File: language_v1.documents.html

package info (click to toggle)
python-googleapi 1.7.11-4
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 110,952 kB
  • sloc: python: 7,784; javascript: 249; makefile: 59; sh: 53; xml: 5
file content (721 lines) | stat: -rw-r--r-- 36,398 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="language_v1.html">Cloud Natural Language API</a> . <a href="language_v1.documents.html">documents</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="#analyzeEntities">analyzeEntities(body, x__xgafv=None)</a></code></p>
<p class="firstline">Finds named entities (currently proper names and common nouns) in the text</p>
<p class="toc_element">
  <code><a href="#analyzeEntitySentiment">analyzeEntitySentiment(body, x__xgafv=None)</a></code></p>
<p class="firstline">Finds entities, similar to AnalyzeEntities in the text and analyzes</p>
<p class="toc_element">
  <code><a href="#analyzeSentiment">analyzeSentiment(body, x__xgafv=None)</a></code></p>
<p class="firstline">Analyzes the sentiment of the provided text.</p>
<p class="toc_element">
  <code><a href="#analyzeSyntax">analyzeSyntax(body, x__xgafv=None)</a></code></p>
<p class="firstline">Analyzes the syntax of the text and provides sentence boundaries and</p>
<p class="toc_element">
  <code><a href="#annotateText">annotateText(body, x__xgafv=None)</a></code></p>
<p class="firstline">A convenience method that provides all the features that analyzeSentiment,</p>
<p class="toc_element">
  <code><a href="#classifyText">classifyText(body, x__xgafv=None)</a></code></p>
<p class="firstline">Classifies a document into categories.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="analyzeEntities">analyzeEntities(body, x__xgafv=None)</code>
  <pre>Finds named entities (currently proper names and common nouns) in the text
along with entity types, salience, mentions for each entity, and
other properties.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{ # The entity analysis request message.
    "encodingType": "A String", # The encoding type used by the API to calculate offsets.
    "document": { # ################################################################ # # Input document.
        #
        # Represents the input to API methods.
      "content": "A String", # The content of the input in string format.
          # Cloud audit logging exempt since it is based on user data.
      "type": "A String", # Required. If the type is not set or is `TYPE_UNSPECIFIED`,
          # returns an `INVALID_ARGUMENT` error.
      "language": "A String", # The language of the document (if not specified, the language is
          # automatically detected). Both ISO and BCP-47 language codes are
          # accepted.<br>
          # [Language Support](/natural-language/docs/languages)
          # lists currently supported languages for each API method.
          # If the language (either specified by the caller or automatically detected)
          # is not supported by the called API method, an `INVALID_ARGUMENT` error
          # is returned.
      "gcsContentUri": "A String", # The Google Cloud Storage URI where the file content is located.
          # This URI must be of the form: gs://bucket_name/object_name. For more
          # details, see https://cloud.google.com/storage/docs/reference-uris.
          # NOTE: Cloud Storage object versioning is not supported.
    },
  }

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The entity analysis response message.
    "entities": [ # The recognized entities in the input document.
      { # Represents a phrase in the text that is a known entity, such as
          # a person, an organization, or location. The API associates information, such
          # as salience and mentions, with entities.
        "name": "A String", # The representative name for the entity.
        "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeEntitySentiment or if
            # AnnotateTextRequest.Features.extract_entity_sentiment is set to
            # true, this field will contain the aggregate sentiment expressed for this
            # entity in the provided document.
            # the text.
          "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
              # (positive sentiment).
          "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
              # the absolute magnitude of sentiment regardless of score (positive or
              # negative).
        },
        "salience": 3.14, # The salience score associated with the entity in the [0, 1.0] range.
            #
            # The salience score for an entity provides information about the
            # importance or centrality of that entity to the entire document text.
            # Scores closer to 0 are less salient, while scores closer to 1.0 are highly
            # salient.
        "mentions": [ # The mentions of this entity in the input document. The API currently
            # supports proper noun mentions.
          { # Represents a mention for an entity in the text. Currently, proper noun
              # mentions are supported.
            "text": { # Represents an output piece of text. # The mention text.
              "content": "A String", # The content of the output text.
              "beginOffset": 42, # The API calculates the beginning offset of the content in the original
                  # document according to the EncodingType specified in the API request.
            },
            "type": "A String", # The type of the entity mention.
            "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeEntitySentiment or if
                # AnnotateTextRequest.Features.extract_entity_sentiment is set to
                # true, this field will contain the sentiment expressed for this mention of
                # the entity in the provided document.
                # the text.
              "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
                  # (positive sentiment).
              "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
                  # the absolute magnitude of sentiment regardless of score (positive or
                  # negative).
            },
          },
        ],
        "type": "A String", # The entity type.
        "metadata": { # Metadata associated with the entity.
            #
            # For most entity types, the metadata is a Wikipedia URL (`wikipedia_url`)
            # and Knowledge Graph MID (`mid`), if they are available. For the metadata
            # associated with other entity types, see the Type table below.
          "a_key": "A String",
        },
      },
    ],
    "language": "A String", # The language of the text, which will be the same as the language specified
        # in the request or, if not specified, the automatically-detected language.
        # See Document.language field for more details.
  }</pre>
</div>

