1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968
|
<html><body>
<style>
body, h1, h2, h3, div, span, p, pre, a {
margin: 0;
padding: 0;
border: 0;
font-weight: inherit;
font-style: inherit;
font-size: 100%;
font-family: inherit;
vertical-align: baseline;
}
body {
font-size: 13px;
padding: 1em;
}
h1 {
font-size: 26px;
margin-bottom: 1em;
}
h2 {
font-size: 24px;
margin-bottom: 1em;
}
h3 {
font-size: 20px;
margin-bottom: 1em;
margin-top: 1em;
}
pre, code {
line-height: 1.5;
font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}
pre {
margin-top: 0.5em;
}
h1, h2, h3, p {
font-family: Arial, sans serif;
}
h1, h2, h3 {
border-bottom: solid #CCC 1px;
}
.toc_element {
margin-top: 0.5em;
}
.firstline {
margin-left: 2 em;
}
.method {
margin-top: 1em;
border: solid 1px #CCC;
padding: 1em;
background: #EEE;
}
.details {
font-weight: bold;
font-size: 14px;
}
</style>
<h1><a href="aiplatform_v1beta1.html">Vertex AI API</a> . <a href="aiplatform_v1beta1.projects.html">projects</a> . <a href="aiplatform_v1beta1.projects.locations.html">locations</a> . <a href="aiplatform_v1beta1.projects.locations.models.html">models</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
<code><a href="aiplatform_v1beta1.projects.locations.models.evaluations.html">evaluations()</a></code>
</p>
<p class="firstline">Returns the evaluations Resource.</p>
<p class="toc_element">
<code><a href="aiplatform_v1beta1.projects.locations.models.operations.html">operations()</a></code>
</p>
<p class="firstline">Returns the operations Resource.</p>
<p class="toc_element">
<code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
<code><a href="#copy">copy(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Copies an already existing Vertex AI Model into the specified Location. The source Model must exist in the same Project. When copying custom Models, the users themselves are responsible for Model.metadata content to be region-agnostic, as well as making sure that any resources (e.g. files) it depends on remain accessible.</p>
<p class="toc_element">
<code><a href="#delete">delete(name, x__xgafv=None)</a></code></p>
<p class="firstline">Deletes a Model. A model cannot be deleted if any Endpoint resource has a DeployedModel based on the model in its deployed_models field.</p>
<p class="toc_element">
<code><a href="#deleteVersion">deleteVersion(name, x__xgafv=None)</a></code></p>
<p class="firstline">Deletes a Model version. Model version can only be deleted if there are no DeployedModels created from it. Deleting the only version in the Model is not allowed. Use DeleteModel for deleting the Model instead.</p>
<p class="toc_element">
<code><a href="#export">export(name, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Exports a trained, exportable Model to a location specified by the user. A Model is considered to be exportable if it has at least one supported export format.</p>
<p class="toc_element">
<code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets a Model.</p>
<p class="toc_element">
<code><a href="#getIamPolicy">getIamPolicy(resource, options_requestedPolicyVersion=None, x__xgafv=None)</a></code></p>
<p class="firstline">Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set.</p>
<p class="toc_element">
<code><a href="#list">list(parent, filter=None, pageSize=None, pageToken=None, readMask=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists Models in a Location.</p>
<p class="toc_element">
<code><a href="#listCheckpoints">listCheckpoints(name, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists checkpoints of the specified model version.</p>
<p class="toc_element">
<code><a href="#listCheckpoints_next">listCheckpoints_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
<code><a href="#listVersions">listVersions(name, filter=None, orderBy=None, pageSize=None, pageToken=None, readMask=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists versions of the specified model.</p>
<p class="toc_element">
<code><a href="#listVersions_next">listVersions_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
<code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
<code><a href="#mergeVersionAliases">mergeVersionAliases(name, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Merges a set of aliases for a Model version.</p>
<p class="toc_element">
<code><a href="#patch">patch(name, body=None, updateMask=None, x__xgafv=None)</a></code></p>
<p class="firstline">Updates a Model.</p>
<p class="toc_element">
<code><a href="#setIamPolicy">setIamPolicy(resource, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors.</p>
<p class="toc_element">
<code><a href="#testIamPermissions">testIamPermissions(resource, permissions=None, x__xgafv=None)</a></code></p>
<p class="firstline">Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a `NOT_FOUND` error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.</p>
<p class="toc_element">
<code><a href="#updateExplanationDataset">updateExplanationDataset(model, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Incrementally update the dataset used for an examples model.</p>
<p class="toc_element">
<code><a href="#upload">upload(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Uploads a Model artifact into Vertex AI.</p>
<h3>Method Details</h3>
<div class="method">
<code class="details" id="close">close()</code>
<pre>Close httplib2 connections.</pre>
</div>
<div class="method">
<code class="details" id="copy">copy(parent, body=None, x__xgafv=None)</code>
<pre>Copies an already existing Vertex AI Model into the specified Location. The source Model must exist in the same Project. When copying custom Models, the users themselves are responsible for Model.metadata content to be region-agnostic, as well as making sure that any resources (e.g. files) it depends on remain accessible.
Args:
parent: string, Required. The resource name of the Location into which to copy the Model. Format: `projects/{project}/locations/{location}` (required)
body: object, The request body.
The object takes the form of:
{ # Request message for ModelService.CopyModel.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key options. If this is set, then the Model copy will be encrypted with the provided encryption key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"modelId": "A String", # Optional. Copy source_model into a new Model with this ID. The ID will become the final component of the model resource name. This value may be up to 63 characters, and valid characters are `[a-z0-9_-]`. The first character cannot be a number or hyphen.
"parentModel": "A String", # Optional. Specify this field to copy source_model into this existing Model as a new version. Format: `projects/{project}/locations/{location}/models/{model}`
"sourceModel": "A String", # Required. The resource name of the Model to copy. That Model must be in the same Project. Format: `projects/{project}/locations/{location}/models/{model}`
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # This resource represents a long-running operation that is the result of a network API call.
"done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
"error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
"code": 42, # The status code, which should be an enum value of google.rpc.Code.
"details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
"message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
},
"metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
"name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
"response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
}</pre>
</div>
<div class="method">
<code class="details" id="delete">delete(name, x__xgafv=None)</code>
<pre>Deletes a Model. A model cannot be deleted if any Endpoint resource has a DeployedModel based on the model in its deployed_models field.
Args:
name: string, Required. The name of the Model resource to be deleted. Format: `projects/{project}/locations/{location}/models/{model}` (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # This resource represents a long-running operation that is the result of a network API call.
"done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
"error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
"code": 42, # The status code, which should be an enum value of google.rpc.Code.
"details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
"message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
},
"metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
"name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
"response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
}</pre>
</div>
<div class="method">
<code class="details" id="deleteVersion">deleteVersion(name, x__xgafv=None)</code>
<pre>Deletes a Model version. Model version can only be deleted if there are no DeployedModels created from it. Deleting the only version in the Model is not allowed. Use DeleteModel for deleting the Model instead.
Args:
name: string, Required. The name of the model version to be deleted, with a version ID explicitly included. Example: `projects/{project}/locations/{location}/models/{model}@1234` (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # This resource represents a long-running operation that is the result of a network API call.
"done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
"error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
"code": 42, # The status code, which should be an enum value of google.rpc.Code.
"details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
"message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
},
"metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
"name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
"response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
}</pre>
</div>
<div class="method">
<code class="details" id="export">export(name, body=None, x__xgafv=None)</code>
<pre>Exports a trained, exportable Model to a location specified by the user. A Model is considered to be exportable if it has at least one supported export format.
Args:
name: string, Required. The resource name of the Model to export. The resource name may contain version id or version alias to specify the version, if no version is specified, the default version will be exported. (required)
body: object, The request body.
The object takes the form of:
{ # Request message for ModelService.ExportModel.
"outputConfig": { # Output configuration for the Model export. # Required. The desired output location and configuration.
"artifactDestination": { # The Google Cloud Storage location where the output is to be written to. # The Cloud Storage location where the Model artifact is to be written to. Under the directory given as the destination a new one with name "`model-export--`", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format, will be created. Inside, the Model and any of its supporting files will be written. This field should only be set when the `exportableContent` field of the [Model.supported_export_formats] object contains `ARTIFACT`.
"outputUriPrefix": "A String", # Required. Google Cloud Storage URI to output directory. If the uri doesn't end with '/', a '/' will be automatically appended. The directory is created if it doesn't exist.
},
"exportFormatId": "A String", # The ID of the format in which the Model must be exported. Each Model lists the export formats it supports. If no value is provided here, then the first from the list of the Model's supported formats is used by default.
"imageDestination": { # The Container Registry location for the container image. # The Google Container Registry or Artifact Registry uri where the Model container image will be copied to. This field should only be set when the `exportableContent` field of the [Model.supported_export_formats] object contains `IMAGE`.
"outputUri": "A String", # Required. Container Registry URI of a container image. Only Google Container Registry and Artifact Registry are supported now. Accepted forms: * Google Container Registry path. For example: `gcr.io/projectId/imageName:tag`. * Artifact Registry path. For example: `us-central1-docker.pkg.dev/projectId/repoName/imageName:tag`. If a tag is not specified, "latest" will be used as the default tag.
},
},
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # This resource represents a long-running operation that is the result of a network API call.
"done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
"error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
"code": 42, # The status code, which should be an enum value of google.rpc.Code.
"details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
"message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
},
"metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
"name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
"response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
}</pre>
</div>
<div class="method">
<code class="details" id="get">get(name, x__xgafv=None)</code>
<pre>Gets a Model.
Args:
name: string, Required. The name of the Model resource. Format: `projects/{project}/locations/{location}/models/{model}` In order to retrieve a specific version of the model, also provide the version ID or version alias. Example: `projects/{project}/locations/{location}/models/{model}@2` or `projects/{project}/locations/{location}/models/{model}@golden` If no version ID or alias is specified, the "default" version will be returned. The "default" version alias is created for the first version of the model, and can be moved to other versions later on. There will be exactly one default version. (required)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A trained machine learning Model.
"artifactUri": "A String", # Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
"baseModelSource": { # User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. # Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
"genieSource": { # Contains information about the source of the models generated from Generative AI Studio. # Information about the base model of Genie models.
"baseModelUri": "A String", # Required. The public base model URI.
},
"modelGardenSource": { # Contains information about the source of the models generated from Model Garden. # Source information of Model Garden models.
"publicModelName": "A String", # Required. The model garden source model resource name.
"skipHfModelCache": True or False, # Optional. Whether to avoid pulling the model from the HF cache.
"versionId": "A String", # Optional. The model garden source model version ID.
},
},
"checkpoints": [ # Optional. Output only. The checkpoints of the model.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"containerSpec": { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
"args": [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`'s "default parameters" form. If you don't specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don't specify this field and don't specify the `command` field, then the container's [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"command": [ # Immutable. Specifies the command that runs when the container starts. This overrides the container's [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. If you do not specify this field, then the container's `ENTRYPOINT` runs, in conjunction with the args field or the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container's `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"deploymentTimeout": "A String", # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
"env": [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents an environment variable present in a Container or Python Module.
"name": "A String", # Required. Name of the environment variable. Must be a valid C identifier.
"value": "A String", # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
},
],
"grpcPorts": [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"healthProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"healthRoute": "A String", # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container's IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"imageUri": "A String", # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI's [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
"invokeRoutePrefix": "A String", # Immutable. Invoke route prefix for the custom container. "/*" is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: "/invoke/foo/bar", however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
"livenessProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"ports": [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { "containerPort": 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"predictRoute": "A String", # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container's IP address and port. Vertex AI then returns the container's response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"sharedMemorySizeMb": "A String", # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
"startupProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
},
"createTime": "A String", # Output only. Timestamp when this Model was uploaded into Vertex AI.
"defaultCheckpointId": "A String", # The default checkpoint id of a model version.
"deployedModels": [ # Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
{ # Points to a DeployedModel.
"checkpointId": "A String", # Immutable. The ID of the Checkpoint deployed in the DeployedModel.
"deployedModelId": "A String", # Immutable. An ID of a DeployedModel in the above Endpoint.
"endpoint": "A String", # Immutable. A resource name of an Endpoint.
},
],
"description": "A String", # The description of the Model.
"displayName": "A String", # Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"etag": "A String", # Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
"explanationSpec": { # Specification of Model explanation. # The default explanation specification for this Model. The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated. All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob. If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.
"metadata": { # Metadata describing the Model's input and output for explanation. # Optional. Metadata describing the Model's input and output for explanation.
"featureAttributionsSchemaUri": "A String", # Points to a YAML file stored on Google Cloud Storage describing the format of the feature attributions. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"inputs": { # Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance.
"a_key": { # Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
"denseShapeTensorName": "A String", # Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"encodedBaselines": [ # A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
"",
],
"encodedTensorName": "A String", # Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
"encoding": "A String", # Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
"featureValueDomain": { # Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. # The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
"maxValue": 3.14, # The maximum permissible value for this feature.
"minValue": 3.14, # The minimum permissible value for this feature.
"originalMean": 3.14, # If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
"originalStddev": 3.14, # If this input feature has been normalized to a standard deviation of 1.0, the original_stddev specifies the standard deviation of the domain prior to normalization.
},
"groupName": "A String", # Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
"indexFeatureMapping": [ # A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
"A String",
],
"indicesTensorName": "A String", # Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"inputBaselines": [ # Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
"",
],
"inputTensorName": "A String", # Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
"modality": "A String", # Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
"visualization": { # Visualization configurations for image explanation. # Visualization configurations for image explanation.
"clipPercentLowerbound": 3.14, # Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
"clipPercentUpperbound": 3.14, # Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
"colorMap": "A String", # The color scheme used for the highlighted areas. Defaults to PINK_GREEN for Integrated Gradients attribution, which shows positive attributions in green and negative in pink. Defaults to VIRIDIS for XRAI attribution, which highlights the most influential regions in yellow and the least influential in blue.
"overlayType": "A String", # How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
"polarity": "A String", # Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
"type": "A String", # Type of the image visualization. Only applicable to Integrated Gradients attribution. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
},
},
},
"latentSpaceSource": "A String", # Name of the source to generate embeddings for example based explanations.
"outputs": { # Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
"a_key": { # Metadata of the prediction output to be explained.
"displayNameMappingKey": "A String", # Specify a field name in the prediction to look for the display name. Use this if the prediction contains the display names for the outputs. The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
"indexDisplayNameMapping": "", # Static mapping between the index and display name. Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values. The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
"outputTensorName": "A String", # Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
},
},
},
"parameters": { # Parameters to configure explaining for Model's predictions. # Required. Parameters that configure explaining of the Model's predictions.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # Example-based explanations that returns the nearest neighbors from the provided dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
"integratedGradientsAttribution": { # An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 # An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
},
"outputIndices": [ # If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
"",
],
"sampledShapleyAttribution": { # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
"pathCount": 42, # Required. The number of feature permutations to consider when approximating the Shapley values. Valid range of its value is [1, 50], inclusively.
},
"topK": 42, # If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
"xraiAttribution": { # An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Supported only by image Models. # An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
},
},
},
"labels": { # The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
"a_key": "A String",
},
"metadata": "", # Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.
"metadataArtifact": "A String", # Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
"metadataSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"modelSourceInfo": { # Detail description of the source information of the model. # Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
"copy": True or False, # If this Model is copy of another Model. If true then source_type pertains to the original.
"sourceType": "A String", # Type of the model source.
},
"name": "A String", # The resource name of the Model.
"originalModelInfo": { # Contains information about the original Model if this Model is a copy. # Output only. If this Model is a copy of another Model, this contains info about the original.
"model": "A String", # Output only. The resource name of the Model this Model is a copy of, including the revision. Format: `projects/{project}/locations/{location}/models/{model_id}@{version_id}`
},
"predictSchemata": { # Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. # The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.
"instanceSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in PredictRequest.instances, ExplainRequest.instances and BatchPredictionJob.input_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"parametersSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via PredictRequest.parameters, ExplainRequest.parameters and BatchPredictionJob.model_parameters. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"predictionSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via PredictResponse.predictions, ExplainResponse.explanations, and BatchPredictionJob.output_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
},
"satisfiesPzi": True or False, # Output only. Reserved for future use.
"satisfiesPzs": True or False, # Output only. Reserved for future use.
"supportedDeploymentResourcesTypes": [ # Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.
"A String",
],
"supportedExportFormats": [ # Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
{ # Represents export format supported by the Model. All formats export to Google Cloud Storage.
"exportableContents": [ # Output only. The content of this Model that may be exported.
"A String",
],
"id": "A String", # Output only. The ID of the export format. The possible format IDs are: * `tflite` Used for Android mobile devices. * `edgetpu-tflite` Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. * `tf-saved-model` A tensorflow model in SavedModel format. * `tf-js` A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used in the browser and in Node.js using JavaScript. * `core-ml` Used for iOS mobile devices. * `custom-trained` A Model that was uploaded or trained by custom code. * `genie` A tuned Model Garden model.
},
],
"supportedInputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses GcsSource. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses GcsSource. * `bigquery` Each instance is a single row in BigQuery. Uses BigQuerySource. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"supportedOutputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * `bigquery` Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"trainingPipeline": "A String", # Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
"updateTime": "A String", # Output only. Timestamp when this Model was most recently updated.
"versionAliases": [ # User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
"A String",
],
"versionCreateTime": "A String", # Output only. Timestamp when this version was created.
"versionDescription": "A String", # The description of this version.
"versionId": "A String", # Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
"versionUpdateTime": "A String", # Output only. Timestamp when this version was most recently updated.
}</pre>
</div>
<div class="method">
<code class="details" id="getIamPolicy">getIamPolicy(resource, options_requestedPolicyVersion=None, x__xgafv=None)</code>
<pre>Gets the access control policy for a resource. Returns an empty policy if the resource exists and does not have a policy set.
Args:
resource: string, REQUIRED: The resource for which the policy is being requested. See [Resource names](https://cloud.google.com/apis/design/resource_names) for the appropriate value for this field. (required)
options_requestedPolicyVersion: integer, Optional. The maximum policy version that will be used to format the policy. Valid values are 0, 1, and 3. Requests specifying an invalid value will be rejected. Requests for policies with any conditional role bindings must specify version 3. Policies with no conditional role bindings may specify any valid value or leave the field unset. The policy in the response might use the policy version that you specified, or it might use a lower policy version. For example, if you specify version 3, but the policy has no conditional role bindings, the response uses version 1. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies).
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # An Identity and Access Management (IAM) policy, which specifies access controls for Google Cloud resources. A `Policy` is a collection of `bindings`. A `binding` binds one or more `members`, or principals, to a single `role`. Principals can be user accounts, service accounts, Google groups, and domains (such as G Suite). A `role` is a named list of permissions; each `role` can be an IAM predefined role or a user-created custom role. For some types of Google Cloud resources, a `binding` can also specify a `condition`, which is a logical expression that allows access to a resource only if the expression evaluates to `true`. A condition can add constraints based on attributes of the request, the resource, or both. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). **JSON example:** ``` { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": [ "user:eve@example.com" ], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ], "etag": "BwWWja0YfJA=", "version": 3 } ``` **YAML example:** ``` bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z') etag: BwWWja0YfJA= version: 3 ``` For a description of IAM and its features, see the [IAM documentation](https://cloud.google.com/iam/docs/).
"bindings": [ # Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:alice@example.com`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`.
{ # Associates `members`, or principals, with a `role`.
"condition": { # Represents a textual expression in the Common Expression Language (CEL) syntax. CEL is a C-like expression language. The syntax and semantics of CEL are documented at https://github.com/google/cel-spec. Example (Comparison): title: "Summary size limit" description: "Determines if a summary is less than 100 chars" expression: "document.summary.size() < 100" Example (Equality): title: "Requestor is owner" description: "Determines if requestor is the document owner" expression: "document.owner == request.auth.claims.email" Example (Logic): title: "Public documents" description: "Determine whether the document should be publicly visible" expression: "document.type != 'private' && document.type != 'internal'" Example (Data Manipulation): title: "Notification string" description: "Create a notification string with a timestamp." expression: "'New message received at ' + string(document.create_time)" The exact variables and functions that may be referenced within an expression are determined by the service that evaluates it. See the service documentation for additional information. # The condition that is associated with this binding. If the condition evaluates to `true`, then this binding applies to the current request. If the condition evaluates to `false`, then this binding does not apply to the current request. However, a different role binding might grant the same role to one or more of the principals in this binding. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies).
"description": "A String", # Optional. Description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI.
"expression": "A String", # Textual representation of an expression in Common Expression Language syntax.
"location": "A String", # Optional. String indicating the location of the expression for error reporting, e.g. a file name and a position in the file.
"title": "A String", # Optional. Title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression.
},
"members": [ # Specifies the principals requesting access for a Google Cloud resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. Does not include identities that come from external identity providers (IdPs) through identity federation. * `user:{emailid}`: An email address that represents a specific Google account. For example, `alice@example.com` . * `serviceAccount:{emailid}`: An email address that represents a Google service account. For example, `my-other-app@appspot.gserviceaccount.com`. * `serviceAccount:{projectid}.svc.id.goog[{namespace}/{kubernetes-sa}]`: An identifier for a [Kubernetes service account](https://cloud.google.com/kubernetes-engine/docs/how-to/kubernetes-service-accounts). For example, `my-project.svc.id.goog[my-namespace/my-kubernetes-sa]`. * `group:{emailid}`: An email address that represents a Google group. For example, `admins@example.com`. * `domain:{domain}`: The G Suite domain (primary) that represents all the users of that domain. For example, `google.com` or `example.com`. * `principal://iam.googleapis.com/locations/global/workforcePools/{pool_id}/subject/{subject_attribute_value}`: A single identity in a workforce identity pool. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/group/{group_id}`: All workforce identities in a group. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/attribute.{attribute_name}/{attribute_value}`: All workforce identities with a specific attribute value. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/*`: All identities in a workforce identity pool. * `principal://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/subject/{subject_attribute_value}`: A single identity in a workload identity pool. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/group/{group_id}`: A workload identity pool group. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/attribute.{attribute_name}/{attribute_value}`: All identities in a workload identity pool with a certain attribute. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/*`: All identities in a workload identity pool. * `deleted:user:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a user that has been recently deleted. For example, `alice@example.com?uid=123456789012345678901`. If the user is recovered, this value reverts to `user:{emailid}` and the recovered user retains the role in the binding. * `deleted:serviceAccount:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a service account that has been recently deleted. For example, `my-other-app@appspot.gserviceaccount.com?uid=123456789012345678901`. If the service account is undeleted, this value reverts to `serviceAccount:{emailid}` and the undeleted service account retains the role in the binding. * `deleted:group:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a Google group that has been recently deleted. For example, `admins@example.com?uid=123456789012345678901`. If the group is recovered, this value reverts to `group:{emailid}` and the recovered group retains the role in the binding. * `deleted:principal://iam.googleapis.com/locations/global/workforcePools/{pool_id}/subject/{subject_attribute_value}`: Deleted single identity in a workforce identity pool. For example, `deleted:principal://iam.googleapis.com/locations/global/workforcePools/my-pool-id/subject/my-subject-attribute-value`.
"A String",
],
"role": "A String", # Role that is assigned to the list of `members`, or principals. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. For an overview of the IAM roles and permissions, see the [IAM documentation](https://cloud.google.com/iam/docs/roles-overview). For a list of the available pre-defined roles, see [here](https://cloud.google.com/iam/docs/understanding-roles).
},
],
"etag": "A String", # `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost.
"version": 42, # Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies).
}</pre>
</div>
<div class="method">
<code class="details" id="list">list(parent, filter=None, pageSize=None, pageToken=None, readMask=None, x__xgafv=None)</code>
<pre>Lists Models in a Location.
Args:
parent: string, Required. The resource name of the Location to list the Models from. Format: `projects/{project}/locations/{location}` (required)
filter: string, An expression for filtering the results of the request. For field names both snake_case and camelCase are supported. * `model` supports = and !=. `model` represents the Model ID, i.e. the last segment of the Model's resource name. * `display_name` supports = and != * `labels` supports general map functions that is: * `labels.key=value` - key:value equality * `labels.key:* or labels:key - key existence * A key including a space must be quoted. `labels."a key"`. * `base_model_name` only supports = Some examples: * `model=1234` * `displayName="myDisplayName"` * `labels.myKey="myValue"` * `baseModelName="text-bison"`
pageSize: integer, The standard list page size.
pageToken: string, The standard list page token. Typically obtained via ListModelsResponse.next_page_token of the previous ModelService.ListModels call.
readMask: string, Mask specifying which fields to read.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response message for ModelService.ListModels
"models": [ # List of Models in the requested page.
{ # A trained machine learning Model.
"artifactUri": "A String", # Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
"baseModelSource": { # User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. # Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
"genieSource": { # Contains information about the source of the models generated from Generative AI Studio. # Information about the base model of Genie models.
"baseModelUri": "A String", # Required. The public base model URI.
},
"modelGardenSource": { # Contains information about the source of the models generated from Model Garden. # Source information of Model Garden models.
"publicModelName": "A String", # Required. The model garden source model resource name.
"skipHfModelCache": True or False, # Optional. Whether to avoid pulling the model from the HF cache.
"versionId": "A String", # Optional. The model garden source model version ID.
},
},
"checkpoints": [ # Optional. Output only. The checkpoints of the model.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"containerSpec": { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
"args": [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`'s "default parameters" form. If you don't specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don't specify this field and don't specify the `command` field, then the container's [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"command": [ # Immutable. Specifies the command that runs when the container starts. This overrides the container's [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. If you do not specify this field, then the container's `ENTRYPOINT` runs, in conjunction with the args field or the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container's `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"deploymentTimeout": "A String", # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
"env": [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents an environment variable present in a Container or Python Module.
"name": "A String", # Required. Name of the environment variable. Must be a valid C identifier.
"value": "A String", # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
},
],
"grpcPorts": [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"healthProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"healthRoute": "A String", # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container's IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"imageUri": "A String", # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI's [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
"invokeRoutePrefix": "A String", # Immutable. Invoke route prefix for the custom container. "/*" is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: "/invoke/foo/bar", however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
"livenessProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"ports": [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { "containerPort": 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"predictRoute": "A String", # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container's IP address and port. Vertex AI then returns the container's response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"sharedMemorySizeMb": "A String", # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
"startupProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
},
"createTime": "A String", # Output only. Timestamp when this Model was uploaded into Vertex AI.
"defaultCheckpointId": "A String", # The default checkpoint id of a model version.
"deployedModels": [ # Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
{ # Points to a DeployedModel.
"checkpointId": "A String", # Immutable. The ID of the Checkpoint deployed in the DeployedModel.
"deployedModelId": "A String", # Immutable. An ID of a DeployedModel in the above Endpoint.
"endpoint": "A String", # Immutable. A resource name of an Endpoint.
},
],
"description": "A String", # The description of the Model.
"displayName": "A String", # Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"etag": "A String", # Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
"explanationSpec": { # Specification of Model explanation. # The default explanation specification for this Model. The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated. All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob. If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.
"metadata": { # Metadata describing the Model's input and output for explanation. # Optional. Metadata describing the Model's input and output for explanation.
"featureAttributionsSchemaUri": "A String", # Points to a YAML file stored on Google Cloud Storage describing the format of the feature attributions. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"inputs": { # Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance.
"a_key": { # Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
"denseShapeTensorName": "A String", # Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"encodedBaselines": [ # A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
"",
],
"encodedTensorName": "A String", # Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
"encoding": "A String", # Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
"featureValueDomain": { # Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. # The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
"maxValue": 3.14, # The maximum permissible value for this feature.
"minValue": 3.14, # The minimum permissible value for this feature.
"originalMean": 3.14, # If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
"originalStddev": 3.14, # If this input feature has been normalized to a standard deviation of 1.0, the original_stddev specifies the standard deviation of the domain prior to normalization.
},
"groupName": "A String", # Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
"indexFeatureMapping": [ # A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
"A String",
],
"indicesTensorName": "A String", # Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"inputBaselines": [ # Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
"",
],
"inputTensorName": "A String", # Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
"modality": "A String", # Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
"visualization": { # Visualization configurations for image explanation. # Visualization configurations for image explanation.
"clipPercentLowerbound": 3.14, # Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
"clipPercentUpperbound": 3.14, # Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
"colorMap": "A String", # The color scheme used for the highlighted areas. Defaults to PINK_GREEN for Integrated Gradients attribution, which shows positive attributions in green and negative in pink. Defaults to VIRIDIS for XRAI attribution, which highlights the most influential regions in yellow and the least influential in blue.
"overlayType": "A String", # How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
"polarity": "A String", # Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
"type": "A String", # Type of the image visualization. Only applicable to Integrated Gradients attribution. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
},
},
},
"latentSpaceSource": "A String", # Name of the source to generate embeddings for example based explanations.
"outputs": { # Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
"a_key": { # Metadata of the prediction output to be explained.
"displayNameMappingKey": "A String", # Specify a field name in the prediction to look for the display name. Use this if the prediction contains the display names for the outputs. The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
"indexDisplayNameMapping": "", # Static mapping between the index and display name. Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values. The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
"outputTensorName": "A String", # Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
},
},
},
"parameters": { # Parameters to configure explaining for Model's predictions. # Required. Parameters that configure explaining of the Model's predictions.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # Example-based explanations that returns the nearest neighbors from the provided dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
"integratedGradientsAttribution": { # An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 # An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
},
"outputIndices": [ # If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
"",
],
"sampledShapleyAttribution": { # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
"pathCount": 42, # Required. The number of feature permutations to consider when approximating the Shapley values. Valid range of its value is [1, 50], inclusively.
},
"topK": 42, # If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
"xraiAttribution": { # An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Supported only by image Models. # An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
},
},
},
"labels": { # The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
"a_key": "A String",
},
"metadata": "", # Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.
"metadataArtifact": "A String", # Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
"metadataSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"modelSourceInfo": { # Detail description of the source information of the model. # Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
"copy": True or False, # If this Model is copy of another Model. If true then source_type pertains to the original.
"sourceType": "A String", # Type of the model source.
},
"name": "A String", # The resource name of the Model.
"originalModelInfo": { # Contains information about the original Model if this Model is a copy. # Output only. If this Model is a copy of another Model, this contains info about the original.
"model": "A String", # Output only. The resource name of the Model this Model is a copy of, including the revision. Format: `projects/{project}/locations/{location}/models/{model_id}@{version_id}`
},
"predictSchemata": { # Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. # The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.
"instanceSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in PredictRequest.instances, ExplainRequest.instances and BatchPredictionJob.input_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"parametersSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via PredictRequest.parameters, ExplainRequest.parameters and BatchPredictionJob.model_parameters. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"predictionSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via PredictResponse.predictions, ExplainResponse.explanations, and BatchPredictionJob.output_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
},
"satisfiesPzi": True or False, # Output only. Reserved for future use.
"satisfiesPzs": True or False, # Output only. Reserved for future use.
"supportedDeploymentResourcesTypes": [ # Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.
"A String",
],
"supportedExportFormats": [ # Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
{ # Represents export format supported by the Model. All formats export to Google Cloud Storage.
"exportableContents": [ # Output only. The content of this Model that may be exported.
"A String",
],
"id": "A String", # Output only. The ID of the export format. The possible format IDs are: * `tflite` Used for Android mobile devices. * `edgetpu-tflite` Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. * `tf-saved-model` A tensorflow model in SavedModel format. * `tf-js` A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used in the browser and in Node.js using JavaScript. * `core-ml` Used for iOS mobile devices. * `custom-trained` A Model that was uploaded or trained by custom code. * `genie` A tuned Model Garden model.
},
],
"supportedInputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses GcsSource. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses GcsSource. * `bigquery` Each instance is a single row in BigQuery. Uses BigQuerySource. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"supportedOutputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * `bigquery` Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"trainingPipeline": "A String", # Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
"updateTime": "A String", # Output only. Timestamp when this Model was most recently updated.
"versionAliases": [ # User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
"A String",
],
"versionCreateTime": "A String", # Output only. Timestamp when this version was created.
"versionDescription": "A String", # The description of this version.
"versionId": "A String", # Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
"versionUpdateTime": "A String", # Output only. Timestamp when this version was most recently updated.
},
],
"nextPageToken": "A String", # A token to retrieve next page of results. Pass to ListModelsRequest.page_token to obtain that page.
}</pre>
</div>
<div class="method">
<code class="details" id="listCheckpoints">listCheckpoints(name, pageSize=None, pageToken=None, x__xgafv=None)</code>
<pre>Lists checkpoints of the specified model version.
Args:
name: string, Required. The name of the model version to list checkpoints for. `projects/{project}/locations/{location}/models/{model}@{version}` Example: `projects/{project}/locations/{location}/models/{model}@2` or `projects/{project}/locations/{location}/models/{model}@golden` If no version ID or alias is specified, the latest version will be used. (required)
pageSize: integer, Optional. The standard list page size.
pageToken: string, Optional. The standard list page token. Typically obtained via next_page_token of the previous ListModelVersionCheckpoints call.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response message for ModelService.ListModelVersionCheckpoints
"checkpoints": [ # List of Model Version checkpoints.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"nextPageToken": "A String", # A token to retrieve the next page of results. Pass to ListModelVersionCheckpointsRequest.page_token to obtain that page.
}</pre>
</div>
<div class="method">
<code class="details" id="listCheckpoints_next">listCheckpoints_next()</code>
<pre>Retrieves the next page of results.
Args:
previous_request: The request for the previous page. (required)
previous_response: The response from the request for the previous page. (required)
Returns:
A request object that you can call 'execute()' on to request the next
page. Returns None if there are no more items in the collection.
</pre>
</div>
<div class="method">
<code class="details" id="listVersions">listVersions(name, filter=None, orderBy=None, pageSize=None, pageToken=None, readMask=None, x__xgafv=None)</code>
<pre>Lists versions of the specified model.
Args:
name: string, Required. The name of the model to list versions for. (required)
filter: string, An expression for filtering the results of the request. For field names both snake_case and camelCase are supported. * `labels` supports general map functions that is: * `labels.key=value` - key:value equality * `labels.key:* or labels:key - key existence * A key including a space must be quoted. `labels."a key"`. Some examples: * `labels.myKey="myValue"`
orderBy: string, A comma-separated list of fields to order by, sorted in ascending order. Use "desc" after a field name for descending. Supported fields: * `create_time` * `update_time` Example: `update_time asc, create_time desc`.
pageSize: integer, The standard list page size.
pageToken: string, The standard list page token. Typically obtained via next_page_token of the previous ListModelVersions call.
readMask: string, Mask specifying which fields to read.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response message for ModelService.ListModelVersions
"models": [ # List of Model versions in the requested page. In the returned Model name field, version ID instead of regvision tag will be included.
{ # A trained machine learning Model.
"artifactUri": "A String", # Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
"baseModelSource": { # User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. # Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
"genieSource": { # Contains information about the source of the models generated from Generative AI Studio. # Information about the base model of Genie models.
"baseModelUri": "A String", # Required. The public base model URI.
},
"modelGardenSource": { # Contains information about the source of the models generated from Model Garden. # Source information of Model Garden models.
"publicModelName": "A String", # Required. The model garden source model resource name.
"skipHfModelCache": True or False, # Optional. Whether to avoid pulling the model from the HF cache.
"versionId": "A String", # Optional. The model garden source model version ID.
},
},
"checkpoints": [ # Optional. Output only. The checkpoints of the model.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"containerSpec": { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
"args": [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`'s "default parameters" form. If you don't specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don't specify this field and don't specify the `command` field, then the container's [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"command": [ # Immutable. Specifies the command that runs when the container starts. This overrides the container's [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. If you do not specify this field, then the container's `ENTRYPOINT` runs, in conjunction with the args field or the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container's `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"deploymentTimeout": "A String", # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
"env": [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents an environment variable present in a Container or Python Module.
"name": "A String", # Required. Name of the environment variable. Must be a valid C identifier.
"value": "A String", # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
},
],
"grpcPorts": [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"healthProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"healthRoute": "A String", # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container's IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"imageUri": "A String", # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI's [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
"invokeRoutePrefix": "A String", # Immutable. Invoke route prefix for the custom container. "/*" is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: "/invoke/foo/bar", however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
"livenessProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"ports": [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { "containerPort": 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"predictRoute": "A String", # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container's IP address and port. Vertex AI then returns the container's response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"sharedMemorySizeMb": "A String", # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
"startupProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
},
"createTime": "A String", # Output only. Timestamp when this Model was uploaded into Vertex AI.
"defaultCheckpointId": "A String", # The default checkpoint id of a model version.
"deployedModels": [ # Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
{ # Points to a DeployedModel.
"checkpointId": "A String", # Immutable. The ID of the Checkpoint deployed in the DeployedModel.
"deployedModelId": "A String", # Immutable. An ID of a DeployedModel in the above Endpoint.
"endpoint": "A String", # Immutable. A resource name of an Endpoint.
},
],
"description": "A String", # The description of the Model.
"displayName": "A String", # Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"etag": "A String", # Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
"explanationSpec": { # Specification of Model explanation. # The default explanation specification for this Model. The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated. All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob. If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.
"metadata": { # Metadata describing the Model's input and output for explanation. # Optional. Metadata describing the Model's input and output for explanation.
"featureAttributionsSchemaUri": "A String", # Points to a YAML file stored on Google Cloud Storage describing the format of the feature attributions. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"inputs": { # Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance.
"a_key": { # Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
"denseShapeTensorName": "A String", # Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"encodedBaselines": [ # A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
"",
],
"encodedTensorName": "A String", # Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
"encoding": "A String", # Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
"featureValueDomain": { # Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. # The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
"maxValue": 3.14, # The maximum permissible value for this feature.
"minValue": 3.14, # The minimum permissible value for this feature.
"originalMean": 3.14, # If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
"originalStddev": 3.14, # If this input feature has been normalized to a standard deviation of 1.0, the original_stddev specifies the standard deviation of the domain prior to normalization.
},
"groupName": "A String", # Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
"indexFeatureMapping": [ # A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
"A String",
],
"indicesTensorName": "A String", # Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"inputBaselines": [ # Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
"",
],
"inputTensorName": "A String", # Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
"modality": "A String", # Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
"visualization": { # Visualization configurations for image explanation. # Visualization configurations for image explanation.
"clipPercentLowerbound": 3.14, # Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
"clipPercentUpperbound": 3.14, # Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
"colorMap": "A String", # The color scheme used for the highlighted areas. Defaults to PINK_GREEN for Integrated Gradients attribution, which shows positive attributions in green and negative in pink. Defaults to VIRIDIS for XRAI attribution, which highlights the most influential regions in yellow and the least influential in blue.
"overlayType": "A String", # How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
"polarity": "A String", # Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
"type": "A String", # Type of the image visualization. Only applicable to Integrated Gradients attribution. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
},
},
},
"latentSpaceSource": "A String", # Name of the source to generate embeddings for example based explanations.
"outputs": { # Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
"a_key": { # Metadata of the prediction output to be explained.
"displayNameMappingKey": "A String", # Specify a field name in the prediction to look for the display name. Use this if the prediction contains the display names for the outputs. The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
"indexDisplayNameMapping": "", # Static mapping between the index and display name. Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values. The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
"outputTensorName": "A String", # Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
},
},
},
"parameters": { # Parameters to configure explaining for Model's predictions. # Required. Parameters that configure explaining of the Model's predictions.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # Example-based explanations that returns the nearest neighbors from the provided dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
"integratedGradientsAttribution": { # An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 # An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
},
"outputIndices": [ # If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
"",
],
"sampledShapleyAttribution": { # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
"pathCount": 42, # Required. The number of feature permutations to consider when approximating the Shapley values. Valid range of its value is [1, 50], inclusively.
},
"topK": 42, # If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
"xraiAttribution": { # An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Supported only by image Models. # An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
},
},
},
"labels": { # The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
"a_key": "A String",
},
"metadata": "", # Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.
"metadataArtifact": "A String", # Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
"metadataSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"modelSourceInfo": { # Detail description of the source information of the model. # Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
"copy": True or False, # If this Model is copy of another Model. If true then source_type pertains to the original.
"sourceType": "A String", # Type of the model source.
},
"name": "A String", # The resource name of the Model.
"originalModelInfo": { # Contains information about the original Model if this Model is a copy. # Output only. If this Model is a copy of another Model, this contains info about the original.
"model": "A String", # Output only. The resource name of the Model this Model is a copy of, including the revision. Format: `projects/{project}/locations/{location}/models/{model_id}@{version_id}`
},
"predictSchemata": { # Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. # The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.
"instanceSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in PredictRequest.instances, ExplainRequest.instances and BatchPredictionJob.input_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"parametersSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via PredictRequest.parameters, ExplainRequest.parameters and BatchPredictionJob.model_parameters. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"predictionSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via PredictResponse.predictions, ExplainResponse.explanations, and BatchPredictionJob.output_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
},
"satisfiesPzi": True or False, # Output only. Reserved for future use.
"satisfiesPzs": True or False, # Output only. Reserved for future use.
"supportedDeploymentResourcesTypes": [ # Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.
"A String",
],
"supportedExportFormats": [ # Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
{ # Represents export format supported by the Model. All formats export to Google Cloud Storage.
"exportableContents": [ # Output only. The content of this Model that may be exported.
"A String",
],
"id": "A String", # Output only. The ID of the export format. The possible format IDs are: * `tflite` Used for Android mobile devices. * `edgetpu-tflite` Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. * `tf-saved-model` A tensorflow model in SavedModel format. * `tf-js` A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used in the browser and in Node.js using JavaScript. * `core-ml` Used for iOS mobile devices. * `custom-trained` A Model that was uploaded or trained by custom code. * `genie` A tuned Model Garden model.
},
],
"supportedInputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses GcsSource. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses GcsSource. * `bigquery` Each instance is a single row in BigQuery. Uses BigQuerySource. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"supportedOutputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * `bigquery` Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"trainingPipeline": "A String", # Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
"updateTime": "A String", # Output only. Timestamp when this Model was most recently updated.
"versionAliases": [ # User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
"A String",
],
"versionCreateTime": "A String", # Output only. Timestamp when this version was created.
"versionDescription": "A String", # The description of this version.
"versionId": "A String", # Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
"versionUpdateTime": "A String", # Output only. Timestamp when this version was most recently updated.
},
],
"nextPageToken": "A String", # A token to retrieve the next page of results. Pass to ListModelVersionsRequest.page_token to obtain that page.
}</pre>
</div>
<div class="method">
<code class="details" id="listVersions_next">listVersions_next()</code>
<pre>Retrieves the next page of results.
Args:
previous_request: The request for the previous page. (required)
previous_response: The response from the request for the previous page. (required)
Returns:
A request object that you can call 'execute()' on to request the next
page. Returns None if there are no more items in the collection.
</pre>
</div>
<div class="method">
<code class="details" id="list_next">list_next()</code>
<pre>Retrieves the next page of results.
Args:
previous_request: The request for the previous page. (required)
previous_response: The response from the request for the previous page. (required)
Returns:
A request object that you can call 'execute()' on to request the next
page. Returns None if there are no more items in the collection.
</pre>
</div>
<div class="method">
<code class="details" id="mergeVersionAliases">mergeVersionAliases(name, body=None, x__xgafv=None)</code>
<pre>Merges a set of aliases for a Model version.
Args:
name: string, Required. The name of the model version to merge aliases, with a version ID explicitly included. Example: `projects/{project}/locations/{location}/models/{model}@1234` (required)
body: object, The request body.
The object takes the form of:
{ # Request message for ModelService.MergeVersionAliases.
"versionAliases": [ # Required. The set of version aliases to merge. The alias should be at most 128 characters, and match `a-z{0,126}[a-z-0-9]`. Add the `-` prefix to an alias means removing that alias from the version. `-` is NOT counted in the 128 characters. Example: `-golden` means removing the `golden` alias from the version. There is NO ordering in aliases, which means 1) The aliases returned from GetModel API might not have the exactly same order from this MergeVersionAliases API. 2) Adding and deleting the same alias in the request is not recommended, and the 2 operations will be cancelled out.
"A String",
],
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A trained machine learning Model.
"artifactUri": "A String", # Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
"baseModelSource": { # User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. # Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
"genieSource": { # Contains information about the source of the models generated from Generative AI Studio. # Information about the base model of Genie models.
"baseModelUri": "A String", # Required. The public base model URI.
},
"modelGardenSource": { # Contains information about the source of the models generated from Model Garden. # Source information of Model Garden models.
"publicModelName": "A String", # Required. The model garden source model resource name.
"skipHfModelCache": True or False, # Optional. Whether to avoid pulling the model from the HF cache.
"versionId": "A String", # Optional. The model garden source model version ID.
},
},
"checkpoints": [ # Optional. Output only. The checkpoints of the model.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"containerSpec": { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
"args": [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`'s "default parameters" form. If you don't specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don't specify this field and don't specify the `command` field, then the container's [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"command": [ # Immutable. Specifies the command that runs when the container starts. This overrides the container's [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. If you do not specify this field, then the container's `ENTRYPOINT` runs, in conjunction with the args field or the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container's `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"deploymentTimeout": "A String", # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
"env": [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents an environment variable present in a Container or Python Module.
"name": "A String", # Required. Name of the environment variable. Must be a valid C identifier.
"value": "A String", # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
},
],
"grpcPorts": [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"healthProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"healthRoute": "A String", # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container's IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"imageUri": "A String", # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI's [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
"invokeRoutePrefix": "A String", # Immutable. Invoke route prefix for the custom container. "/*" is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: "/invoke/foo/bar", however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
"livenessProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"ports": [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { "containerPort": 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"predictRoute": "A String", # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container's IP address and port. Vertex AI then returns the container's response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"sharedMemorySizeMb": "A String", # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
"startupProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
},
"createTime": "A String", # Output only. Timestamp when this Model was uploaded into Vertex AI.
"defaultCheckpointId": "A String", # The default checkpoint id of a model version.
"deployedModels": [ # Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
{ # Points to a DeployedModel.
"checkpointId": "A String", # Immutable. The ID of the Checkpoint deployed in the DeployedModel.
"deployedModelId": "A String", # Immutable. An ID of a DeployedModel in the above Endpoint.
"endpoint": "A String", # Immutable. A resource name of an Endpoint.
},
],
"description": "A String", # The description of the Model.
"displayName": "A String", # Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"etag": "A String", # Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
"explanationSpec": { # Specification of Model explanation. # The default explanation specification for this Model. The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated. All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob. If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.
"metadata": { # Metadata describing the Model's input and output for explanation. # Optional. Metadata describing the Model's input and output for explanation.
"featureAttributionsSchemaUri": "A String", # Points to a YAML file stored on Google Cloud Storage describing the format of the feature attributions. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"inputs": { # Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance.
"a_key": { # Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
"denseShapeTensorName": "A String", # Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"encodedBaselines": [ # A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
"",
],
"encodedTensorName": "A String", # Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
"encoding": "A String", # Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
"featureValueDomain": { # Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. # The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
"maxValue": 3.14, # The maximum permissible value for this feature.
"minValue": 3.14, # The minimum permissible value for this feature.
"originalMean": 3.14, # If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
"originalStddev": 3.14, # If this input feature has been normalized to a standard deviation of 1.0, the original_stddev specifies the standard deviation of the domain prior to normalization.
},
"groupName": "A String", # Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
"indexFeatureMapping": [ # A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
"A String",
],
"indicesTensorName": "A String", # Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"inputBaselines": [ # Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
"",
],
"inputTensorName": "A String", # Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
"modality": "A String", # Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
"visualization": { # Visualization configurations for image explanation. # Visualization configurations for image explanation.
"clipPercentLowerbound": 3.14, # Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
"clipPercentUpperbound": 3.14, # Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
"colorMap": "A String", # The color scheme used for the highlighted areas. Defaults to PINK_GREEN for Integrated Gradients attribution, which shows positive attributions in green and negative in pink. Defaults to VIRIDIS for XRAI attribution, which highlights the most influential regions in yellow and the least influential in blue.
"overlayType": "A String", # How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
"polarity": "A String", # Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
"type": "A String", # Type of the image visualization. Only applicable to Integrated Gradients attribution. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
},
},
},
"latentSpaceSource": "A String", # Name of the source to generate embeddings for example based explanations.
"outputs": { # Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
"a_key": { # Metadata of the prediction output to be explained.
"displayNameMappingKey": "A String", # Specify a field name in the prediction to look for the display name. Use this if the prediction contains the display names for the outputs. The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
"indexDisplayNameMapping": "", # Static mapping between the index and display name. Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values. The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
"outputTensorName": "A String", # Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
},
},
},
"parameters": { # Parameters to configure explaining for Model's predictions. # Required. Parameters that configure explaining of the Model's predictions.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # Example-based explanations that returns the nearest neighbors from the provided dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
"integratedGradientsAttribution": { # An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 # An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
},
"outputIndices": [ # If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
"",
],
"sampledShapleyAttribution": { # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
"pathCount": 42, # Required. The number of feature permutations to consider when approximating the Shapley values. Valid range of its value is [1, 50], inclusively.
},
"topK": 42, # If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
"xraiAttribution": { # An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Supported only by image Models. # An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
},
},
},
"labels": { # The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
"a_key": "A String",
},
"metadata": "", # Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.
"metadataArtifact": "A String", # Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
"metadataSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"modelSourceInfo": { # Detail description of the source information of the model. # Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
"copy": True or False, # If this Model is copy of another Model. If true then source_type pertains to the original.
"sourceType": "A String", # Type of the model source.
},
"name": "A String", # The resource name of the Model.
"originalModelInfo": { # Contains information about the original Model if this Model is a copy. # Output only. If this Model is a copy of another Model, this contains info about the original.
"model": "A String", # Output only. The resource name of the Model this Model is a copy of, including the revision. Format: `projects/{project}/locations/{location}/models/{model_id}@{version_id}`
},
"predictSchemata": { # Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. # The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.
"instanceSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in PredictRequest.instances, ExplainRequest.instances and BatchPredictionJob.input_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"parametersSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via PredictRequest.parameters, ExplainRequest.parameters and BatchPredictionJob.model_parameters. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"predictionSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via PredictResponse.predictions, ExplainResponse.explanations, and BatchPredictionJob.output_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
},
"satisfiesPzi": True or False, # Output only. Reserved for future use.
"satisfiesPzs": True or False, # Output only. Reserved for future use.
"supportedDeploymentResourcesTypes": [ # Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.
"A String",
],
"supportedExportFormats": [ # Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
{ # Represents export format supported by the Model. All formats export to Google Cloud Storage.
"exportableContents": [ # Output only. The content of this Model that may be exported.
"A String",
],
"id": "A String", # Output only. The ID of the export format. The possible format IDs are: * `tflite` Used for Android mobile devices. * `edgetpu-tflite` Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. * `tf-saved-model` A tensorflow model in SavedModel format. * `tf-js` A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used in the browser and in Node.js using JavaScript. * `core-ml` Used for iOS mobile devices. * `custom-trained` A Model that was uploaded or trained by custom code. * `genie` A tuned Model Garden model.
},
],
"supportedInputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses GcsSource. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses GcsSource. * `bigquery` Each instance is a single row in BigQuery. Uses BigQuerySource. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"supportedOutputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * `bigquery` Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"trainingPipeline": "A String", # Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
"updateTime": "A String", # Output only. Timestamp when this Model was most recently updated.
"versionAliases": [ # User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
"A String",
],
"versionCreateTime": "A String", # Output only. Timestamp when this version was created.
"versionDescription": "A String", # The description of this version.
"versionId": "A String", # Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
"versionUpdateTime": "A String", # Output only. Timestamp when this version was most recently updated.
}</pre>
</div>
<div class="method">
<code class="details" id="patch">patch(name, body=None, updateMask=None, x__xgafv=None)</code>
<pre>Updates a Model.
Args:
name: string, The resource name of the Model. (required)
body: object, The request body.
The object takes the form of:
{ # A trained machine learning Model.
"artifactUri": "A String", # Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
"baseModelSource": { # User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. # Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
"genieSource": { # