boltz_prob * math.log(boltz_prob)
qh_conf += thermo_data[conformer].qh_enthalpy * boltz_prob
qs_conf += thermo_data[conformer].qh_entropy * boltz_prob
qs_conf += -GAS_CONSTANT / J_TO_AU * boltz_prob * math.log(boltz_prob)
elif gconf and boltz_prob == 1.0:
h_conf += thermo_data[conformer].enthalpy
s_conf += thermo_data[conformer].entropy
qh_conf += thermo_data[conformer].qh_enthalpy
qs_conf += thermo_data[conformer].qh_entropy
else:
h_abs += thermo_data[conformer].enthalpy * boltz_prob
s_abs += thermo_data[conformer].entropy * boltz_prob
g_abs += thermo_data[conformer].gibbs_free_energy * boltz_prob
qh_abs += thermo_data[conformer].qh_enthalpy * boltz_prob
qs_abs += thermo_data[conformer].qh_entropy * boltz_prob
qhg_abs += thermo_data[
conformer].qh_gibbs_free_energy * boltz_prob
cosmo_qhg_abs += thermo_data[conformer].cosmo_qhg * boltz_prob
if cosmo:
self.g_qhgvals[n][i][j].append(thermo_data[conformer].cosmo_qhg)
else:
self.g_qhgvals[n][i][j].append(thermo_data[conformer].qh_gibbs_free_energy)
if gconf:
h_adj = h_conf - min_conf.enthalpy
h_tot = min_conf.enthalpy + h_adj
s_adj = s_conf - min_conf.entropy
s_tot = min_conf.entropy + s_adj
g_corr = h_tot - temperature * s_tot
qh_adj = qh_conf - min_conf.qh_enthalpy
qh_tot = min_conf.qh_enthalpy + qh_adj
qs_adj = qs_conf - min_conf.qh_entropy
qs_tot = min_conf.qh_entropy + qs_adj
if QH:
qg_corr = qh_tot - temperature * qs_tot
else:
qg_corr = h_tot - temperature * qs_tot
self.g_species_qhgzero[n][i].append(zero_conf) # Raw data for graphing
except KeyError:
log.write(" Warning! Structure " + structure + ' has not been defined correctly in ' + file + '\n')
sys.exit(" Please edit " + file + " and try again\n")
self.species[n].append(point)
self.e_abs[n].append(e_abs)
self.spc_abs[n].append(spc_abs)
self.zpe_abs[n].append(zpe_abs)
conformers, single_structure, mix = False, False, False
self.g_rel_val[n].append(rel_val)
for structure in point_structures:
if not isinstance(species[structure], list):
single_structure = True
else:
conformers = True
if conformers and single_structure:
mix = True
if gconf and min_conf is not False:
if mix:
h_mix = h_tot + h_abs
s_mix = s_tot + s_abs
g_mix = g_corr + g_abs
qh_mix = qh_tot + qh_abs
qs_mix = qs_tot + qs_abs
qg_mix = qg_corr + qhg_abs
cosmo_qhg_mix = qg_corr + cosmo_qhg_zero
self.h_abs[n].append(h_mix)
self.s_abs[n].append(s_mix)
self.g_abs[n].append(g_mix)
self.qh_abs[n].append(qh_mix)
self.qs_abs[n].append(qs_mix)
self.qhg_abs[n].append(qg_mix)
self.cosmo_qhg_abs[n].append(cosmo_qhg_mix)
elif conformers:
self.h_abs[n].append(h_tot)
self.s_abs[n].append(s_tot)
self.g_abs[n].append(g_corr)
self.qh_abs[n].append(qh_tot)
self.qs_abs[n].append(qs_tot)
self.qhg_abs[n].append(qg_corr)
self.cosmo_qhg_abs[n].append(qg_corr)
else:
self.h_abs[n].append(h_abs)
self.s_abs[n].append(s_abs)
self.g_abs[n].append(g_abs)
self.qh_abs[n].append(qh_abs)
self.qs_abs[n].append(qs_abs)
self.qhg_abs[n].append(qhg_abs)
self.cosmo_qhg_abs[n].append(cosmo_qhg_abs)
else:
self.species[n].append('none')
self.e_abs[n].append(float('nan'))
n = n + 1
except IndexError:
pass
def jitter(datasets, color, ax, nx, marker, edgecol='black'):
"""Scatter points that may overlap when graphing by randomly offsetting them."""
import numpy as np
for i, p in enumerate(datasets):
y = [p]
x = np.random.normal(nx, 0.015, size=len(y))
ax.plot(x, y, alpha=0.5, markersize=7, color=color, marker=marker, markeredgecolor=edgecol,
markeredgewidth=1, linestyle='None')
def graph_reaction_profile(graph_data, log, options, plt):
"""
Graph a reaction profile using quasi-harmonic Gibbs free energy values.
