File: vision_v1.images.html

package info (click to toggle)
python-googleapi 1.5.5-1
  • links: PTS
  • area: main
  • in suites: buster, stretch
  • size: 39,832 kB
  • ctags: 5,921
  • sloc: python: 7,176; makefile: 64; sh: 53; xml: 5
file content (870 lines) | stat: -rw-r--r-- 51,081 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="vision_v1.html">Google Cloud Vision API</a> . <a href="vision_v1.images.html">images</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="#annotate">annotate(body, x__xgafv=None)</a></code></p>
<p class="firstline">Run image detection and annotation for a batch of images.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="annotate">annotate(body, x__xgafv=None)</code>
  <pre>Run image detection and annotation for a batch of images.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{ # Multiple image annotation requests are batched into a single service call.
    "requests": [ # Individual image annotation requests for this batch.
      { # Request for performing Google Cloud Vision API tasks over a user-provided
          # image, with user-requested features.
        "imageContext": { # Image context. # Additional context that may accompany the image.
          "latLongRect": { # Rectangle determined by min and max LatLng pairs. # Lat/long rectangle that specifies the location of the image.
            "minLatLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Min lat/long pair.
                # of doubles representing degrees latitude and degrees longitude. Unless
                # specified otherwise, this must conform to the
                # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
                # standard</a>. Values must be within normalized ranges.
                #
                # Example of normalization code in Python:
                #
                #     def NormalizeLongitude(longitude):
                #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
                #       q, r = divmod(longitude, 360.0)
                #       if r > 180.0 or (r == 180.0 and q <= -1.0):
                #         return r - 360.0
                #       return r
                #
                #     def NormalizeLatLng(latitude, longitude):
                #       """Wraps decimal degrees latitude and longitude to
                #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
                #       r = latitude % 360.0
                #       if r <= 90.0:
                #         return r, NormalizeLongitude(longitude)
                #       elif r >= 270.0:
                #         return r - 360, NormalizeLongitude(longitude)
                #       else:
                #         return 180 - r, NormalizeLongitude(longitude + 180.0)
                #
                #     assert 180.0 == NormalizeLongitude(180.0)
                #     assert -180.0 == NormalizeLongitude(-180.0)
                #     assert -179.0 == NormalizeLongitude(181.0)
                #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
                #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
                #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
                #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
                #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
                #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
                #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
                #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
                #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
                #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
              "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
              "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
            },
            "maxLatLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Max lat/long pair.
                # of doubles representing degrees latitude and degrees longitude. Unless
                # specified otherwise, this must conform to the
                # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
                # standard</a>. Values must be within normalized ranges.
                #
                # Example of normalization code in Python:
                #
                #     def NormalizeLongitude(longitude):
                #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
                #       q, r = divmod(longitude, 360.0)
                #       if r > 180.0 or (r == 180.0 and q <= -1.0):
                #         return r - 360.0
                #       return r
                #
                #     def NormalizeLatLng(latitude, longitude):
                #       """Wraps decimal degrees latitude and longitude to
                #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
                #       r = latitude % 360.0
                #       if r <= 90.0:
                #         return r, NormalizeLongitude(longitude)
                #       elif r >= 270.0:
                #         return r - 360, NormalizeLongitude(longitude)
                #       else:
                #         return 180 - r, NormalizeLongitude(longitude + 180.0)
                #
                #     assert 180.0 == NormalizeLongitude(180.0)
                #     assert -180.0 == NormalizeLongitude(-180.0)
                #     assert -179.0 == NormalizeLongitude(181.0)
                #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
                #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
                #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
                #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
                #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
                #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
                #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
                #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
                #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
                #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
              "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
              "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
            },
          },
          "languageHints": [ # List of languages to use for TEXT_DETECTION. In most cases, an empty value
              # yields the best results since it enables automatic language detection. For
              # languages based on the Latin alphabet, setting `language_hints` is not
              # needed. In rare cases, when the language of the text in the image is known,
              # setting a hint will help get better results (although it will be a
              # significant hindrance if the hint is wrong). Text detection returns an
              # error if one or more of the specified languages is not one of the
              # [supported
              # languages](/translate/v2/translate-reference#supported_languages).
            "A String",
          ],
        },
        "image": { # Client image to perform Google Cloud Vision API tasks over. # The image to be processed.
