1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294
|
# Copyright 2017 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Decorators for applying timeout arguments to functions.
These decorators are used to wrap API methods to apply either a
Deadline-dependent (recommended), constant (DEPRECATED) or exponential
(DEPRECATED) timeout argument.
For example, imagine an API method that can take a while to return results,
such as one that might block until a resource is ready:
.. code-block:: python
def is_thing_ready(timeout=None):
response = requests.get('https://example.com/is_thing_ready')
response.raise_for_status()
return response.json()
This module allows a function like this to be wrapped so that timeouts are
automatically determined, for example:
.. code-block:: python
timeout_ = timeout.ExponentialTimeout()
is_thing_ready_with_timeout = timeout_(is_thing_ready)
for n in range(10):
try:
is_thing_ready_with_timeout({'example': 'data'})
except:
pass
In this example the first call to ``is_thing_ready`` will have a relatively
small timeout (like 1 second). If the resource is available and the request
completes quickly, the loop exits. But, if the resource isn't yet available
and the request times out, it'll be retried - this time with a larger timeout.
In the broader context these decorators are typically combined with
:mod:`google.api_core.retry` to implement API methods with a signature that
matches ``api_method(request, timeout=None, retry=None)``.
"""
from __future__ import unicode_literals
import datetime
import functools
from google.api_core import datetime_helpers
_DEFAULT_INITIAL_TIMEOUT = 5.0 # seconds
_DEFAULT_MAXIMUM_TIMEOUT = 30.0 # seconds
_DEFAULT_TIMEOUT_MULTIPLIER = 2.0
# If specified, must be in seconds. If none, deadline is not used in the
# timeout calculation.
_DEFAULT_DEADLINE = None
class TimeToDeadlineTimeout(object):
"""A decorator that decreases timeout set for an RPC based on how much time
has left till its deadline. The deadline is calculated as
``now + initial_timeout`` when this decorator is first called for an rpc.
In other words this decorator implements deadline semantics in terms of a
sequence of decreasing timeouts t0 > t1 > t2 ... tn >= 0.
Args:
timeout (Optional[float]): the timeout (in seconds) to applied to the
wrapped function. If `None`, the target function is expected to
never timeout.
"""
def __init__(self, timeout=None, clock=datetime_helpers.utcnow):
self._timeout = timeout
self._clock = clock
def __call__(self, func):
"""Apply the timeout decorator.
Args:
func (Callable): The function to apply the timeout argument to.
This function must accept a timeout keyword argument.
Returns:
Callable: The wrapped function.
"""
first_attempt_timestamp = self._clock().timestamp()
@functools.wraps(func)
def func_with_timeout(*args, **kwargs):
"""Wrapped function that adds timeout."""
if self._timeout is not None:
# All calculations are in seconds
now_timestamp = self._clock().timestamp()
# To avoid usage of nonlocal but still have round timeout
# numbers for first attempt (in most cases the only attempt made
# for an RPC.
if now_timestamp - first_attempt_timestamp < 0.001:
now_timestamp = first_attempt_timestamp
time_since_first_attempt = now_timestamp - first_attempt_timestamp
remaining_timeout = self._timeout - time_since_first_attempt
# Although the `deadline` parameter in `google.api_core.retry.Retry`
# is deprecated, and should be treated the same as the `timeout`,
# it is still possible for the `deadline` argument in
# `google.api_core.retry.Retry` to be larger than the `timeout`.
# See https://github.com/googleapis/python-api-core/issues/654
# Only positive non-zero timeouts are supported.
# Revert back to the initial timeout for negative or 0 timeout values.
if remaining_timeout < 1:
remaining_timeout = self._timeout
kwargs["timeout"] = remaining_timeout
return func(*args, **kwargs)
return func_with_timeout
def __str__(self):
return "<TimeToDeadlineTimeout timeout={:.1f}>".format(self._timeout)
class ConstantTimeout(object):
"""A decorator that adds a constant timeout argument.
DEPRECATED: use ``TimeToDeadlineTimeout`` instead.
