1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838
|
# -*- coding: utf-8 -*-
from __future__ import print_function, absolute_import
import ctypes, math, os.path, sys
import numpy as np
# Importing regardless of relative import
try:
from .io import *
except:
from io import *
# PHYSICAL CONSTANTS UNITS
GAS_CONSTANT = 8.3144621 # J / K / mol
PLANCK_CONSTANT = 6.62606957e-34 # J * s
BOLTZMANN_CONSTANT = 1.3806488e-23 # J / K
SPEED_OF_LIGHT = 2.99792458e10 # cm / s
AVOGADRO_CONSTANT = 6.0221415e23 # 1 / mol
AMU_to_KG = 1.66053886E-27 # UNIT CONVERSION
J_TO_AU = 4.184 * 627.509541 * 1000.0 # UNIT CONVERSION
# Symmetry numbers for different point groups
pg_sm = {"C1": 1, "Cs": 1, "Ci": 1, "C2": 2, "C3": 3, "C4": 4, "C5": 5, "C6": 6, "C7": 7, "C8": 8, "D2": 4, "D3": 6,
"D4": 8, "D5": 10, "D6": 12, "D7": 14, "D8": 16, "C2v": 2, "C3v": 3, "C4v": 4, "C5v": 5, "C6v": 6, "C7v": 7,
"C8v": 8, "C2h": 2, "C3h": 3, "C4h": 4, "C5h": 5, "C6h": 6, "C7h": 7, "C8h": 8, "D2h": 4, "D3h": 6, "D4h": 8,
"D5h": 10, "D6h": 12, "D7h": 14, "D8h": 16, "D2d": 4, "D3d": 6, "D4d": 8, "D5d": 10, "D6d": 12, "D7d": 14,
"D8d": 16, "S4": 4, "S6": 6, "S8": 8, "T": 6, "Th": 12, "Td": 12, "O": 12, "Oh": 24, "Cinfv": 1, "Dinfh": 2,
"I": 30, "Ih": 60, "Kh": 1}
def sharepath(filename):
"""
Get absolute pathway to GoodVibes project.
Used in finding location of compiled C files used in symmetry corrections.
Parameter:
filename (str): name of compiled C file, OS specific.
Returns:
str: absolute path on machine to compiled C file.
"""
here = os.path.dirname(os.path.abspath(__file__))
return os.path.join(here, 'share', filename)
def calc_translational_energy(temperature):
"""
Translational energy evaluation
Calculates the translational energy (J/mol) of an ideal gas.
i.e. non-interacting molecules so molar energy = Na * atomic energy.
This approximation applies to all energies and entropies computed within.
Etrans = 3/2 RT!
Parameter:
temperature (float): temperature for calculations to be performed at.
Returns:
float: translational energy of chemical system.
"""
energy = 1.5 * GAS_CONSTANT * temperature
return energy
def calc_rotational_energy(zpe, symmno, temperature, linear):
"""
Rotational energy evaluation
Calculates the rotational energy (J/mol)
Etrans = 0 (atomic) ; RT (linear); 3/2 RT (non-linear)
Parameters:
zpe (float): zero point energy of chemical system.
symmno (float): symmetry number, used for adding a symmetry correction.
temperature (float): temperature for calculations to be performed at.
linear (bool): flag for linear molecules, changes how calculation is performed.
Returns:
float: rotational energy of chemical system.
"""
if zpe == 0.0:
energy = 0.0
elif linear == 1:
energy = GAS_CONSTANT * temperature
else:
energy = 1.5 * GAS_CONSTANT * temperature
return energy
def calc_vibrational_energy(frequency_wn, temperature, freq_scale_factor, fract_modelsys):
"""
Vibrational energy evaluation.
Calculates the vibrational energy contribution (J/mol).
Includes ZPE (0K) and thermal contributions.
Evib = R * Sum(0.5 hv/k + (hv/k)/(e^(hv/KT)-1))
Parameters:
frequency_wn (list): list of frequencies parsed from file.
temperature (float): temperature for calculations to be performed at.
freq_scale_factor (float): frequency scaling factor based on level of theory and basis set used.
fract_modelsys (list): MM frequency scale factors obtained from ONIOM calculations.
Returns:
float: vibrational energy of chemical system.