          "content": "A String", # Image content, represented as a stream of bytes.
              # Note: as with all `bytes` fields, protobuffers use a pure binary
              # representation, whereas JSON representations use base64.
          "source": { # External image source (Google Cloud Storage image location). # Google Cloud Storage image location. If both 'content' and 'source'
              # are filled for an image, 'content' takes precedence and it will be
              # used for performing the image annotation request.
            "gcsImageUri": "A String", # Google Cloud Storage image URI. It must be in the following form:
                # `gs://bucket_name/object_name`. For more
                # details, please see: https://cloud.google.com/storage/docs/reference-uris.
                # NOTE: Cloud Storage object versioning is not supported!
          },
        },
        "features": [ # Requested features.
          { # The <em>Feature</em> indicates what type of image detection task to perform.
              # Users describe the type of Google Cloud Vision API tasks to perform over
              # images by using <em>Feature</em>s. Features encode the Cloud Vision API
              # vertical to operate on and the number of top-scoring results to return.
            "type": "A String", # The feature type.
            "maxResults": 42, # Maximum number of results of this type.
          },
        ],
      },
    ],
  }

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response to a batch image annotation request.
    "responses": [ # Individual responses to image annotation requests within the batch.
      { # Response to an image annotation request.
        "safeSearchAnnotation": { # Set of features pertaining to the image, computed by various computer vision # If present, safe-search annotation completed successfully.
            # methods over safe-search verticals (for example, adult, spoof, medical,
            # violence).
          "medical": "A String", # Likelihood this is a medical image.
          "violence": "A String", # Violence likelihood.
          "spoof": "A String", # Spoof likelihood. The likelihood that an obvious modification
              # was made to the image's canonical version to make it appear
              # funny or offensive.
          "adult": "A String", # Represents the adult contents likelihood for the image.
        },
        "textAnnotations": [ # If present, text (OCR) detection completed successfully.
          { # Set of detected entity features.
            "confidence": 3.14, # The accuracy of the entity detection in an image.
                # For example, for an image containing 'Eiffel Tower,' this field represents
                # the confidence that there is a tower in the query image. Range [0, 1].
            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
            "locale": "A String", # The language code for the locale in which the entity textual
                # <code>description</code> (next field) is expressed.
            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
                # image. For example, the relevancy of 'tower' to an image containing
                # 'Eiffel Tower' is likely higher than an image containing a distant towering
                # building, though the confidence that there is a tower may be the same.
                # Range [0, 1].
            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
                # For more details on KG please see:
                # https://developers.google.com/knowledge-graph/
            "locations": [ # The location information for the detected entity. Multiple
                # <code>LocationInfo</code> elements can be present since one location may
                # indicate the location of the scene in the query image, and another the
                # location of the place where the query image was taken. Location information
                # is usually present for landmarks.
              { # Detected entity location information.
                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
                    # of doubles representing degrees latitude and degrees longitude. Unless
                    # specified otherwise, this must conform to the
                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
                    # standard</a>. Values must be within normalized ranges.
                    #
                    # Example of normalization code in Python:
                    #
                    #     def NormalizeLongitude(longitude):
                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
                    #       q, r = divmod(longitude, 360.0)
                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
                    #         return r - 360.0
                    #       return r
                    #
                    #     def NormalizeLatLng(latitude, longitude):
                    #       """Wraps decimal degrees latitude and longitude to
                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
                    #       r = latitude % 360.0
                    #       if r <= 90.0:
                    #         return r, NormalizeLongitude(longitude)
                    #       elif r >= 270.0:
                    #         return r - 360, NormalizeLongitude(longitude)
                    #       else:
                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
                    #
                    #     assert 180.0 == NormalizeLongitude(180.0)
                    #     assert -180.0 == NormalizeLongitude(-180.0)
                    #     assert -179.0 == NormalizeLongitude(181.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
                },
              },
            ],
            "score": 3.14, # Overall score of the result. Range [0, 1].
            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
                # are produced for the entire text detected in an image region, followed by
                # `boundingPoly`s for each word within the detected text.
              "vertices": [ # The bounding polygon vertices.
                { # A vertex represents a 2D point in the image.
                    # NOTE: the vertex coordinates are in the same scale as the original image.
                  "y": 42, # Y coordinate.
                  "x": 42, # X coordinate.
                },
              ],
            },
            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
                # For example a different kind of score or string that qualifies the entity.
              { # Arbitrary name/value pair.
                "name": "A String", # Name of the property.
                "value": "A String", # Value of the property.
              },
            ],
          },
        ],
        "labelAnnotations": [ # If present, label detection completed successfully.
          { # Set of detected entity features.
            "confidence": 3.14, # The accuracy of the entity detection in an image.
                # For example, for an image containing 'Eiffel Tower,' this field represents
                # the confidence that there is a tower in the query image. Range [0, 1].
            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
            "locale": "A String", # The language code for the locale in which the entity textual
                # <code>description</code> (next field) is expressed.
            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
                # image. For example, the relevancy of 'tower' to an image containing
                # 'Eiffel Tower' is likely higher than an image containing a distant towering
                # building, though the confidence that there is a tower may be the same.
                # Range [0, 1].
            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
                # For more details on KG please see:
                # https://developers.google.com/knowledge-graph/
            "locations": [ # The location information for the detected entity. Multiple
                # <code>LocationInfo</code> elements can be present since one location may
                # indicate the location of the scene in the query image, and another the
                # location of the place where the query image was taken. Location information
                # is usually present for landmarks.
              { # Detected entity location information.
                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
                    # of doubles representing degrees latitude and degrees longitude. Unless
                    # specified otherwise, this must conform to the
                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
                    # standard</a>. Values must be within normalized ranges.
                    #
                    # Example of normalization code in Python:
                    #
                    #     def NormalizeLongitude(longitude):
                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
                    #       q, r = divmod(longitude, 360.0)
                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
                    #         return r - 360.0
                    #       return r
                    #
                    #     def NormalizeLatLng(latitude, longitude):
                    #       """Wraps decimal degrees latitude and longitude to
                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
                    #       r = latitude % 360.0
                    #       if r <= 90.0:
                    #         return r, NormalizeLongitude(longitude)
                    #       elif r >= 270.0:
                    #         return r - 360, NormalizeLongitude(longitude)
                    #       else:
                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
                    #
                    #     assert 180.0 == NormalizeLongitude(180.0)
                    #     assert -180.0 == NormalizeLongitude(-180.0)
                    #     assert -179.0 == NormalizeLongitude(181.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
                },
              },
            ],
            "score": 3.14, # Overall score of the result. Range [0, 1].
            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
                # are produced for the entire text detected in an image region, followed by
                # `boundingPoly`s for each word within the detected text.
              "vertices": [ # The bounding polygon vertices.
                { # A vertex represents a 2D point in the image.
                    # NOTE: the vertex coordinates are in the same scale as the original image.
                  "y": 42, # Y coordinate.
                  "x": 42, # X coordinate.
                },
              ],
            },
            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
                # For example a different kind of score or string that qualifies the entity.
              { # Arbitrary name/value pair.
                "name": "A String", # Name of the property.
                "value": "A String", # Value of the property.
              },
            ],
          },
        ],
        "imagePropertiesAnnotation": { # Stores image properties (e.g. dominant colors). # If present, image properties were extracted successfully.
