1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430
|
<html><body>
<style>
body, h1, h2, h3, div, span, p, pre, a {
margin: 0;
padding: 0;
border: 0;
font-weight: inherit;
font-style: inherit;
font-size: 100%;
font-family: inherit;
vertical-align: baseline;
}
body {
font-size: 13px;
padding: 1em;
}
h1 {
font-size: 26px;
margin-bottom: 1em;
}
h2 {
font-size: 24px;
margin-bottom: 1em;
}
h3 {
font-size: 20px;
margin-bottom: 1em;
margin-top: 1em;
}
pre, code {
line-height: 1.5;
font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}
pre {
margin-top: 0.5em;
}
h1, h2, h3, p {
font-family: Arial, sans serif;
}
h1, h2, h3 {
border-bottom: solid #CCC 1px;
}
.toc_element {
margin-top: 0.5em;
}
.firstline {
margin-left: 2 em;
}
.method {
margin-top: 1em;
border: solid 1px #CCC;
padding: 1em;
background: #EEE;
}
.details {
font-weight: bold;
font-size: 14px;
}
</style>
<h1><a href="ml_v1beta1.html">Google Cloud Machine Learning Engine</a> . <a href="ml_v1beta1.projects.html">projects</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
<code><a href="ml_v1beta1.projects.jobs.html">jobs()</a></code>
</p>
<p class="firstline">Returns the jobs Resource.</p>
<p class="toc_element">
<code><a href="ml_v1beta1.projects.models.html">models()</a></code>
</p>
<p class="firstline">Returns the models Resource.</p>
<p class="toc_element">
<code><a href="ml_v1beta1.projects.operations.html">operations()</a></code>
</p>
<p class="firstline">Returns the operations Resource.</p>
<p class="toc_element">
<code><a href="#getConfig">getConfig(name, x__xgafv=None)</a></code></p>
<p class="firstline">Get the service account information associated with your project. You need</p>
<p class="toc_element">
<code><a href="#predict">predict(name, body, x__xgafv=None)</a></code></p>
<p class="firstline">Performs prediction on the data in the request.</p>
<h3>Method Details</h3>
<div class="method">
<code class="details" id="getConfig">getConfig(name, x__xgafv=None)</code>
<pre>Get the service account information associated with your project. You need
this information in order to grant the service account persmissions for
the Google Cloud Storage location where you put your model training code
for training the model with Google Cloud Machine Learning.
Args:
name: string, Required. The project name.
Authorization: requires `Viewer` role on the specified project. (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Returns service account information associated with a project.
"serviceAccountProject": "A String", # The project number for `service_account`.
"serviceAccount": "A String", # The service account Cloud ML uses to access resources in the project.
}</pre>
</div>
<div class="method">
<code class="details" id="predict">predict(name, body, x__xgafv=None)</code>
<pre>Performs prediction on the data in the request.
**** REMOVE FROM GENERATED DOCUMENTATION
Args:
name: string, Required. The resource name of a model or a version.
Authorization: requires `Viewer` role on the parent project. (required)
body: object, The request body. (required)
The object takes the form of:
{ # Request for predictions to be issued against a trained model.