"""
if fract_modelsys is not False:
freq_scale_factor = [freq_scale_factor[0] * fract_modelsys[i] + freq_scale_factor[1] * (1.0 - fract_modelsys[i])
for i in range(len(fract_modelsys))]
factor = [(PLANCK_CONSTANT * frequency_wn[i] * SPEED_OF_LIGHT * freq_scale_factor[i]) / (BOLTZMANN_CONSTANT * temperature)
for i in range(len(frequency_wn))]
else:
factor = [(PLANCK_CONSTANT * freq * SPEED_OF_LIGHT * freq_scale_factor) / (BOLTZMANN_CONSTANT * temperature) for freq in frequency_wn]
# Error occurs if T is too low when performing math.exp
for entry in factor:
if entry > math.log(sys.float_info.max):
sys.exit("\nx Warning! Temperature may be too low to calculate vibrational energy. Please adjust using the `-t` option and try again.\n")
energy = [entry * GAS_CONSTANT * temperature * (0.5 + (1.0 / (math.exp(entry) - 1.0)))
for entry in factor]
return sum(energy)
def calc_zeropoint_energy(frequency_wn, freq_scale_factor, fract_modelsys):
"""
Vibrational Zero point energy evaluation.
Calculates the vibrational ZPE (J/mol)
EZPE = Sum(0.5 hv/k)
Parameters:
frequency_wn (list): list of frequencies parsed from file.
freq_scale_factor (float): frequency scaling factor based on level of theory and basis set used.
fract_modelsys (list): MM frequency scale factors obtained from ONIOM calculations.
Returns:
float: zerp point energy of chemical system.
"""
if fract_modelsys is not False:
freq_scale_factor = [freq_scale_factor[0] * fract_modelsys[i] + freq_scale_factor[1] * (1.0 - fract_modelsys[i])
for i in range(len(fract_modelsys))]
factor = [(PLANCK_CONSTANT * frequency_wn[i] * SPEED_OF_LIGHT * freq_scale_factor[i]) / (BOLTZMANN_CONSTANT)
for i in range(len(frequency_wn))]
else:
factor = [(PLANCK_CONSTANT * freq * SPEED_OF_LIGHT * freq_scale_factor) / (BOLTZMANN_CONSTANT)
for freq in frequency_wn]
energy = [0.5 * entry * GAS_CONSTANT for entry in factor]
return sum(energy)
def get_free_space(solv):
"""
Computed the amount of accessible free space (ml per L) in solution.
Calculates the free space in a litre of bulk solvent, based on
Shakhnovich and Whitesides (J. Org. Chem. 1998, 63, 3821-3830).
Free space based on accessible to a solute immersed in bulk solvent,
i.e. this is the volume not occupied by solvent molecules, calculated using
literature values for molarity and B3LYP/6-31G* computed molecular volumes.
Parameter:
solv (str): solvent used in chemical calculation.
Returns:
float: accessible free space in solution.
"""
solvent_list = ["none", "H2O", "toluene", "DMF", "AcOH", "chloroform"]
molarity = [1.0, 55.6, 9.4, 12.9, 17.4, 12.5] # mol/l
molecular_vol = [1.0, 27.944, 149.070, 77.442, 86.10, 97.0] # Angstrom^3
nsolv = 0
for i in range(0, len(solvent_list)):
if solv == solvent_list[i]:
nsolv = i
solv_molarity = molarity[nsolv]
solv_volume = molecular_vol[nsolv]
if nsolv > 0:
v_free = 8 * ((1E27 / (solv_molarity * AVOGADRO_CONSTANT)) ** 0.333333 - solv_volume ** 0.333333) ** 3
freespace = v_free * solv_molarity * AVOGADRO_CONSTANT * 1E-24
else:
freespace = 1000.0
return freespace
def calc_translational_entropy(molecular_mass, conc, temperature, solv):
"""
Translational entropy evaluation.
Calculates the translational entropic contribution (J/(mol*K)) of an ideal gas.
Needs the molecular mass. Convert mass in amu to kg; conc in mol/l to number per m^3
Strans = R(Ln(2pimkT/h^2)^3/2(1/C)) + 1 + 3/2)
Parameters:
molecular_mass (float): total molecular mass of chemical system.
conc (float): concentration to perform calculations at.
temperature (float): temperature for calculations to be performed at.
solv (str): solvent used in chemical calculation.
Returns:
float: translational entropy of chemical system.
"""
lmda = ((2.0 * math.pi * molecular_mass * AMU_to_KG * BOLTZMANN_CONSTANT * temperature) ** 0.5) / PLANCK_CONSTANT
freespace = get_free_space(solv)
ndens = conc * 1000 * AVOGADRO_CONSTANT / (freespace / 1000.0)
entropy = GAS_CONSTANT * (2.5 + math.log(lmda ** 3 / ndens))
return entropy
def calc_electronic_entropy(multiplicity):
"""
Electronic entropy evaluation.
Calculates the electronic entropic contribution (J/(mol*K)) of the molecule
Selec = R(Ln(multiplicity)
Parameter:
multiplicity (int): multiplicity of chemical system.
Returns:
float: electronic entropy of chemical system.