          "dominantColors": { # Set of dominant colors and their corresponding scores. # If present, dominant colors completed successfully.
            "colors": [ # RGB color values, with their score and pixel fraction.
              { # Color information consists of RGB channels, score and fraction of
                  # image the color occupies in the image.
                "color": { # Represents a color in the RGBA color space. This representation is designed # RGB components of the color.
                    # for simplicity of conversion to/from color representations in various
                    # languages over compactness; for example, the fields of this representation
                    # can be trivially provided to the constructor of "java.awt.Color" in Java; it
                    # can also be trivially provided to UIColor's "+colorWithRed:green:blue:alpha"
                    # method in iOS; and, with just a little work, it can be easily formatted into
                    # a CSS "rgba()" string in JavaScript, as well. Here are some examples:
                    #
                    # Example (Java):
                    #
                    #      import com.google.type.Color;
                    #
                    #      // ...
                    #      public static java.awt.Color fromProto(Color protocolor) {
                    #        float alpha = protocolor.hasAlpha()
                    #            ? protocolor.getAlpha().getValue()
                    #            : 1.0;
                    #
                    #        return new java.awt.Color(
                    #            protocolor.getRed(),
                    #            protocolor.getGreen(),
                    #            protocolor.getBlue(),
                    #            alpha);
                    #      }
                    #
                    #      public static Color toProto(java.awt.Color color) {
                    #        float red = (float) color.getRed();
                    #        float green = (float) color.getGreen();
                    #        float blue = (float) color.getBlue();
                    #        float denominator = 255.0;
                    #        Color.Builder resultBuilder =
                    #            Color
                    #                .newBuilder()
                    #                .setRed(red / denominator)
                    #                .setGreen(green / denominator)
                    #                .setBlue(blue / denominator);
                    #        int alpha = color.getAlpha();
                    #        if (alpha != 255) {
                    #          result.setAlpha(
                    #              FloatValue
                    #                  .newBuilder()
                    #                  .setValue(((float) alpha) / denominator)
                    #                  .build());
                    #        }
                    #        return resultBuilder.build();
                    #      }
                    #      // ...
                    #
                    # Example (iOS / Obj-C):
                    #
                    #      // ...
                    #      static UIColor* fromProto(Color* protocolor) {
                    #         float red = [protocolor red];
                    #         float green = [protocolor green];
                    #         float blue = [protocolor blue];
                    #         FloatValue* alpha_wrapper = [protocolor alpha];
                    #         float alpha = 1.0;
                    #         if (alpha_wrapper != nil) {
                    #           alpha = [alpha_wrapper value];
                    #         }
                    #         return [UIColor colorWithRed:red green:green blue:blue alpha:alpha];
                    #      }
                    #
                    #      static Color* toProto(UIColor* color) {
                    #          CGFloat red, green, blue, alpha;
                    #          if (![color getRed:&red green:&green blue:&blue alpha:&alpha]) {
                    #            return nil;
                    #          }
                    #          Color* result = [Color alloc] init];
                    #          [result setRed:red];
                    #          [result setGreen:green];
                    #          [result setBlue:blue];
                    #          if (alpha <= 0.9999) {
                    #            [result setAlpha:floatWrapperWithValue(alpha)];
                    #          }
                    #          [result autorelease];
                    #          return result;
                    #     }
                    #     // ...
                    #
                    #  Example (JavaScript):
                    #
                    #     // ...
                    #
                    #     var protoToCssColor = function(rgb_color) {
                    #        var redFrac = rgb_color.red || 0.0;
                    #        var greenFrac = rgb_color.green || 0.0;
                    #        var blueFrac = rgb_color.blue || 0.0;
                    #        var red = Math.floor(redFrac * 255);
                    #        var green = Math.floor(greenFrac * 255);
                    #        var blue = Math.floor(blueFrac * 255);
                    #