<div class="method">
    <code class="details" id="analyzeEntitySentiment">analyzeEntitySentiment(body, x__xgafv=None)</code>
  <pre>Finds entities, similar to AnalyzeEntities in the text and analyzes
sentiment associated with each entity and its mentions.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{ # The entity-level sentiment analysis request message.
    "encodingType": "A String", # The encoding type used by the API to calculate offsets.
    "document": { # ################################################################ # # Input document.
        #
        # Represents the input to API methods.
      "content": "A String", # The content of the input in string format.
          # Cloud audit logging exempt since it is based on user data.
      "type": "A String", # Required. If the type is not set or is `TYPE_UNSPECIFIED`,
          # returns an `INVALID_ARGUMENT` error.
      "language": "A String", # The language of the document (if not specified, the language is
          # automatically detected). Both ISO and BCP-47 language codes are
          # accepted.<br>
          # [Language Support](/natural-language/docs/languages)
          # lists currently supported languages for each API method.
          # If the language (either specified by the caller or automatically detected)
          # is not supported by the called API method, an `INVALID_ARGUMENT` error
          # is returned.
      "gcsContentUri": "A String", # The Google Cloud Storage URI where the file content is located.
          # This URI must be of the form: gs://bucket_name/object_name. For more
          # details, see https://cloud.google.com/storage/docs/reference-uris.
          # NOTE: Cloud Storage object versioning is not supported.
    },
  }

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The entity-level sentiment analysis response message.
    "entities": [ # The recognized entities in the input document with associated sentiments.
      { # Represents a phrase in the text that is a known entity, such as
          # a person, an organization, or location. The API associates information, such
          # as salience and mentions, with entities.
        "name": "A String", # The representative name for the entity.
        "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeEntitySentiment or if
            # AnnotateTextRequest.Features.extract_entity_sentiment is set to
            # true, this field will contain the aggregate sentiment expressed for this
            # entity in the provided document.
            # the text.
          "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
              # (positive sentiment).
          "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
              # the absolute magnitude of sentiment regardless of score (positive or
              # negative).
        },
        "salience": 3.14, # The salience score associated with the entity in the [0, 1.0] range.
            #
            # The salience score for an entity provides information about the
            # importance or centrality of that entity to the entire document text.
            # Scores closer to 0 are less salient, while scores closer to 1.0 are highly
            # salient.
        "mentions": [ # The mentions of this entity in the input document. The API currently
            # supports proper noun mentions.
          { # Represents a mention for an entity in the text. Currently, proper noun
              # mentions are supported.
            "text": { # Represents an output piece of text. # The mention text.
              "content": "A String", # The content of the output text.
              "beginOffset": 42, # The API calculates the beginning offset of the content in the original
                  # document according to the EncodingType specified in the API request.
            },
            "type": "A String", # The type of the entity mention.
            "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeEntitySentiment or if
                # AnnotateTextRequest.Features.extract_entity_sentiment is set to
                # true, this field will contain the sentiment expressed for this mention of
                # the entity in the provided document.
                # the text.
              "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
                  # (positive sentiment).
              "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
                  # the absolute magnitude of sentiment regardless of score (positive or
                  # negative).
            },
          },
        ],
        "type": "A String", # The entity type.
        "metadata": { # Metadata associated with the entity.
            #
            # For most entity types, the metadata is a Wikipedia URL (`wikipedia_url`)
            # and Knowledge Graph MID (`mid`), if they are available. For the metadata
            # associated with other entity types, see the Type table below.
          "a_key": "A String",
        },
      },
    ],
    "language": "A String", # The language of the text, which will be the same as the language specified
        # in the request or, if not specified, the automatically-detected language.
        # See Document.language field for more details.
  }</pre>
</div>