"""
entropy = GAS_CONSTANT * (math.log(multiplicity))
return entropy
def calc_rotational_entropy(zpe, linear, symmno, rotemp, temperature):
"""
Rotational entropy evaluation.
Calculates the rotational entropy (J/(mol*K))
Strans = 0 (atomic) ; R(Ln(q)+1) (linear); R(Ln(q)+3/2) (non-linear)
Parameters:
zpe (float): zero point energy of chemical system.
linear (bool): flag for linear molecules.
symmno (float): symmetry number of chemical system.
rotemp (list): list of parsed rotational temperatures of chemical system.
temperature (float): temperature for calculations to be performed at.
Returns:
float: rotational entropy of chemical system.
"""
if rotemp == [0.0, 0.0, 0.0] or zpe == 0.0: # Monatomic
entropy = 0.0
else:
if len(rotemp) == 1: # Diatomic or linear molecules
linear = 1
qrot = temperature / rotemp[0]
elif len(rotemp) == 2: # Possible gaussian problem with linear triatomic
linear = 2
else:
qrot = math.pi * temperature ** 3 / (rotemp[0] * rotemp[1] * rotemp[2])
qrot = qrot ** 0.5
if linear == 1:
entropy = GAS_CONSTANT * (math.log(qrot / symmno) + 1)
elif linear == 2:
entropy = 0.0
else:
entropy = GAS_CONSTANT * (math.log(qrot / symmno) + 1.5)
return entropy
def calc_rrho_entropy(frequency_wn, temperature, freq_scale_factor, fract_modelsys):
"""
Rigid rotor harmonic oscillator (RRHO) entropy evaluation - this is the default treatment
Entropic contributions (J/(mol*K)) according to a rigid-rotor
harmonic-oscillator description for a list of vibrational modes
Sv = RSum(hv/(kT(e^(hv/kT)-1) - ln(1-e^(-hv/kT)))
Parameters:
frequency_wn (list): list of frequencies parsed from file.
temperature (float): temperature for calculations to be performed at.
freq_scale_factor (float): frequency scaling factor based on level of theory and basis set used.
fract_modelsys (list): MM frequency scale factors obtained from ONIOM calculations.
Returns:
float: RRHO entropy of chemical system.
"""
if fract_modelsys is not False:
freq_scale_factor = [freq_scale_factor[0] * fract_modelsys[i] + freq_scale_factor[1] * (1.0 - fract_modelsys[i])
for i in range(len(fract_modelsys))]
factor = [(PLANCK_CONSTANT * frequency_wn[i] * SPEED_OF_LIGHT * freq_scale_factor[i]) /
(BOLTZMANN_CONSTANT * temperature) for i in range(len(frequency_wn))]
else:
factor = [(PLANCK_CONSTANT * freq * SPEED_OF_LIGHT * freq_scale_factor) / (BOLTZMANN_CONSTANT * temperature)
for freq in frequency_wn]
entropy = [entry * GAS_CONSTANT / (math.exp(entry) - 1) - GAS_CONSTANT * math.log(1 - math.exp(-entry))
for entry in factor]
return entropy
def calc_qRRHO_energy(frequency_wn, temperature, freq_scale_factor):
"""
Quasi-rigid rotor harmonic oscillator energy evaluation.
Head-Gordon RRHO-vibrational energy contribution (J/mol*K) of
vibrational modes described by a rigid-rotor harmonic approximation.
V_RRHO = 1/2(Nhv) + RT(hv/kT)e^(-hv/kT)/(1-e^(-hv/kT))
Parameters:
frequency_wn (list): list of frequencies parsed from file.
temperature (float): temperature for calculations to be performed at.
freq_scale_factor (float): frequency scaling factor based on level of theory and basis set used.
Returns:
float: quasi-RRHO energy of chemical system.
"""
factor = [PLANCK_CONSTANT * freq * SPEED_OF_LIGHT * freq_scale_factor for freq in frequency_wn]
energy = [0.5 * AVOGADRO_CONSTANT * entry + GAS_CONSTANT * temperature * entry / BOLTZMANN_CONSTANT
/ temperature * math.exp(-entry / BOLTZMANN_CONSTANT / temperature) /
(1 - math.exp(-entry / BOLTZMANN_CONSTANT / temperature)) for entry in factor]
return energy
def calc_freerot_entropy(frequency_wn, temperature, freq_scale_factor, fract_modelsys, file, inertia, roconst):
"""
Free rotor entropy evaluation.
Entropic contributions (J/(mol*K)) according to a free-rotor
description for a list of vibrational modes
Sr = R(1/2 + 1/2ln((8pi^3u'kT/h^2))
Parameters:
frequency_wn (list): list of frequencies parsed from file.
temperature (float): temperature for calculations to be performed at.
freq_scale_factor (float): frequency scaling factor based on level of theory and basis set used.
fract_modelsys (list): MM frequency scale factors obtained from ONIOM calculations.
inertia (str): flag for choosing global average moment of inertia for all molecules or computing individually from parsed rotational constants
roconst (list): list of parsed rotational constants for computing the average moment of inertia.
Returns:
float: free rotor entropy of chemical system.
"""
# This is the average moment of inertia used by Grimme
if inertia == "global" or len(roconst) == 0:
bav = 1.00e-44
else:
av_roconst_ghz = sum(roconst)/len(roconst) #GHz
av_roconst_hz = av_roconst_ghz * 1000000000 #Hz
av_roconst_s = 1 / av_roconst_hz #s
av_roconst = av_roconst_s * PLANCK_CONSTANT #kg m^2
bav = av_roconst
if fract_modelsys is not False:
freq_scale_factor = [freq_scale_factor[0] * fract_modelsys[i] + freq_scale_factor[1] * (1.0 - fract_modelsys[i])
for i in range(len(fract_modelsys))]
mu = [PLANCK_CONSTANT / (8 * math.pi ** 2 * frequency_wn[i] * SPEED_OF_LIGHT * freq_scale_factor[i]) for i in
range(len(frequency_wn))]
else:
mu = [PLANCK_CONSTANT / (8 * math.pi ** 2 * freq * SPEED_OF_LIGHT * freq_scale_factor) for freq in frequency_wn]
mu_primed = [entry * bav / (entry + bav) for entry in mu]
factor = [8 * math.pi ** 3 * entry * BOLTZMANN_CONSTANT * temperature / PLANCK_CONSTANT ** 2 for entry in mu_primed]
entropy = [(0.5 + math.log(entry ** 0.5)) * GAS_CONSTANT for entry in factor]
return entropy
def calc_damp(frequency_wn, freq_cutoff):
"""A damping function to interpolate between RRHO and free rotor vibrational entropy values"""
alpha = 4
damp = [1 / (1 + (freq_cutoff / entry) ** alpha) for entry in frequency_wn]
return damp
class calc_bbe:
"""
The function to compute the "black box" entropy and enthalpy values along with all other thermochemical quantities.
Parses energy, program version, frequencies, charge, multiplicity, solvation model, computation time.
Computes H, S from partition functions, applying qhasi-harmonic corrections, COSMO-RS solvation corrections,
considering frequency scaling factors from detected level of theory/basis set, and optionally ONIOM frequency scaling.
Attributes:
xyz (getoutData object): contains Cartesian coordinates, atom connectivity.
job_type (str): contains information on the type of Gaussian job such as ground or transition state optimization, frequency.
roconst (list): list of parsed rotational constants from Gaussian calculations.
program (str): program used in chemical computation.
version_program (str): program version used in chemical computation.
solvation_model (str): solvation model used in chemical computation.
file (str): input chemical computation output file.
charge (int): overall charge of molecule.
empirical_dispersion (str): empirical dispersion model used in computation.
multiplicity (int): multiplicity of molecule or chemical system.
mult (int): multiplicity of molecule or chemical system.
point_group (str): point group of molecule or chemical system used for symmetry corrections.
sp_energy (float): single-point energy parsed from output file.
sp_program (str): program used for single-point energy calculation.
sp_version_program (str): version of program used for single-point energy calculation.
sp_solvation_model (str): solvation model used for single-point energy calculation.
sp_file (str): single-point energy calculation output file.
sp_charge (int): overall charge of molecule in single-point energy calculation.
sp_empirical_dispersion (str): empirical dispersion model used in single-point energy computation.
sp_multiplicity (int): multiplicity of molecule or chemical system in single-point energy computation.
cpu (list): days, hours, mins, secs, msecs of computation time.
scf_energy (float): self-consistent field energy.
frequency_wn (list): frequencies parsed from chemical computation output file.
im_freq (list): imaginary frequencies parsed from chemical computation output file.
inverted_freqs (list): frequencies inverted from imaginary to real numbers.
zero_point_corr (float): thermal corrections for zero-point energy parsed from file.
zpe (float): vibrational zero point energy computed from frequencies.
enthalpy (float): enthalpy computed from partition functions.
qh_enthalpy (float): enthalpy computed from partition functions, quasi-harmonic corrections applied.
entropy (float): entropy of chemical system computed from partition functions.
qh_entropy (float): entropy of chemical system computed from partition functions, quasi-harmonic corrections applied.
gibbs_free_energy (float): Gibbs free energy of chemical system computed from enthalpy and entropy.
qh_gibbs_free_energy (float): Gibbs free energy of chemical system computed from quasi-harmonic enthalpy and/or entropy.
cosmo_qhg (float): quasi-harmonic Gibbs free energy with COSMO-RS correction for Gibbs free energy of solvation
linear_warning (bool): flag for linear molecules, may be missing a rotational constant.