Use matplotlib package to graph a reaction pathway potential energy surface.
Parameters:
graph_data (get_pes object): potential energy surface object containing relative thermodynamic data.
log (Logger object): Logger to write status updates to user on command line.
options (dict): input options for GV.
plt (matplotlib): matplotlib library reference.
"""
import matplotlib.path as mpath
import matplotlib.patches as mpatches
log.write("\n Graphing Reaction Profile\n")
data = {}
# Get PES data
for i, path in enumerate(graph_data.path):
g_data = []
zero_val = graph_data.qhg_zero[i][0]
for j, e_abs in enumerate(graph_data.e_abs[i]):
species = graph_data.qhg_abs[i][j]
relative = species - zero_val
if graph_data.units == 'kJ/mol':
formatted_g = J_TO_AU / 1000.0 * relative
else:
formatted_g = KCAL_TO_AU * relative # Defaults to kcal/mol
g_data.append(formatted_g)
data[path] = g_data
# Grab any additional formatting for graph
with open(options.graph) as f:
yaml = f.readlines()
#defaults
ylim, color, show_conf, show_gconf, show_title = None, None, True, False, True
label_point, label_xaxis, dpi, dec, legend = False, True, False, 2, False,
colors, gridlines, title = None, False, 'Potential Energy Surface'
for i, line in enumerate(yaml):
if line.strip().find('FORMAT') > -1:
for j, line in enumerate(yaml[i + 1:]):
if line.strip().find('ylim') > -1:
try:
ylim = line.strip().replace(':', '=').split("=")[1].replace(' ', '').strip().split(',')
except IndexError:
pass
if line.strip().find('color') > -1:
try:
colors = line.strip().replace(':', '=').split("=")[1].replace(' ', '').strip().split(',')
except IndexError:
pass
if line.strip().find('title') > -1:
try:
title_input = line.strip().replace(':', '=').split("=")[1].strip().split(',')[0]
if title_input == 'false' or title_input == 'False':
show_title = False
else:
title = title_input
except IndexError:
pass
if line.strip().find('dec') > -1:
try:
dec = int(line.strip().replace(':', '=').split("=")[1].strip().split(',')[0])
except IndexError:
pass
if line.strip().find('pointlabel') > -1:
try:
label_input = line.strip().replace(':', '=').split("=")[1].strip().split(',')[0].lower()
if label_input == 'false':
label_point = False
except IndexError:
pass
if line.strip().find('show_conformers') > -1:
try:
conformers = line.strip().replace(':', '=').split("=")[1].strip().split(',')[0].lower()
if conformers == 'false':
show_conf = False
except IndexError:
pass
if line.strip().find('show_gconf') > -1:
try:
gconf_input = line.strip().replace(':', '=').split("=")[1].strip().split(',')[0].lower()
if gconf_input == 'true':
show_gconf = True
except IndexError:
pass
if line.strip().find('xlabel') > -1:
try:
label_input = line.strip().replace(':', '=').split("=")[1].strip().split(',')[0].lower()
if label_input == 'false':
label_xaxis = False
except IndexError:
pass
if line.strip().find('dpi') > -1:
try:
dpi = int(line.strip().replace(':', '=').split("=")[1].strip().split(',')[0])
except IndexError:
pass
if line.strip().find('legend') > -1:
try:
legend_input = line.strip().replace(':', '=').split("=")[1].strip().split(',')[0].lower()
if legend_input == 'false':
legend = False
except IndexError:
pass
if line.strip().find('gridlines') > -1:
try:
gridline_input = line.strip().replace(':', '=').split("=")[1].strip().split(',')[0].lower()
if gridline_input == 'true':
gridlines = True
except IndexError:
pass
# Do some graphing
Path = mpath.Path
fig, ax = plt.subplots()
for i, path in enumerate(graph_data.path):
for j in range(len(data[path]) - 1):
if colors is not None:
if len(colors) > 1:
color = colors[i]
else:
color = colors[0]
else:
color = 'k'
colors = ['k']