This is effectively equivalent to
``functools.partial(func, timeout=timeout)``.
Args:
timeout (Optional[float]): the timeout (in seconds) to applied to the
wrapped function. If `None`, the target function is expected to
never timeout.
"""
def __init__(self, timeout=None):
self._timeout = timeout
def __call__(self, func):
"""Apply the timeout decorator.
Args:
func (Callable): The function to apply the timeout argument to.
This function must accept a timeout keyword argument.
Returns:
Callable: The wrapped function.
"""
@functools.wraps(func)
def func_with_timeout(*args, **kwargs):
"""Wrapped function that adds timeout."""
kwargs["timeout"] = self._timeout
return func(*args, **kwargs)
return func_with_timeout
def __str__(self):
return "<ConstantTimeout timeout={:.1f}>".format(self._timeout)
def _exponential_timeout_generator(initial, maximum, multiplier, deadline):
"""A generator that yields exponential timeout values.
Args:
initial (float): The initial timeout.
maximum (float): The maximum timeout.
multiplier (float): The multiplier applied to the timeout.
deadline (float): The overall deadline across all invocations.
Yields:
float: A timeout value.
"""
if deadline is not None:
deadline_datetime = datetime_helpers.utcnow() + datetime.timedelta(
seconds=deadline
)
else:
deadline_datetime = datetime.datetime.max
timeout = initial
while True:
now = datetime_helpers.utcnow()
yield min(
# The calculated timeout based on invocations.
timeout,
# The set maximum timeout.
maximum,
# The remaining time before the deadline is reached.
float((deadline_datetime - now).seconds),
)
timeout = timeout * multiplier
class ExponentialTimeout(object):
"""A decorator that adds an exponentially increasing timeout argument.
DEPRECATED: the concept of incrementing timeout exponentially has been
deprecated. Use ``TimeToDeadlineTimeout`` instead.
This is useful if a function is called multiple times. Each time the
function is called this decorator will calculate a new timeout parameter
based on the the number of times the function has been called.
For example
.. code-block:: python
Args:
initial (float): The initial timeout to pass.
maximum (float): The maximum timeout for any one call.
multiplier (float): The multiplier applied to the timeout for each
invocation.
deadline (Optional[float]): The overall deadline across all
invocations. This is used to prevent a very large calculated
timeout from pushing the overall execution time over the deadline.
This is especially useful in conjunction with
:mod:`google.api_core.retry`. If ``None``, the timeouts will not
be adjusted to accommodate an overall deadline.
"""
def __init__(
self,
initial=_DEFAULT_INITIAL_TIMEOUT,
maximum=_DEFAULT_MAXIMUM_TIMEOUT,
multiplier=_DEFAULT_TIMEOUT_MULTIPLIER,
deadline=_DEFAULT_DEADLINE,
):
self._initial = initial
self._maximum = maximum
self._multiplier = multiplier
self._deadline = deadline
def with_deadline(self, deadline):
"""Return a copy of this timeout with the given deadline.
Args:
deadline (float): The overall deadline across all invocations.
Returns:
ExponentialTimeout: A new instance with the given deadline.
"""
return ExponentialTimeout(
initial=self._initial,
maximum=self._maximum,
multiplier=self._multiplier,
deadline=deadline,
)
def __call__(self, func):
"""Apply the timeout decorator.
Args:
func (Callable): The function to apply the timeout argument to.
This function must accept a timeout keyword argument.
Returns:
Callable: The wrapped function.
"""
timeouts = _exponential_timeout_generator(
self._initial, self._maximum, self._multiplier, self._deadline
)
@functools.wraps(func)
def func_with_timeout(*args, **kwargs):
"""Wrapped function that adds timeout."""
kwargs["timeout"] = next(timeouts)
return func(*args, **kwargs)
return func_with_timeout
def __str__(self):
return (
"<ExponentialTimeout initial={:.1f}, maximum={:.1f}, "
"multiplier={:.1f}, deadline={:.1f}>".format(
self._initial, self._maximum, self._multiplier, self._deadline
)
)
|