"""
def __init__(self, file, QS, QH, s_freq_cutoff, H_FREQ_CUTOFF, temperature, conc, freq_scale_factor, solv, spc,
invert, d3_term, ssymm=False, cosmo=None, mm_freq_scale_factor=False,inertia='global',g4=False):
# List of frequencies and default values
im_freq_cutoff, frequency_wn, im_frequency_wn, rotemp, roconst, linear_mol, link, freqloc, linkmax, symmno, self.cpu, inverted_freqs = 0.0, [], [], [
0.0, 0.0, 0.0], [0.0, 0.0, 0.0], 0, 0, 0, 0, 1, [0, 0, 0, 0, 0], []
linear_warning = False
if mm_freq_scale_factor is False:
fract_modelsys = False
else:
fract_modelsys = []
freq_scale_factor = [freq_scale_factor, mm_freq_scale_factor]
self.xyz = getoutData(file)
self.job_type = gaussian_jobtype(file)
self.roconst = []
# Parse some useful information from the file
self.sp_energy, self.program, self.version_program, self.solvation_model, self.file, self.charge, self.empirical_dispersion, self.multiplicity = parse_data(
file)
with open(file) as f:
g_output = f.readlines()
self.cosmo_qhg = 0.0
# Read any single point energies if requested
if spc != False and spc != 'link':
name, ext = os.path.splitext(file)
try:
self.sp_energy, self.sp_program, self.sp_version_program, self.sp_solvation_model, self.sp_file, self.sp_charge, self.sp_empirical_dispersion, self.sp_multiplicity = parse_data(
name + '_' + spc + ext)
self.cpu = sp_cpu(name + '_' + spc + ext)
except ValueError:
self.sp_energy = '!'
pass
else:
self.sp_energy, self.sp_program, self.sp_version_program, self.sp_solvation_model, self.sp_file, self.sp_charge, self.sp_empirical_dispersion, self.sp_multiplicity = parse_data(
file)
if self.sp_program == 'Gaussian' or self.program == 'Gaussian':
# Count number of links
for line in g_output:
# Only read first link + freq not other link jobs
if "Normal termination" in line:
linkmax += 1
else:
frequency_wn = []
if 'Frequencies --' in line:
freqloc = linkmax
# Iterate over output
if freqloc == 0:
freqloc = len(g_output)
for i, line in enumerate(g_output):
# Link counter
if "Normal termination" in line:
link += 1
# Reset frequencies if in final freq link
if link == freqloc:
frequency_wn = []
im_frequency_wn = []
if mm_freq_scale_factor is not False:
fract_modelsys = []
# If spc specified will take last Energy from file, otherwise will break after freq calc
if not g4:
if link > freqloc:
break
# Iterate over output: look out for low frequencies
if line.strip().startswith('Frequencies -- '):
if mm_freq_scale_factor is not False:
newline = g_output[i + 3]
all_freqs = []
for j in range(2,5):
try:
fr = float(line.strip().split()[j])
all_freqs.append(fr)
except IndexError:
pass
most_low_freq = min(all_freqs)
for j in range(2, 5):
try:
x = float(line.strip().split()[j])
# If given MM freq scale factor fill the fract_modelsys array:
if mm_freq_scale_factor is not False:
y = float(newline.strip().split()[j]) / 100.0
y = float('{:.6f}'.format(y))
else:
y = 1.0
# Only deal with real frequencies
if x > 0.00:
frequency_wn.append(x)
if mm_freq_scale_factor is not False: fract_modelsys.append(y)
# Check if we want to make any low lying imaginary frequencies positive
elif x < -1 * im_freq_cutoff:
if invert is not False:
if invert == 'auto':
if "TSFreq" in self.job_type:
if x == most_low_freq:
im_frequency_wn.append(x)
else:
frequency_wn.append(x * -1.)
inverted_freqs.append(x)
else:
frequency_wn.append(x * -1.)
inverted_freqs.append(x)
elif x > float(invert):
frequency_wn.append(x * -1.)
