File: prediction_v1_4.trainedmodels.html

package info (click to toggle)
python-googleapi 1.7.11-4
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 110,952 kB
  • sloc: python: 7,784; javascript: 249; makefile: 59; sh: 53; xml: 5
file content (328 lines) | stat: -rw-r--r-- 14,801 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="prediction_v1_4.html">Prediction API</a> . <a href="prediction_v1_4.trainedmodels.html">trainedmodels</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="#delete">delete(id)</a></code></p>
<p class="firstline">Delete a trained model.</p>
<p class="toc_element">
  <code><a href="#get">get(id)</a></code></p>
<p class="firstline">Check training status of your model.</p>
<p class="toc_element">
  <code><a href="#insert">insert(body)</a></code></p>
<p class="firstline">Begin training your model.</p>
<p class="toc_element">
  <code><a href="#predict">predict(id, body)</a></code></p>
<p class="firstline">Submit model id and request a prediction</p>
<p class="toc_element">
  <code><a href="#update">update(id, body)</a></code></p>
<p class="firstline">Add new data to a trained model.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="delete">delete(id)</code>
  <pre>Delete a trained model.

Args:
  id: string, The unique name for the predictive model. (required)
</pre>
</div>

<div class="method">
    <code class="details" id="get">get(id)</code>
  <pre>Check training status of your model.

Args:
  id: string, The unique name for the predictive model. (required)

Returns:
  An object of the form:

    {
      "kind": "prediction#training", # What kind of resource this is.
      "storageDataLocation": "A String", # Google storage location of the training data file.
      "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
      "dataAnalysis": { # Data Analysis.
        "warnings": [
          "A String",
        ],
      },
      "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
      "modelInfo": { # Model metadata.
        "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
          "a_key": 3.14,
        },
        "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
        "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
          "a_key": {
            "a_key": 3.14,
          },
        },
        "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
        "numberInstances": "A String", # Number of valid data instances used in the trained model.
        "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
        "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
      },
      "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
      "id": "A String", # The unique name for the predictive model.
      "selfLink": "A String", # A URL to re-request this resource.
      "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
        { # Class label (string).
          "a_key": 3.14,
        },
      ],
    }</pre>
</div>

<div class="method">
    <code class="details" id="insert">insert(body)</code>
  <pre>Begin training your model.

Args:
  body: object, The request body. (required)
    The object takes the form of:

{
    "kind": "prediction#training", # What kind of resource this is.
    "storageDataLocation": "A String", # Google storage location of the training data file.
    "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
    "dataAnalysis": { # Data Analysis.
      "warnings": [
        "A String",
      ],
    },
    "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    "modelInfo": { # Model metadata.
      "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
        "a_key": 3.14,
      },
      "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
      "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
        "a_key": {
          "a_key": 3.14,
        },
      },
      "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
      "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
      "numberInstances": "A String", # Number of valid data instances used in the trained model.
      "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
      "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
    },
    "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
    "id": "A String", # The unique name for the predictive model.
    "selfLink": "A String", # A URL to re-request this resource.
    "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
      { # Class label (string).
        "a_key": 3.14,
      },
    ],
  }


Returns:
  An object of the form:

    {
      "kind": "prediction#training", # What kind of resource this is.
      "storageDataLocation": "A String", # Google storage location of the training data file.
      "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
      "dataAnalysis": { # Data Analysis.
        "warnings": [
          "A String",
        ],
      },
      "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
      "modelInfo": { # Model metadata.
        "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
          "a_key": 3.14,
        },
        "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
        "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
          "a_key": {
            "a_key": 3.14,
          },
        },
        "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
        "numberInstances": "A String", # Number of valid data instances used in the trained model.
        "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
        "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
      },
      "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
      "id": "A String", # The unique name for the predictive model.
      "selfLink": "A String", # A URL to re-request this resource.
      "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
        { # Class label (string).
          "a_key": 3.14,
        },
      ],
    }</pre>
</div>

<div class="method">
    <code class="details" id="predict">predict(id, body)</code>
  <pre>Submit model id and request a prediction

Args:
  id: string, The unique name for the predictive model. (required)
  body: object, The request body. (required)
    The object takes the form of:

{
    "input": { # Input to the model for a prediction
      "csvInstance": [ # A list of input features, these can be strings or doubles.
        "",
      ],
    },
  }


Returns:
  An object of the form:

    {
    "kind": "prediction#output", # What kind of resource this is.
    "outputLabel": "A String", # The most likely class label [Categorical models only].
    "id": "A String", # The unique name for the predictive model.
    "outputMulti": [ # A list of class labels with their estimated probabilities [Categorical models only].
      {
        "score": 3.14, # The probability of the class label.
        "label": "A String", # The class label.
      },
    ],
    "outputValue": 3.14, # The estimated regression value [Regression models only].
    "selfLink": "A String", # A URL to re-request this resource.
  }</pre>
</div>

<div class="method">
    <code class="details" id="update">update(id, body)</code>
  <pre>Add new data to a trained model.

Args:
  id: string, The unique name for the predictive model. (required)
  body: object, The request body. (required)
    The object takes the form of:

{
    "output": "A String", # The generic output value - could be regression value or class label
    "csvInstance": [ # The input features for this instance
      "",
    ],
    "label": "A String", # The class label of this instance
  }


Returns:
  An object of the form:

    {
      "kind": "prediction#training", # What kind of resource this is.
      "storageDataLocation": "A String", # Google storage location of the training data file.
      "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
      "dataAnalysis": { # Data Analysis.
        "warnings": [
          "A String",
        ],
      },
      "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
      "modelInfo": { # Model metadata.
        "confusionMatrixRowTotals": { # A list of the confusion matrix row totals
          "a_key": 3.14,
        },
        "numberLabels": "A String", # Number of class labels in the trained model [Categorical models only].
        "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes [Categorical models only].
          "a_key": {
            "a_key": 3.14,
          },
        },
        "meanSquaredError": 3.14, # An estimated mean squared error. The can be used to measure the quality of the predicted model [Regression models only].
        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION)
        "numberInstances": "A String", # Number of valid data instances used in the trained model.
        "classWeightedAccuracy": 3.14, # Estimated accuracy of model taking utility weights into account [Categorical models only].
        "classificationAccuracy": 3.14, # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data [Categorical models only].
      },
      "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
      "id": "A String", # The unique name for the predictive model.
      "selfLink": "A String", # A URL to re-request this resource.
      "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified [Categorical models only].
        { # Class label (string).
          "a_key": 3.14,
        },
      ],
    }</pre>
</div>

</body></html>