                    #        if (!('alpha' in rgb_color)) {
                    #           return rgbToCssColor_(red, green, blue);
                    #        }
                    #
                    #        var alphaFrac = rgb_color.alpha.value || 0.0;
                    #        var rgbParams = [red, green, blue].join(',');
                    #        return ['rgba(', rgbParams, ',', alphaFrac, ')'].join('');
                    #     };
                    #
                    #     var rgbToCssColor_ = function(red, green, blue) {
                    #       var rgbNumber = new Number((red << 16) | (green << 8) | blue);
                    #       var hexString = rgbNumber.toString(16);
                    #       var missingZeros = 6 - hexString.length;
                    #       var resultBuilder = ['#'];
                    #       for (var i = 0; i < missingZeros; i++) {
                    #          resultBuilder.push('0');
                    #       }
                    #       resultBuilder.push(hexString);
                    #       return resultBuilder.join('');
                    #     };
                    #
                    #     // ...
                  "blue": 3.14, # The amount of blue in the color as a value in the interval [0, 1].
                  "alpha": 3.14, # The fraction of this color that should be applied to the pixel. That is,
                      # the final pixel color is defined by the equation:
                      #
                      #   pixel color = alpha * (this color) + (1.0 - alpha) * (background color)
                      #
                      # This means that a value of 1.0 corresponds to a solid color, whereas
                      # a value of 0.0 corresponds to a completely transparent color. This
                      # uses a wrapper message rather than a simple float scalar so that it is
                      # possible to distinguish between a default value and the value being unset.
                      # If omitted, this color object is to be rendered as a solid color
                      # (as if the alpha value had been explicitly given with a value of 1.0).
                  "green": 3.14, # The amount of green in the color as a value in the interval [0, 1].
                  "red": 3.14, # The amount of red in the color as a value in the interval [0, 1].
                },
                "pixelFraction": 3.14, # Stores the fraction of pixels the color occupies in the image.
                    # Value in range [0, 1].
                "score": 3.14, # Image-specific score for this color. Value in range [0, 1].
              },
            ],
          },
        },
        "faceAnnotations": [ # If present, face detection completed successfully.
          { # A face annotation object contains the results of face detection.
            "panAngle": 3.14, # Yaw angle. Indicates the leftward/rightward angle that the face is
                # pointing, relative to the vertical plane perpendicular to the image. Range
                # [-180,180].
            "sorrowLikelihood": "A String", # Sorrow likelihood.
            "underExposedLikelihood": "A String", # Under-exposed likelihood.
            "detectionConfidence": 3.14, # Detection confidence. Range [0, 1].
            "joyLikelihood": "A String", # Joy likelihood.
            "landmarks": [ # Detected face landmarks.
              { # A face-specific landmark (for example, a face feature).
                  # Landmark positions may fall outside the bounds of the image
                  # when the face is near one or more edges of the image.
                  # Therefore it is NOT guaranteed that 0 <= x < width or 0 <= y < height.
                "position": { # A 3D position in the image, used primarily for Face detection landmarks. # Face landmark position.
                    # A valid Position must have both x and y coordinates.
                    # The position coordinates are in the same scale as the original image.
                  "y": 3.14, # Y coordinate.
                  "x": 3.14, # X coordinate.
                  "z": 3.14, # Z coordinate (or depth).
                },
                "type": "A String", # Face landmark type.
              },
            ],
            "surpriseLikelihood": "A String", # Surprise likelihood.
            "blurredLikelihood": "A String", # Blurred likelihood.
            "tiltAngle": 3.14, # Pitch angle. Indicates the upwards/downwards angle that the face is
                # pointing
                # relative to the image's horizontal plane. Range [-180,180].
            "angerLikelihood": "A String", # Anger likelihood.
            "boundingPoly": { # A bounding polygon for the detected image annotation. # The bounding polygon around the face. The coordinates of the bounding box
                # are in the original image's scale, as returned in ImageParams.
                # The bounding box is computed to "frame" the face in accordance with human
                # expectations. It is based on the landmarker results.
                # Note that one or more x and/or y coordinates may not be generated in the
                # BoundingPoly (the polygon will be unbounded) if only a partial face appears in
                # the image to be annotated.
              "vertices": [ # The bounding polygon vertices.