<div class="method">
    <code class="details" id="analyzeSentiment">analyzeSentiment(body, x__xgafv=None)</code>
  <pre>Analyzes the sentiment of the provided text.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{ # The sentiment analysis request message.
    "document": { # ################################################################ # # Input document.
        #
        # Represents the input to API methods.
      "content": "A String", # The content of the input in string format.
          # Cloud audit logging exempt since it is based on user data.
      "type": "A String", # Required. If the type is not set or is `TYPE_UNSPECIFIED`,
          # returns an `INVALID_ARGUMENT` error.
      "language": "A String", # The language of the document (if not specified, the language is
          # automatically detected). Both ISO and BCP-47 language codes are
          # accepted.<br>
          # [Language Support](/natural-language/docs/languages)
          # lists currently supported languages for each API method.
          # If the language (either specified by the caller or automatically detected)
          # is not supported by the called API method, an `INVALID_ARGUMENT` error
          # is returned.
      "gcsContentUri": "A String", # The Google Cloud Storage URI where the file content is located.
          # This URI must be of the form: gs://bucket_name/object_name. For more
          # details, see https://cloud.google.com/storage/docs/reference-uris.
          # NOTE: Cloud Storage object versioning is not supported.
    },
    "encodingType": "A String", # The encoding type used by the API to calculate sentence offsets.
  }

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The sentiment analysis response message.
    "documentSentiment": { # Represents the feeling associated with the entire text or entities in # The overall sentiment of the input document.
        # the text.
      "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
          # (positive sentiment).
      "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
          # the absolute magnitude of sentiment regardless of score (positive or
          # negative).
    },
    "language": "A String", # The language of the text, which will be the same as the language specified
        # in the request or, if not specified, the automatically-detected language.
        # See Document.language field for more details.
    "sentences": [ # The sentiment for all the sentences in the document.
      { # Represents a sentence in the input document.
        "text": { # Represents an output piece of text. # The sentence text.
          "content": "A String", # The content of the output text.
          "beginOffset": 42, # The API calculates the beginning offset of the content in the original
              # document according to the EncodingType specified in the API request.
        },
        "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeSentiment or if
            # AnnotateTextRequest.Features.extract_document_sentiment is set to
            # true, this field will contain the sentiment for the sentence.
            # the text.
          "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
              # (positive sentiment).
          "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
              # the absolute magnitude of sentiment regardless of score (positive or
              # negative).
        },
      },
    ],
  }</pre>
</div>

<div class="method">
    <code class="details" id="analyzeSyntax">analyzeSyntax(body, x__xgafv=None)</code>
  <pre>Analyzes the syntax of the text and provides sentence boundaries and
tokenization along with part of speech tags, dependency trees, and other
properties.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{ # The syntax analysis request message.
    "encodingType": "A String", # The encoding type used by the API to calculate offsets.
    "document": { # ################################################################ # # Input document.
        #
        # Represents the input to API methods.
      "content": "A String", # The content of the input in string format.
          # Cloud audit logging exempt since it is based on user data.
      "type": "A String", # Required. If the type is not set or is `TYPE_UNSPECIFIED`,
          # returns an `INVALID_ARGUMENT` error.
      "language": "A String", # The language of the document (if not specified, the language is
          # automatically detected). Both ISO and BCP-47 language codes are
          # accepted.<br>
          # [Language Support](/natural-language/docs/languages)
          # lists currently supported languages for each API method.
          # If the language (either specified by the caller or automatically detected)
          # is not supported by the called API method, an `INVALID_ARGUMENT` error
          # is returned.
      "gcsContentUri": "A String", # The Google Cloud Storage URI where the file content is located.
          # This URI must be of the form: gs://bucket_name/object_name. For more
          # details, see https://cloud.google.com/storage/docs/reference-uris.
          # NOTE: Cloud Storage object versioning is not supported.
    },
  }

