File: prediction_v1_6.trainedmodels.html

package info (click to toggle)
python-googleapi 1.7.11-4
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 110,952 kB
  • sloc: python: 7,784; javascript: 249; makefile: 59; sh: 53; xml: 5
file content (427 lines) | stat: -rw-r--r-- 20,797 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="prediction_v1_6.html">Prediction API</a> . <a href="prediction_v1_6.trainedmodels.html">trainedmodels</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="#analyze">analyze(project, id)</a></code></p>
<p class="firstline">Get analysis of the model and the data the model was trained on.</p>
<p class="toc_element">
  <code><a href="#delete">delete(project, id)</a></code></p>
<p class="firstline">Delete a trained model.</p>
<p class="toc_element">
  <code><a href="#get">get(project, id)</a></code></p>
<p class="firstline">Check training status of your model.</p>
<p class="toc_element">
  <code><a href="#insert">insert(project, body)</a></code></p>
<p class="firstline">Train a Prediction API model.</p>
<p class="toc_element">
  <code><a href="#list">list(project, pageToken=None, maxResults=None)</a></code></p>
<p class="firstline">List available models.</p>
<p class="toc_element">
  <code><a href="#list_next">list_next(previous_request, previous_response)</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
  <code><a href="#predict">predict(project, id, body)</a></code></p>
<p class="firstline">Submit model id and request a prediction.</p>
<p class="toc_element">
  <code><a href="#update">update(project, id, body)</a></code></p>
<p class="firstline">Add new data to a trained model.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="analyze">analyze(project, id)</code>
  <pre>Get analysis of the model and the data the model was trained on.

Args:
  project: string, The project associated with the model. (required)
  id: string, The unique name for the predictive model. (required)

Returns:
  An object of the form:

    {
    "kind": "prediction#analyze", # What kind of resource this is.
    "errors": [ # List of errors with the data.
      {
        "a_key": "A String", # Error level followed by a detailed error message.
      },
    ],
    "dataDescription": { # Description of the data the model was trained on.
      "outputFeature": { # Description of the output value or label.
        "text": [ # Description of the output labels in the data set.
          {
            "count": "A String", # Number of times the output label occurred in the data set.
            "value": "A String", # The output label.
          },
        ],
        "numeric": { # Description of the output values in the data set.
          "count": "A String", # Number of numeric output values in the data set.
          "variance": "A String", # Variance of the output values in the data set.
          "mean": "A String", # Mean of the output values in the data set.
        },
      },
      "features": [ # Description of the input features in the data set.
        {
          "index": "A String", # The feature index.
          "text": { # Description of multiple-word text values of this feature.
            "count": "A String", # Number of multiple-word text values for this feature.
          },
          "numeric": { # Description of the numeric values of this feature.
            "count": "A String", # Number of numeric values for this feature in the data set.
            "variance": "A String", # Variance of the numeric values of this feature in the data set.
            "mean": "A String", # Mean of the numeric values of this feature in the data set.
          },
          "categorical": { # Description of the categorical values of this feature.
            "count": "A String", # Number of categorical values for this feature in the data.
            "values": [ # List of all the categories for this feature in the data set.
              {
                "count": "A String", # Number of times this feature had this value.
                "value": "A String", # The category name.
              },
            ],
          },
        },
      ],
    },
    "modelDescription": { # Description of the model.
      "confusionMatrixRowTotals": { # A list of the confusion matrix row totals.
        "a_key": "A String",
      },
      "confusionMatrix": { # An output confusion matrix. This shows an estimate for how this model will do in predictions. This is first indexed by the true class label. For each true class label, this provides a pair {predicted_label, count}, where count is the estimated number of times the model will predict the predicted label given the true label. Will not output if more then 100 classes (Categorical models only).
        "a_key": { # Confusion matrix information for the true class label.
          "a_key": "A String", # Average number of times an instance with correct class label modelDescription.confusionMatrix.(key) was wrongfully classified as this label.
        },
      },
      "modelinfo": { # Basic information about the model.
        "kind": "prediction#training", # What kind of resource this is.
        "created": "A String", # Insert time of the model (as a RFC 3339 timestamp).
        "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp).
        "storageDataLocation": "A String", # Google storage location of the training data file.
        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
        "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
        "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
        "modelInfo": { # Model metadata.
          "numberLabels": "A String", # Number of class labels in the trained model (Categorical models only).
          "meanSquaredError": "A String", # An estimated mean squared error. The can be used to measure the quality of the predicted model (Regression models only).
          "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
          "numberInstances": "A String", # Number of valid data instances used in the trained model.
          "classWeightedAccuracy": "A String", # Estimated accuracy of model taking utility weights into account (Categorical models only).
          "classificationAccuracy": "A String", # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data (Categorical models only).
        },
        "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
        "id": "A String", # The unique name for the predictive model.
        "selfLink": "A String", # A URL to re-request this resource.
      },
    },
    "id": "A String", # The unique name for the predictive model.
    "selfLink": "A String", # A URL to re-request this resource.
  }</pre>
</div>

<div class="method">
    <code class="details" id="delete">delete(project, id)</code>
  <pre>Delete a trained model.

Args:
  project: string, The project associated with the model. (required)
  id: string, The unique name for the predictive model. (required)
</pre>
</div>

<div class="method">
    <code class="details" id="get">get(project, id)</code>
  <pre>Check training status of your model.

Args:
  project: string, The project associated with the model. (required)
  id: string, The unique name for the predictive model. (required)

Returns:
  An object of the form:

    {
    "kind": "prediction#training", # What kind of resource this is.
    "created": "A String", # Insert time of the model (as a RFC 3339 timestamp).
    "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp).
    "storageDataLocation": "A String", # Google storage location of the training data file.
    "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
    "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
    "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    "modelInfo": { # Model metadata.
      "numberLabels": "A String", # Number of class labels in the trained model (Categorical models only).
      "meanSquaredError": "A String", # An estimated mean squared error. The can be used to measure the quality of the predicted model (Regression models only).
      "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
      "numberInstances": "A String", # Number of valid data instances used in the trained model.
      "classWeightedAccuracy": "A String", # Estimated accuracy of model taking utility weights into account (Categorical models only).
      "classificationAccuracy": "A String", # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data (Categorical models only).
    },
    "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
    "id": "A String", # The unique name for the predictive model.
    "selfLink": "A String", # A URL to re-request this resource.
  }</pre>
</div>

<div class="method">
    <code class="details" id="insert">insert(project, body)</code>
  <pre>Train a Prediction API model.

Args:
  project: string, The project associated with the model. (required)
  body: object, The request body. (required)
    The object takes the form of:

{
    "storageDataLocation": "A String", # Google storage location of the training data file.
    "modelType": "A String", # Type of predictive model (classification or regression).
    "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
    "sourceModel": "A String", # The Id of the model to be copied over.
    "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
    "trainingInstances": [ # Instances to train model on.
      {
        "output": "A String", # The generic output value - could be regression or class label.
        "csvInstance": [ # The input features for this instance.
          "",
        ],
      },
    ],
    "id": "A String", # The unique name for the predictive model.
    "utility": [ # A class weighting function, which allows the importance weights for class labels to be specified (Categorical models only).
      { # Class label (string).
        "a_key": 3.14,
      },
    ],
  }


Returns:
  An object of the form:

    {
    "kind": "prediction#training", # What kind of resource this is.
    "created": "A String", # Insert time of the model (as a RFC 3339 timestamp).
    "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp).
    "storageDataLocation": "A String", # Google storage location of the training data file.
    "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
    "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
    "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    "modelInfo": { # Model metadata.
      "numberLabels": "A String", # Number of class labels in the trained model (Categorical models only).
      "meanSquaredError": "A String", # An estimated mean squared error. The can be used to measure the quality of the predicted model (Regression models only).
      "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
      "numberInstances": "A String", # Number of valid data instances used in the trained model.
      "classWeightedAccuracy": "A String", # Estimated accuracy of model taking utility weights into account (Categorical models only).
      "classificationAccuracy": "A String", # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data (Categorical models only).
    },
    "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
    "id": "A String", # The unique name for the predictive model.
    "selfLink": "A String", # A URL to re-request this resource.
  }</pre>
</div>

<div class="method">
    <code class="details" id="list">list(project, pageToken=None, maxResults=None)</code>
  <pre>List available models.

Args:
  project: string, The project associated with the model. (required)
  pageToken: string, Pagination token.
  maxResults: integer, Maximum number of results to return.