                { # A vertex represents a 2D point in the image.
                    # NOTE: the vertex coordinates are in the same scale as the original image.
                  "y": 42, # Y coordinate.
                  "x": 42, # X coordinate.
                },
              ],
            },
            "rollAngle": 3.14, # Roll angle. Indicates the amount of clockwise/anti-clockwise rotation of
                # the
                # face relative to the image vertical, about the axis perpendicular to the
                # face. Range [-180,180].
            "headwearLikelihood": "A String", # Headwear likelihood.
            "fdBoundingPoly": { # A bounding polygon for the detected image annotation. # This bounding polygon is tighter than the previous
                # <code>boundingPoly</code>, and
                # encloses only the skin part of the face. Typically, it is used to
                # eliminate the face from any image analysis that detects the
                # "amount of skin" visible in an image. It is not based on the
                # landmarker results, only on the initial face detection, hence
                # the <code>fd</code> (face detection) prefix.
              "vertices": [ # The bounding polygon vertices.
                { # A vertex represents a 2D point in the image.
                    # NOTE: the vertex coordinates are in the same scale as the original image.
                  "y": 42, # Y coordinate.
                  "x": 42, # X coordinate.
                },
              ],
            },
            "landmarkingConfidence": 3.14, # Face landmarking confidence. Range [0, 1].
          },
        ],
        "logoAnnotations": [ # If present, logo detection completed successfully.
          { # Set of detected entity features.
            "confidence": 3.14, # The accuracy of the entity detection in an image.
                # For example, for an image containing 'Eiffel Tower,' this field represents
                # the confidence that there is a tower in the query image. Range [0, 1].
            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
            "locale": "A String", # The language code for the locale in which the entity textual
                # <code>description</code> (next field) is expressed.
            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
                # image. For example, the relevancy of 'tower' to an image containing
                # 'Eiffel Tower' is likely higher than an image containing a distant towering
                # building, though the confidence that there is a tower may be the same.
                # Range [0, 1].
            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
                # For more details on KG please see:
                # https://developers.google.com/knowledge-graph/
            "locations": [ # The location information for the detected entity. Multiple
                # <code>LocationInfo</code> elements can be present since one location may
                # indicate the location of the scene in the query image, and another the
                # location of the place where the query image was taken. Location information
                # is usually present for landmarks.
              { # Detected entity location information.
                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
                    # of doubles representing degrees latitude and degrees longitude. Unless
                    # specified otherwise, this must conform to the
                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
                    # standard</a>. Values must be within normalized ranges.
                    #
                    # Example of normalization code in Python:
                    #
                    #     def NormalizeLongitude(longitude):
                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
                    #       q, r = divmod(longitude, 360.0)
                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
                    #         return r - 360.0
                    #       return r
                    #
                    #     def NormalizeLatLng(latitude, longitude):
                    #       """Wraps decimal degrees latitude and longitude to
                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
                    #       r = latitude % 360.0
                    #       if r <= 90.0:
                    #         return r, NormalizeLongitude(longitude)
                    #       elif r >= 270.0:
                    #         return r - 360, NormalizeLongitude(longitude)
                    #       else:
                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
                    #
                    #     assert 180.0 == NormalizeLongitude(180.0)
                    #     assert -180.0 == NormalizeLongitude(-180.0)
                    #     assert -179.0 == NormalizeLongitude(181.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
                },
              },
            ],
            "score": 3.14, # Overall score of the result. Range [0, 1].
            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
                # are produced for the entire text detected in an image region, followed by
                # `boundingPoly`s for each word within the detected text.
              "vertices": [ # The bounding polygon vertices.
                { # A vertex represents a 2D point in the image.