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The syntax analysis response message.
    "tokens": [ # Tokens, along with their syntactic information, in the input document.
      { # Represents the smallest syntactic building block of the text.
        "text": { # Represents an output piece of text. # The token text.
          "content": "A String", # The content of the output text.
          "beginOffset": 42, # The API calculates the beginning offset of the content in the original
              # document according to the EncodingType specified in the API request.
        },
        "dependencyEdge": { # Represents dependency parse tree information for a token. (For more # Dependency tree parse for this token.
            # information on dependency labels, see
            # http://www.aclweb.org/anthology/P13-2017
          "headTokenIndex": 42, # Represents the head of this token in the dependency tree.
              # This is the index of the token which has an arc going to this token.
              # The index is the position of the token in the array of tokens returned
              # by the API method. If this token is a root token, then the
              # `head_token_index` is its own index.
          "label": "A String", # The parse label for the token.
        },
        "partOfSpeech": { # Represents part of speech information for a token. Parts of speech # Parts of speech tag for this token.
            # are as defined in
            # http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
          "case": "A String", # The grammatical case.
          "aspect": "A String", # The grammatical aspect.
          "form": "A String", # The grammatical form.
          "gender": "A String", # The grammatical gender.
          "number": "A String", # The grammatical number.
          "person": "A String", # The grammatical person.
          "tag": "A String", # The part of speech tag.
          "tense": "A String", # The grammatical tense.
          "reciprocity": "A String", # The grammatical reciprocity.
          "proper": "A String", # The grammatical properness.
          "voice": "A String", # The grammatical voice.
          "mood": "A String", # The grammatical mood.
        },
        "lemma": "A String", # [Lemma](https://en.wikipedia.org/wiki/Lemma_%28morphology%29) of the token.
      },
    ],
    "language": "A String", # The language of the text, which will be the same as the language specified
        # in the request or, if not specified, the automatically-detected language.
        # See Document.language field for more details.
    "sentences": [ # Sentences in the input document.
      { # Represents a sentence in the input document.
        "text": { # Represents an output piece of text. # The sentence text.
          "content": "A String", # The content of the output text.
          "beginOffset": 42, # The API calculates the beginning offset of the content in the original
              # document according to the EncodingType specified in the API request.
        },
        "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeSentiment or if
            # AnnotateTextRequest.Features.extract_document_sentiment is set to
            # true, this field will contain the sentiment for the sentence.
            # the text.
          "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
              # (positive sentiment).
          "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
              # the absolute magnitude of sentiment regardless of score (positive or
              # negative).
        },
      },
    ],
  }</pre>
</div>

<div class="method">
    <code class="details" id="annotateText">annotateText(body, x__xgafv=None)</code>
  <pre>A convenience method that provides all the features that analyzeSentiment,
analyzeEntities, and analyzeSyntax provide in one call.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{ # The request message for the text annotation API, which can perform multiple
      # analysis types (sentiment, entities, and syntax) in one call.
    "encodingType": "A String", # The encoding type used by the API to calculate offsets.
    "features": { # All available features for sentiment, syntax, and semantic analysis. # The enabled features.
        # Setting each one to true will enable that specific analysis for the input.
      "classifyText": True or False, # Classify the full document into categories.
      "extractEntitySentiment": True or False, # Extract entities and their associated sentiment.
      "extractDocumentSentiment": True or False, # Extract document-level sentiment.
      "extractEntities": True or False, # Extract entities.
      "extractSyntax": True or False, # Extract syntax information.
    },
    "document": { # ################################################################ # # Input document.
        #
        # Represents the input to API methods.
      "content": "A String", # The content of the input in string format.
          # Cloud audit logging exempt since it is based on user data.
      "type": "A String", # Required. If the type is not set or is `TYPE_UNSPECIFIED`,
          # returns an `INVALID_ARGUMENT` error.
      "language": "A String", # The language of the document (if not specified, the language is
          # automatically detected). Both ISO and BCP-47 language codes are
          # accepted.<br>
          # [Language Support](/natural-language/docs/languages)
          # lists currently supported languages for each API method.
          # If the language (either specified by the caller or automatically detected)
          # is not supported by the called API method, an `INVALID_ARGUMENT` error
          # is returned.
      "gcsContentUri": "A String", # The Google Cloud Storage URI where the file content is located.
          # This URI must be of the form: gs://bucket_name/object_name. For more
          # details, see https://cloud.google.com/storage/docs/reference-uris.
          # NOTE: Cloud Storage object versioning is not supported.
    },
  }