if j == 0:
path_patch = mpatches.PathPatch(
Path([(j, data[path][j]), (j + 0.5, data[path][j]), (j + 0.5, data[path][j + 1]),
(j + 1, data[path][j + 1])],
[Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]),
label=path, fc="none", transform=ax.transData, color=color)
else:
path_patch = mpatches.PathPatch(
Path([(j, data[path][j]), (j + 0.5, data[path][j]), (j + 0.5, data[path][j + 1]),
(j + 1, data[path][j + 1])],
[Path.MOVETO, Path.CURVE4, Path.CURVE4, Path.CURVE4]),
fc="none", transform=ax.transData, color=color)
ax.add_patch(path_patch)
plt.hlines(data[path][j], j - 0.15, j + 0.15,colors=['k'])
plt.hlines(data[path][-1], len(data[path]) - 1.15, len(data[path]) - 0.85,colors=['k'])
if show_conf:
markers = ['o', 's', 'x', 'P', 'D']
for i in range(len(graph_data.g_qhgvals)): # i = reaction pathways
for j in range(len(graph_data.g_qhgvals[i])): # j = reaction steps
for k in range(len(graph_data.g_qhgvals[i][j])): # k = species
zero_val = graph_data.g_species_qhgzero[i][j][k]
points = graph_data.g_qhgvals[i][j][k]
points[:] = [((x - zero_val) + (graph_data.qhg_abs[i][j] - graph_data.qhg_zero[i][0]) + (
graph_data.g_rel_val[i][j] - graph_data.qhg_abs[i][j])) * KCAL_TO_AU for x in points]
if len(colors) > 1:
jitter(points, colors[i], ax, j, markers[k])
else:
jitter(points, color, ax, j, markers[k])
if show_gconf:
plt.hlines((graph_data.g_rel_val[i][j] - graph_data.qhg_zero[i][0]) * KCAL_TO_AU, j - 0.15,
j + 0.15, linestyles='dashed')
# Annotate points with energy level
if label_point:
for i, path in enumerate(graph_data.path):
for i, point in enumerate(data[path]):
if dec == 1:
ax.annotate("{:.1f}".format(point), (i, point - fig.get_figheight() * fig.dpi * 0.025),
horizontalalignment='center')
else:
ax.annotate("{:.2f}".format(point), (i, point - fig.get_figheight() * fig.dpi * 0.025),
horizontalalignment='center')
if ylim is not None:
ax.set_ylim(float(ylim[0]), float(ylim[1]))
if show_title:
if title is not None:
ax.set_title(title)
else:
ax.set_title("Reaction Profile")
ax.set_ylabel(r"$G_{rel}$ (kcal / mol)")
plt.minorticks_on()
ax.tick_params(axis='x', which='minor', bottom=False)
ax.tick_params(which='minor', labelright=True, right=True)
ax.tick_params(labelright=True, right=True)
if gridlines:
ax.yaxis.grid(linestyle='--', linewidth=0.5)
ax.xaxis.grid(linewidth=0)
ax_label = []
xaxis_text = []
newax_text_list = []
for i, path in enumerate(graph_data.path):
newax_text = []
ax_label.append(path)
for j, e_abs in enumerate(graph_data.e_abs[i]):
if i == 0:
xaxis_text.append(graph_data.species[i][j])
else:
newax_text.append(graph_data.species[i][j])
newax_text_list.append(newax_text)
# Label rxn steps
if label_xaxis:
if colors is not None:
plt.xticks(range(len(xaxis_text)), xaxis_text, color=colors[0])
else:
plt.xticks(range(len(xaxis_text)), xaxis_text, color='k')
locs, labels = plt.xticks()
newax = []
for i in range(len(ax_label)):
if i > 0:
y = ax.twiny()
newax.append(y)
for i in range(len(newax)):
newax[i].set_xticks(locs)
newax[i].set_xlim(ax.get_xlim())
if len(colors) > 1:
newax[i].tick_params(axis='x', colors=colors[i + 1])
else:
newax[i].tick_params(axis='x', colors='k')
newax[i].set_xticklabels(newax_text_list[i + 1])
newax[i].xaxis.set_ticks_position('bottom')
newax[i].xaxis.set_label_position('bottom')
newax[i].xaxis.set_ticks_position('none')
newax[i].spines['bottom'].set_position(('outward', 15 * (i + 1)))
newax[i].spines['bottom'].set_visible(False)
else:
plt.xticks(range(len(xaxis_text)))
ax.xaxis.set_ticklabels([])
if legend:
plt.legend()
if dpi is not False:
plt.savefig('Rxn_profile_' + options.graph.split('.')[0] + '.png', dpi=dpi)
plt.show()
|