inverted_freqs.append(x)
else:
im_frequency_wn.append(x)
else:
im_frequency_wn.append(x)
except IndexError:
pass
# For QM calculations look for SCF energies, last one will be the optimized energy
elif line.strip().startswith('SCF Done:'):
self.scf_energy = float(line.strip().split()[4])
elif line.strip().startswith('E2('):
spe_value = line.strip().split()[-1]
self.scf_energy = float(spe_value.replace('D','E'))
# For Counterpoise calculations the corrected energy value will be taken
elif line.strip().startswith('Counterpoise corrected energy'):
self.scf_energy = float(line.strip().split()[4])
# For MP2 calculations replace with EUMP2
elif 'EUMP2 =' in line.strip():
self.scf_energy = float((line.strip().split()[5]).replace('D', 'E'))
# For ONIOM calculations use the extrapolated value rather than SCF value
elif "ONIOM: extrapolated energy" in line.strip():
self.scf_energy = (float(line.strip().split()[4]))
# For G4 calculations look for G4 energies (Gaussian16a bug prints G4(0 K) as DE(HF)) --Brian modified to work for G16c-where bug is fixed.
elif line.strip().startswith('G4(0 K)'):
self.scf_energy = float(line.strip().split()[2])
self.scf_energy -= self.zero_point_corr #Remove G4 ZPE
elif line.strip().startswith('E(ZPE)='): #Overwrite DFT ZPE with G4 ZPE
self.zero_point_corr = float(line.strip().split()[1])
# For TD calculations look for SCF energies of the first excited state
elif 'E(TD-HF/TD-DFT)' in line.strip():
self.scf_energy = float(line.strip().split()[4])
# For Semi-empirical or Molecular Mechanics calculations
elif "Energy= " in line.strip() and "Predicted" not in line.strip() and "Thermal" not in line.strip() and "G4" not in line.strip():
self.scf_energy = (float(line.strip().split()[1]))
# Look for thermal corrections, paying attention to point group symmetry
elif line.strip().startswith('Zero-point correction='):
self.zero_point_corr = float(line.strip().split()[2])
# Grab Multiplicity
elif 'Multiplicity' in line.strip():
try:
self.mult = int(line.split('=')[-1].strip().split()[0])
except:
self.mult = int(line.split()[-1])
# Grab molecular mass
elif line.strip().startswith('Molecular mass:'):
molecular_mass = float(line.strip().split()[2])
# Grab rational symmetry number
elif line.strip().startswith('Rotational symmetry number'):
if not ssymm:
symmno = int((line.strip().split()[3]).split(".")[0])
# Grab point group
elif line.strip().startswith('Full point group'):
if line.strip().split()[3] == 'D*H' or line.strip().split()[3] == 'C*V':
linear_mol = 1
# Grab rotational constants
elif line.strip().startswith('Rotational constants (GHZ):'):
try:
self.roconst = [float(line.strip().replace(':', ' ').split()[3]),
float(line.strip().replace(':', ' ').split()[4]),
float(line.strip().replace(':', ' ').split()[5])]
except ValueError:
if line.strip().find('********'):
linear_warning = True
self.roconst = [float(line.strip().replace(':', ' ').split()[4]),
float(line.strip().replace(':', ' ').split()[5])]
# Grab rotational temperatures
elif line.strip().startswith('Rotational temperature '):
rotemp = [float(line.strip().split()[3])]
elif line.strip().startswith('Rotational temperatures'):
try:
rotemp = [float(line.strip().split()[3]), float(line.strip().split()[4]),
float(line.strip().split()[5])]
except ValueError:
rotemp = None
if line.strip().find('********'):
linear_warning = True
rotemp = [float(line.strip().split()[4]), float(line.strip().split()[5])]
if "Job cpu time" in line.strip():
days = int(line.split()[3]) + self.cpu[0]
hours = int(line.split()[5]) + self.cpu[1]
mins = int(line.split()[7]) + self.cpu[2]
secs = 0 + self.cpu[3]
msecs = int(float(line.split()[9]) * 1000.0) + self.cpu[4]
self.cpu = [days, hours, mins, secs, msecs]
if self.sp_program == 'NWChem' or self.program == 'NWChem':
print("Parsing NWChem output...")
# Iterate
for i,line in enumerate(g_output):
#scanning for low frequencies...
if line.strip().startswith('P.Frequency'):
newline=g_output[i+3]
for j in range(1,7):
try:
x = float(line.strip().split()[j])
y = 1.0
# Only deal with real frequencies
if x > 0.00:
frequency_wn.append(x)
if mm_freq_scale_factor is not False: fract_modelsys.append(y)
# Check if we want to make any low lying imaginary frequencies positive
elif x < -1 * im_freq_cutoff:
if invert is not False:
if x > float(invert):
frequency_wn.append(x * -1.)