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The text annotations response message.
    "language": "A String", # The language of the text, which will be the same as the language specified
        # in the request or, if not specified, the automatically-detected language.
        # See Document.language field for more details.
    "tokens": [ # Tokens, along with their syntactic information, in the input document.
        # Populated if the user enables
        # AnnotateTextRequest.Features.extract_syntax.
      { # Represents the smallest syntactic building block of the text.
        "text": { # Represents an output piece of text. # The token text.
          "content": "A String", # The content of the output text.
          "beginOffset": 42, # The API calculates the beginning offset of the content in the original
              # document according to the EncodingType specified in the API request.
        },
        "dependencyEdge": { # Represents dependency parse tree information for a token. (For more # Dependency tree parse for this token.
            # information on dependency labels, see
            # http://www.aclweb.org/anthology/P13-2017
          "headTokenIndex": 42, # Represents the head of this token in the dependency tree.
              # This is the index of the token which has an arc going to this token.
              # The index is the position of the token in the array of tokens returned
              # by the API method. If this token is a root token, then the
              # `head_token_index` is its own index.
          "label": "A String", # The parse label for the token.
        },
        "partOfSpeech": { # Represents part of speech information for a token. Parts of speech # Parts of speech tag for this token.
            # are as defined in
            # http://www.lrec-conf.org/proceedings/lrec2012/pdf/274_Paper.pdf
          "case": "A String", # The grammatical case.
          "aspect": "A String", # The grammatical aspect.
          "form": "A String", # The grammatical form.
          "gender": "A String", # The grammatical gender.
          "number": "A String", # The grammatical number.
          "person": "A String", # The grammatical person.
          "tag": "A String", # The part of speech tag.
          "tense": "A String", # The grammatical tense.
          "reciprocity": "A String", # The grammatical reciprocity.
          "proper": "A String", # The grammatical properness.
          "voice": "A String", # The grammatical voice.
          "mood": "A String", # The grammatical mood.
        },
        "lemma": "A String", # [Lemma](https://en.wikipedia.org/wiki/Lemma_%28morphology%29) of the token.
      },
    ],
    "entities": [ # Entities, along with their semantic information, in the input document.
        # Populated if the user enables
        # AnnotateTextRequest.Features.extract_entities.
      { # Represents a phrase in the text that is a known entity, such as
          # a person, an organization, or location. The API associates information, such
          # as salience and mentions, with entities.
        "name": "A String", # The representative name for the entity.
        "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeEntitySentiment or if
            # AnnotateTextRequest.Features.extract_entity_sentiment is set to
            # true, this field will contain the aggregate sentiment expressed for this
            # entity in the provided document.
            # the text.
          "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
              # (positive sentiment).
          "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
              # the absolute magnitude of sentiment regardless of score (positive or
              # negative).
        },
        "salience": 3.14, # The salience score associated with the entity in the [0, 1.0] range.
            #
            # The salience score for an entity provides information about the
            # importance or centrality of that entity to the entire document text.
            # Scores closer to 0 are less salient, while scores closer to 1.0 are highly
            # salient.
        "mentions": [ # The mentions of this entity in the input document. The API currently
            # supports proper noun mentions.
          { # Represents a mention for an entity in the text. Currently, proper noun
              # mentions are supported.
            "text": { # Represents an output piece of text. # The mention text.
              "content": "A String", # The content of the output text.
              "beginOffset": 42, # The API calculates the beginning offset of the content in the original
                  # document according to the EncodingType specified in the API request.
            },
            "type": "A String", # The type of the entity mention.
            "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeEntitySentiment or if
                # AnnotateTextRequest.Features.extract_entity_sentiment is set to
                # true, this field will contain the sentiment expressed for this mention of
                # the entity in the provided document.
                # the text.
              "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
                  # (positive sentiment).
              "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
                  # the absolute magnitude of sentiment regardless of score (positive or
                  # negative).
            },
          },
        ],
        "type": "A String", # The entity type.
        "metadata": { # Metadata associated with the entity.
            #
            # For most entity types, the metadata is a Wikipedia URL (`wikipedia_url`)
            # and Knowledge Graph MID (`mid`), if they are available. For the metadata
            # associated with other entity types, see the Type table below.
          "a_key": "A String",
        },
      },
    ],
    "documentSentiment": { # Represents the feeling associated with the entire text or entities in # The overall sentiment for the document. Populated if the user enables
        # AnnotateTextRequest.Features.extract_document_sentiment.
        # the text.
      "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
          # (positive sentiment).
      "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
          # the absolute magnitude of sentiment regardless of score (positive or
          # negative).
    },
    "sentences": [ # Sentences in the input document. Populated if the user enables
        # AnnotateTextRequest.Features.extract_syntax.
      { # Represents a sentence in the input document.
        "text": { # Represents an output piece of text. # The sentence text.
          "content": "A String", # The content of the output text.
          "beginOffset": 42, # The API calculates the beginning offset of the content in the original
              # document according to the EncodingType specified in the API request.
        },
        "sentiment": { # Represents the feeling associated with the entire text or entities in # For calls to AnalyzeSentiment or if
            # AnnotateTextRequest.Features.extract_document_sentiment is set to
            # true, this field will contain the sentiment for the sentence.
            # the text.
          "score": 3.14, # Sentiment score between -1.0 (negative sentiment) and 1.0
              # (positive sentiment).
          "magnitude": 3.14, # A non-negative number in the [0, +inf) range, which represents
              # the absolute magnitude of sentiment regardless of score (positive or
              # negative).
        },
      },
    ],
    "categories": [ # Categories identified in the input document.
      { # Represents a category returned from the text classifier.
        "confidence": 3.14, # The classifier's confidence of the category. Number represents how certain
            # the classifier is that this category represents the given text.
        "name": "A String", # The name of the category representing the document, from the [predefined
            # taxonomy](/natural-language/docs/categories).
      },
    ],
  }</pre>
</div>