Returns:
  An object of the form:

    {
    "nextPageToken": "A String", # Pagination token to fetch the next page, if one exists.
    "items": [ # List of models.
      {
        "kind": "prediction#training", # What kind of resource this is.
        "created": "A String", # Insert time of the model (as a RFC 3339 timestamp).
        "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp).
        "storageDataLocation": "A String", # Google storage location of the training data file.
        "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
        "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
        "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
        "modelInfo": { # Model metadata.
          "numberLabels": "A String", # Number of class labels in the trained model (Categorical models only).
          "meanSquaredError": "A String", # An estimated mean squared error. The can be used to measure the quality of the predicted model (Regression models only).
          "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
          "numberInstances": "A String", # Number of valid data instances used in the trained model.
          "classWeightedAccuracy": "A String", # Estimated accuracy of model taking utility weights into account (Categorical models only).
          "classificationAccuracy": "A String", # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data (Categorical models only).
        },
        "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
        "id": "A String", # The unique name for the predictive model.
        "selfLink": "A String", # A URL to re-request this resource.
      },
    ],
    "kind": "prediction#list", # What kind of resource this is.
    "selfLink": "A String", # A URL to re-request this resource.
  }</pre>
</div>

<div class="method">
    <code class="details" id="list_next">list_next(previous_request, previous_response)</code>
  <pre>Retrieves the next page of results.

Args:
  previous_request: The request for the previous page. (required)
  previous_response: The response from the request for the previous page. (required)

Returns:
  A request object that you can call 'execute()' on to request the next
  page. Returns None if there are no more items in the collection.
    </pre>
</div>

<div class="method">
    <code class="details" id="predict">predict(project, id, body)</code>
  <pre>Submit model id and request a prediction.

Args:
  project: string, The project associated with the model. (required)
  id: string, The unique name for the predictive model. (required)
  body: object, The request body. (required)
    The object takes the form of:

{
    "input": { # Input to the model for a prediction.
      "csvInstance": [ # A list of input features, these can be strings or doubles.
        "",
      ],
    },
  }


Returns:
  An object of the form:

    {
    "kind": "prediction#output", # What kind of resource this is.
    "outputLabel": "A String", # The most likely class label (Categorical models only).
    "id": "A String", # The unique name for the predictive model.
    "outputMulti": [ # A list of class labels with their estimated probabilities (Categorical models only).
      {
        "score": "A String", # The probability of the class label.
        "label": "A String", # The class label.
      },
    ],
    "outputValue": "A String", # The estimated regression value (Regression models only).
    "selfLink": "A String", # A URL to re-request this resource.
  }</pre>
</div>

<div class="method">
    <code class="details" id="update">update(project, id, body)</code>
  <pre>Add new data to a trained model.

Args:
  project: string, The project associated with the model. (required)
  id: string, The unique name for the predictive model. (required)
  body: object, The request body. (required)
    The object takes the form of:

{
    "output": "A String", # The generic output value - could be regression or class label.
    "csvInstance": [ # The input features for this instance.
      "",
    ],
  }


Returns:
  An object of the form:

    {
    "kind": "prediction#training", # What kind of resource this is.
    "created": "A String", # Insert time of the model (as a RFC 3339 timestamp).
    "trainingComplete": "A String", # Training completion time (as a RFC 3339 timestamp).
    "storageDataLocation": "A String", # Google storage location of the training data file.
    "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
    "storagePMMLModelLocation": "A String", # Google storage location of the pmml model file.
    "trainingStatus": "A String", # The current status of the training job. This can be one of following: RUNNING; DONE; ERROR; ERROR: TRAINING JOB NOT FOUND
    "modelInfo": { # Model metadata.
      "numberLabels": "A String", # Number of class labels in the trained model (Categorical models only).
      "meanSquaredError": "A String", # An estimated mean squared error. The can be used to measure the quality of the predicted model (Regression models only).
      "modelType": "A String", # Type of predictive model (CLASSIFICATION or REGRESSION).
      "numberInstances": "A String", # Number of valid data instances used in the trained model.
      "classWeightedAccuracy": "A String", # Estimated accuracy of model taking utility weights into account (Categorical models only).
      "classificationAccuracy": "A String", # A number between 0.0 and 1.0, where 1.0 is 100% accurate. This is an estimate, based on the amount and quality of the training data, of the estimated prediction accuracy. You can use this is a guide to decide whether the results are accurate enough for your needs. This estimate will be more reliable if your real input data is similar to your training data (Categorical models only).
    },
    "storagePMMLLocation": "A String", # Google storage location of the preprocessing pmml file.
    "id": "A String", # The unique name for the predictive model.
    "selfLink": "A String", # A URL to re-request this resource.
  }</pre>
</div>

</body></html>