inverted_freqs.append(x)
else:
im_frequency_wn.append(x)
else:
im_frequency_wn.append(x)
except IndexError:
pass
# For QM calculations look for SCF energies, last one will be the optimized energy
elif line.strip().startswith('Total DFT energy ='):
self.scf_energy = float(line.strip().split()[4])
# Look for thermal corrections, paying attention to point group symmetry
elif line.strip().startswith('Zero-Point'):
self.zero_point_corr = float(line.strip().split()[8])
# Grab Multiplicity
elif 'mult ' in line.strip():
try:
self.mult = int(line.split()[1])
except:
self.mult = 1
# Grab molecular mass
elif line.strip().find('mol. weight') != -1:
molecular_mass = float(line.strip().split()[-1][0:-1])
# Grab rational symmetry number
elif line.strip().find('symmetry #') != -1:
if not ssymm:
symmno = int(line.strip().split()[-1][0:-1])
# Grab point group
elif line.strip().find('symmetry detected') != -1:
if line.strip().split()[0] == 'D*H' or line.strip().split()[0] == 'C*V':
linear_mol = 1
# Grab rotational constants (convert cm-1 to GHz)
elif line.strip().startswith('A=') or line.strip().startswith('B=') or line.strip().startswith('C=') :
print(line.strip().split()[1])
letter=line.strip()[0]
h = 0
if letter == 'A':
h = 0
elif letter == 'B':
h = 1
elif letter == 'C':
h = 2
roconst[h]=float(line.strip().split()[1])*29.9792458
rotemp[h]=float(line.strip().split()[4])
if "Total times" in line.strip():
days = 0
hours = 0
mins = 0
secs = line.strip().split()[3][0:-1]
msecs = 0
self.cpu = [days,hours,mins,secs,msecs]
self.inverted_freqs = inverted_freqs
# Skip the calculation if unable to parse the frequencies or zpe from the output file
if hasattr(self, "zero_point_corr") and rotemp:
cutoffs = [s_freq_cutoff for freq in frequency_wn]
# Translational and electronic contributions to the energy and entropy do not depend on frequencies
u_trans = calc_translational_energy(temperature)
s_trans = calc_translational_entropy(molecular_mass, conc, temperature, solv)
s_elec = calc_electronic_entropy(self.mult)
# Rotational and Vibrational contributions to the energy entropy
if len(frequency_wn) > 0:
zpe = calc_zeropoint_energy(frequency_wn, freq_scale_factor, fract_modelsys)
u_rot = calc_rotational_energy(self.zero_point_corr, symmno, temperature, linear_mol)
u_vib = calc_vibrational_energy(frequency_wn, temperature, freq_scale_factor, fract_modelsys)
s_rot = calc_rotational_entropy(self.zero_point_corr, linear_mol, symmno, rotemp, temperature)
# Calculate harmonic entropy, free-rotor entropy and damping function for each frequency
Svib_rrho = calc_rrho_entropy(frequency_wn, temperature, freq_scale_factor, fract_modelsys)
if s_freq_cutoff > 0.0:
Svib_rrqho = calc_rrho_entropy(cutoffs, temperature, freq_scale_factor, fract_modelsys)
Svib_free_rot = calc_freerot_entropy(frequency_wn, temperature, freq_scale_factor, fract_modelsys,file, inertia, self.roconst)
S_damp = calc_damp(frequency_wn, s_freq_cutoff)
# check for qh
if QH:
Uvib_qrrho = calc_qRRHO_energy(frequency_wn, temperature, freq_scale_factor)
H_damp = calc_damp(frequency_wn, H_FREQ_CUTOFF)
# Compute entropy (cal/mol/K) using the two values and damping function
vib_entropy = []
vib_energy = []
for j in range(0, len(frequency_wn)):
# Entropy correction
if QS == "grimme":
vib_entropy.append(Svib_rrho[j] * S_damp[j] + (1 - S_damp[j]) * Svib_free_rot[j])
elif QS == "truhlar":
if s_freq_cutoff > 0.0:
if frequency_wn[j] > s_freq_cutoff:
vib_entropy.append(Svib_rrho[j])
else:
vib_entropy.append(Svib_rrqho[j])
else:
vib_entropy.append(Svib_rrho[j])
# Enthalpy correction
if QH:
vib_energy.append(H_damp[j] * Uvib_qrrho[j] + (1 - H_damp[j]) * 0.5 * GAS_CONSTANT * temperature)
qh_s_vib, h_s_vib = sum(vib_entropy), sum(Svib_rrho)
if QH:
qh_u_vib = sum(vib_energy)
else:
zpe, u_rot, u_vib, qh_u_vib, s_rot, h_s_vib, qh_s_vib = 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
# The D3 term is added to the energy term here. If not requested then this term is zero
# It is added to the SPC energy if defined (instead of the SCF energy)
if spc is False:
self.scf_energy += d3_term
else:
self.sp_energy += d3_term
# Add terms (converted to au) to get Free energy - perform separately
# for harmonic and quasi-harmonic values out of interest
self.enthalpy = self.scf_energy + (u_trans + u_rot + u_vib + GAS_CONSTANT * temperature) / J_TO_AU
self.qh_enthalpy = 0.0
if QH:
self.qh_enthalpy = self.scf_energy + (u_trans + u_rot + qh_u_vib + GAS_CONSTANT * temperature) / J_TO_AU
# Single point correction replaces energy from optimization with single point value
if spc is not False:
try:
self.enthalpy = self.enthalpy - self.scf_energy + self.sp_energy
except TypeError:
pass
if QH:
try:
self.qh_enthalpy = self.qh_enthalpy - self.scf_energy + self.sp_energy
except TypeError:
pass
self.zpe = zpe / J_TO_AU
self.entropy = (s_trans + s_rot + h_s_vib + s_elec) / J_TO_AU
self.qh_entropy = (s_trans + s_rot + qh_s_vib + s_elec) / J_TO_AU
# Symmetry - entropy correction for molecular symmetry
if ssymm:
sym_entropy_correction, pgroup = self.sym_correction(file.split('.')[0].replace('/', '_'))
self.point_group = pgroup
self.entropy += sym_entropy_correction
self.qh_entropy += sym_entropy_correction
# Calculate Free Energy
if QH:
self.gibbs_free_energy = self.enthalpy - temperature * self.entropy
self.qh_gibbs_free_energy = self.qh_enthalpy - temperature * self.qh_entropy
else:
self.gibbs_free_energy = self.enthalpy - temperature * self.entropy
self.qh_gibbs_free_energy = self.enthalpy - temperature * self.qh_entropy
if cosmo:
self.cosmo_qhg = self.qh_gibbs_free_energy + cosmo
self.im_freq = []
for freq in im_frequency_wn:
if freq < -1 * im_freq_cutoff:
self.im_freq.append(freq)
self.frequency_wn = frequency_wn
self.im_frequency_wn = im_frequency_wn
self.linear_warning = linear_warning
# Get external symmetry number
def ex_sym(self, file):
coords_string = self.xyz.coords_string()
coords = coords_string.encode('utf-8')
c_coords = ctypes.c_char_p(coords)
# Determine OS with sys.platform to see what compiled symmetry file to use
platform = sys.platform
if platform.startswith('linux'): # linux - .so file
path1 = sharepath('symmetry_linux.so')
newlib = 'lib_' + file + '.so'
path2 = sharepath(newlib)
copy = 'cp ' + path1 + ' ' + path2
os.popen(copy).close()
symmetry = ctypes.CDLL(path2)
elif platform.startswith('darwin'): # macOS - .dylib file
path1 = sharepath('symmetry_mac.dylib')
newlib = 'lib_' + file + '.dylib'
path2 = sharepath(newlib)
copy = 'cp ' + path1 + ' ' + path2
os.popen(copy).close()
symmetry = ctypes.CDLL(path2)
elif platform.startswith('win'): # windows - .dll file
path1 = sharepath('symmetry_windows.dll')
newlib = 'lib_' + file + '.dll'
path2 = sharepath(newlib)
copy = 'copy ' + path1 + ' ' + path2
os.popen(copy).close()
symmetry = ctypes.cdll.LoadLibrary(path2)
symmetry.symmetry.restype = ctypes.c_char_p
pgroup = symmetry.symmetry(c_coords).decode('utf-8')
ex_sym = pg_sm.get(pgroup)
# Remove file
if platform.startswith('linux'): # linux - .so file
remove = 'rm ' + path2
os.popen(remove).close()
elif platform.startswith('darwin'): # macOS - .dylib file
remove = 'rm ' + path2
os.popen(remove).close()
elif platform.startswith('win'): # windows - .dll file
handle = symmetry._handle
del symmetry
ctypes.windll.kernel32.FreeLibrary(ctypes.c_void_p(handle))
remove = 'Del /F "' + path2 + '"'
os.popen(remove).close()
return ex_sym, pgroup
def int_sym(self):
self.xyz.get_connectivity()
cap = [1, 9, 17]
neighbor = [5, 6, 7, 8, 14, 15, 16]
int_sym = 1
for i, row in enumerate(self.xyz.connectivity):
if self.xyz.atom_nums[i] != 6: continue
As = np.array(self.xyz.atom_nums)[row]
if len(As == 4):
neighbors = [x for x in As if x in neighbor]
caps = [x for x in As if x in cap]
if (len(neighbors) == 1) and (len(set(caps)) == 1):
int_sym *= 3
return int_sym
def sym_correction(self, file):
ex_sym, pgroup = self.ex_sym(file)
int_sym = self.int_sym()
#override int_sym
int_sym = 1
sym_num = ex_sym * int_sym
sym_correction = (-GAS_CONSTANT * math.log(sym_num)) / J_TO_AU
return sym_correction, pgroup
|