#
# The body of the request is a single JSON object with a single top-level
# field:
#
# <dl>
# <dt>instances</dt>
# <dd>A JSON array containing values representing the instances to use for
# prediction.</dd>
# </dl>
#
# The structure of each element of the instances list is determined by your
# model's input definition. Instances can include named inputs or can contain
# only unlabeled values.
#
# Not all data includes named inputs. Some instances will be simple
# JSON values (boolean, number, or string). However, instances are often lists
# of simple values, or complex nested lists. Here are some examples of request
# bodies:
#
# CSV data with each row encoded as a string value:
# <pre>
# {"instances": ["1.0,true,\\"x\\"", "-2.0,false,\\"y\\""]}
# </pre>
# Plain text:
# <pre>
# {"instances": ["the quick brown fox", "la bruja le dio"]}
# </pre>
# Sentences encoded as lists of words (vectors of strings):
# <pre>
# {
# "instances": [
# ["the","quick","brown"],
# ["la","bruja","le"],
# ...
# ]
# }
# </pre>
# Floating point scalar values:
# <pre>
# {"instances": [0.0, 1.1, 2.2]}
# </pre>
# Vectors of integers:
# <pre>
# {
# "instances": [
# [0, 1, 2],
# [3, 4, 5],
# ...
# ]
# }
# </pre>
# Tensors (in this case, two-dimensional tensors):
# <pre>
# {
# "instances": [
# [
# [0, 1, 2],
# [3, 4, 5]
# ],
# ...
# ]
# }
# </pre>
# Images can be represented different ways. In this encoding scheme the first
# two dimensions represent the rows and columns of the image, and the third
# contains lists (vectors) of the R, G, and B values for each pixel.
# <pre>
# {
# "instances": [
# [
# [
# [138, 30, 66],
# [130, 20, 56],
# ...
# ],
# [
# [126, 38, 61],
# [122, 24, 57],
# ...
# ],
# ...
# ],
# ...
# ]
# }
# </pre>
# JSON strings must be encoded as UTF-8. To send binary data, you must
# base64-encode the data and mark it as binary. To mark a JSON string
# as binary, replace it with a JSON object with a single attribute named `b64`:
# <pre>{"b64": "..."} </pre>
# For example:
#
# Two Serialized tf.Examples (fake data, for illustrative purposes only):
# <pre>
# {"instances": [{"b64": "X5ad6u"}, {"b64": "IA9j4nx"}]}
# </pre>
# Two JPEG image byte strings (fake data, for illustrative purposes only):
# <pre>
# {"instances": [{"b64": "ASa8asdf"}, {"b64": "JLK7ljk3"}]}
# </pre>
# If your data includes named references, format each instance as a JSON object
# with the named references as the keys:
#
# JSON input data to be preprocessed:
# <pre>
# {
# "instances": [
# {
# "a": 1.0,
# "b": true,
# "c": "x"
# },
# {
# "a": -2.0,
# "b": false,
# "c": "y"
# }
# ]
# }
# </pre>
# Some models have an underlying TensorFlow graph that accepts multiple input
# tensors. In this case, you should use the names of JSON name/value pairs to
# identify the input tensors, as shown in the following exmaples:
#
# For a graph with input tensor aliases "tag" (string) and "image"
# (base64-encoded string):
# <pre>
# {
# "instances": [
# {
# "tag": "beach",
# "image": {"b64": "ASa8asdf"}
# },
# {
# "tag": "car",
# "image": {"b64": "JLK7ljk3"}
# }
# ]
# }
# </pre>
# For a graph with input tensor aliases "tag" (string) and "image"
# (3-dimensional array of 8-bit ints):
# <pre>
# {
# "instances": [
# {
# "tag": "beach",
# "image": [
# [
# [138, 30, 66],
# [130, 20, 56],
# ...
# ],
# [
# [126, 38, 61],
# [122, 24, 57],
# ...
# ],
# ...
# ]
# },
# {
# "tag": "car",
# "image": [
# [
# [255, 0, 102],
# [255, 0, 97],
# ...
# ],
# [
# [254, 1, 101],
# [254, 2, 93],
# ...
# ],
# ...
# ]
# },
# ...
# ]
# }
# </pre>
# If the call is successful, the response body will contain one prediction
# entry per instance in the request body. If prediction fails for any
# instance, the response body will contain no predictions and will contian
# a single error entry instead.
"httpBody": { # Message that represents an arbitrary HTTP body. It should only be used for #
# Required. The prediction request body.
# payload formats that can't be represented as JSON, such as raw binary or
# an HTML page.
#
#
# This message can be used both in streaming and non-streaming API methods in
# the request as well as the response.
#
# It can be used as a top-level request field, which is convenient if one
# wants to extract parameters from either the URL or HTTP template into the
# request fields and also want access to the raw HTTP body.
#
# Example:
#
# message GetResourceRequest {
# // A unique request id.
# string request_id = 1;
#
# // The raw HTTP body is bound to this field.
# google.api.HttpBody http_body = 2;
# }
#
# service ResourceService {
# rpc GetResource(GetResourceRequest) returns (google.api.HttpBody);
# rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty);
# }
#
# Example with streaming methods:
#
# service CaldavService {
# rpc GetCalendar(stream google.api.HttpBody)
# returns (stream google.api.HttpBody);
# rpc UpdateCalendar(stream google.api.HttpBody)
# returns (stream google.api.HttpBody);
# }
#
# Use of this type only changes how the request and response bodies are
# handled, all other features will continue to work unchanged.
"contentType": "A String", # The HTTP Content-Type string representing the content type of the body.
"data": "A String", # HTTP body binary data.
"extensions": [ # Application specific response metadata. Must be set in the first response
# for streaming APIs.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
},
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Message that represents an arbitrary HTTP body. It should only be used for
# payload formats that can't be represented as JSON, such as raw binary or
# an HTML page.
#
#
# This message can be used both in streaming and non-streaming API methods in
# the request as well as the response.
#
# It can be used as a top-level request field, which is convenient if one
# wants to extract parameters from either the URL or HTTP template into the
# request fields and also want access to the raw HTTP body.
#
# Example:
#
# message GetResourceRequest {
# // A unique request id.
# string request_id = 1;
#
# // The raw HTTP body is bound to this field.
# google.api.HttpBody http_body = 2;
# }
#
# service ResourceService {
# rpc GetResource(GetResourceRequest) returns (google.api.HttpBody);
# rpc UpdateResource(google.api.HttpBody) returns (google.protobuf.Empty);
# }
#
# Example with streaming methods:
#
# service CaldavService {
# rpc GetCalendar(stream google.api.HttpBody)
# returns (stream google.api.HttpBody);
# rpc UpdateCalendar(stream google.api.HttpBody)
# returns (stream google.api.HttpBody);
# }
#
# Use of this type only changes how the request and response bodies are
# handled, all other features will continue to work unchanged.
"contentType": "A String", # The HTTP Content-Type string representing the content type of the body.
"data": "A String", # HTTP body binary data.
"extensions": [ # Application specific response metadata. Must be set in the first response
# for streaming APIs.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
}</pre>
</div>
</body></html>
|