                    # NOTE: the vertex coordinates are in the same scale as the original image.
                  "y": 42, # Y coordinate.
                  "x": 42, # X coordinate.
                },
              ],
            },
            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
                # For example a different kind of score or string that qualifies the entity.
              { # Arbitrary name/value pair.
                "name": "A String", # Name of the property.
                "value": "A String", # Value of the property.
              },
            ],
          },
        ],
        "landmarkAnnotations": [ # If present, landmark detection completed successfully.
          { # Set of detected entity features.
            "confidence": 3.14, # The accuracy of the entity detection in an image.
                # For example, for an image containing 'Eiffel Tower,' this field represents
                # the confidence that there is a tower in the query image. Range [0, 1].
            "description": "A String", # Entity textual description, expressed in its <code>locale</code> language.
            "locale": "A String", # The language code for the locale in which the entity textual
                # <code>description</code> (next field) is expressed.
            "topicality": 3.14, # The relevancy of the ICA (Image Content Annotation) label to the
                # image. For example, the relevancy of 'tower' to an image containing
                # 'Eiffel Tower' is likely higher than an image containing a distant towering
                # building, though the confidence that there is a tower may be the same.
                # Range [0, 1].
            "mid": "A String", # Opaque entity ID. Some IDs might be available in Knowledge Graph(KG).
                # For more details on KG please see:
                # https://developers.google.com/knowledge-graph/
            "locations": [ # The location information for the detected entity. Multiple
                # <code>LocationInfo</code> elements can be present since one location may
                # indicate the location of the scene in the query image, and another the
                # location of the place where the query image was taken. Location information
                # is usually present for landmarks.
              { # Detected entity location information.
                "latLng": { # An object representing a latitude/longitude pair. This is expressed as a pair # Lat - long location coordinates.
                    # of doubles representing degrees latitude and degrees longitude. Unless
                    # specified otherwise, this must conform to the
                    # <a href="http://www.unoosa.org/pdf/icg/2012/template/WGS_84.pdf">WGS84
                    # standard</a>. Values must be within normalized ranges.
                    #
                    # Example of normalization code in Python:
                    #
                    #     def NormalizeLongitude(longitude):
                    #       """Wraps decimal degrees longitude to [-180.0, 180.0]."""
                    #       q, r = divmod(longitude, 360.0)
                    #       if r > 180.0 or (r == 180.0 and q <= -1.0):
                    #         return r - 360.0
                    #       return r
                    #
                    #     def NormalizeLatLng(latitude, longitude):
                    #       """Wraps decimal degrees latitude and longitude to
                    #       [-90.0, 90.0] and [-180.0, 180.0], respectively."""
                    #       r = latitude % 360.0
                    #       if r <= 90.0:
                    #         return r, NormalizeLongitude(longitude)
                    #       elif r >= 270.0:
                    #         return r - 360, NormalizeLongitude(longitude)
                    #       else:
                    #         return 180 - r, NormalizeLongitude(longitude + 180.0)
                    #
                    #     assert 180.0 == NormalizeLongitude(180.0)
                    #     assert -180.0 == NormalizeLongitude(-180.0)
                    #     assert -179.0 == NormalizeLongitude(181.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(360.0, 0.0)
                    #     assert (0.0, 0.0) == NormalizeLatLng(-360.0, 0.0)
                    #     assert (85.0, 180.0) == NormalizeLatLng(95.0, 0.0)
                    #     assert (-85.0, -170.0) == NormalizeLatLng(-95.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(90.0, 10.0)
                    #     assert (-90.0, -10.0) == NormalizeLatLng(-90.0, -10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(-180.0, 10.0)
                    #     assert (0.0, -170.0) == NormalizeLatLng(180.0, 10.0)
                    #     assert (-90.0, 10.0) == NormalizeLatLng(270.0, 10.0)
                    #     assert (90.0, 10.0) == NormalizeLatLng(-270.0, 10.0)
                  "latitude": 3.14, # The latitude in degrees. It must be in the range [-90.0, +90.0].
                  "longitude": 3.14, # The longitude in degrees. It must be in the range [-180.0, +180.0].
                },
              },
            ],
            "score": 3.14, # Overall score of the result. Range [0, 1].
            "boundingPoly": { # A bounding polygon for the detected image annotation. # Image region to which this entity belongs. Not filled currently
                # for `LABEL_DETECTION` features. For `TEXT_DETECTION` (OCR), `boundingPoly`s
                # are produced for the entire text detected in an image region, followed by
                # `boundingPoly`s for each word within the detected text.
              "vertices": [ # The bounding polygon vertices.
                { # A vertex represents a 2D point in the image.
                    # NOTE: the vertex coordinates are in the same scale as the original image.
                  "y": 42, # Y coordinate.
                  "x": 42, # X coordinate.
                },
              ],
            },
            "properties": [ # Some entities can have additional optional <code>Property</code> fields.
                # For example a different kind of score or string that qualifies the entity.
              { # Arbitrary name/value pair.
                "name": "A String", # Name of the property.
                "value": "A String", # Value of the property.
              },
            ],
          },
        ],
        "error": { # The `Status` type defines a logical error model that is suitable for different # If set, represents the error message for the operation.
            # Note that filled-in mage annotations are guaranteed to be
            # correct, even when <code>error</code> is non-empty.
            # programming environments, including REST APIs and RPC APIs. It is used by
            # [gRPC](https://github.com/grpc). The error model is designed to be:
            #
            # - Simple to use and understand for most users
            # - Flexible enough to meet unexpected needs
            #
            # # Overview
            #
            # The `Status` message contains three pieces of data: error code, error message,
            # and error details. The error code should be an enum value of
            # google.rpc.Code, but it may accept additional error codes if needed.  The
            # error message should be a developer-facing English message that helps
            # developers *understand* and *resolve* the error. If a localized user-facing
            # error message is needed, put the localized message in the error details or
            # localize it in the client. The optional error details may contain arbitrary
            # information about the error. There is a predefined set of error detail types
            # in the package `google.rpc` which can be used for common error conditions.
            #
            # # Language mapping
            #
            # The `Status` message is the logical representation of the error model, but it
            # is not necessarily the actual wire format. When the `Status` message is
            # exposed in different client libraries and different wire protocols, it can be
            # mapped differently. For example, it will likely be mapped to some exceptions
            # in Java, but more likely mapped to some error codes in C.
            #
            # # Other uses
            #
            # The error model and the `Status` message can be used in a variety of
            # environments, either with or without APIs, to provide a
            # consistent developer experience across different environments.
            #
            # Example uses of this error model include:
            #
            # - Partial errors. If a service needs to return partial errors to the client,
            #     it may embed the `Status` in the normal response to indicate the partial
            #     errors.
            #
            # - Workflow errors. A typical workflow has multiple steps. Each step may
            #     have a `Status` message for error reporting purpose.
            #
            # - Batch operations. If a client uses batch request and batch response, the
            #     `Status` message should be used directly inside batch response, one for
            #     each error sub-response.
            #
            # - Asynchronous operations. If an API call embeds asynchronous operation
            #     results in its response, the status of those operations should be
            #     represented directly using the `Status` message.
            #
            # - Logging. If some API errors are stored in logs, the message `Status` could
            #     be used directly after any stripping needed for security/privacy reasons.
          "message": "A String", # A developer-facing error message, which should be in English. Any
              # user-facing error message should be localized and sent in the
              # google.rpc.Status.details field, or localized by the client.
          "code": 42, # The status code, which should be an enum value of google.rpc.Code.
          "details": [ # A list of messages that carry the error details.  There will be a
              # common set of message types for APIs to use.
            {
              "a_key": "", # Properties of the object. Contains field @type with type URL.
            },
          ],
        },
      },
    ],
  }</pre>
</div>

</body></html>