<div class="method">
    <code class="details" id="classifyText">classifyText(body, x__xgafv=None)</code>
  <pre>Classifies a document into categories.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{ # The document classification request message.
    "document": { # ################################################################ # # Input document.
        #
        # Represents the input to API methods.
      "content": "A String", # The content of the input in string format.
          # Cloud audit logging exempt since it is based on user data.
      "type": "A String", # Required. If the type is not set or is `TYPE_UNSPECIFIED`,
          # returns an `INVALID_ARGUMENT` error.
      "language": "A String", # The language of the document (if not specified, the language is
          # automatically detected). Both ISO and BCP-47 language codes are
          # accepted.<br>
          # [Language Support](/natural-language/docs/languages)
          # lists currently supported languages for each API method.
          # If the language (either specified by the caller or automatically detected)
          # is not supported by the called API method, an `INVALID_ARGUMENT` error
          # is returned.
      "gcsContentUri": "A String", # The Google Cloud Storage URI where the file content is located.
          # This URI must be of the form: gs://bucket_name/object_name. For more
          # details, see https://cloud.google.com/storage/docs/reference-uris.
          # NOTE: Cloud Storage object versioning is not supported.
    },
  }

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # The document classification response message.
    "categories": [ # Categories representing the input document.
      { # Represents a category returned from the text classifier.
        "confidence": 3.14, # The classifier's confidence of the category. Number represents how certain
            # the classifier is that this category represents the given text.
        "name": "A String", # The name of the category representing the document, from the [predefined
            # taxonomy](/natural-language/docs/categories).
      },
    ],
  }</pre>
</div>

</body></html>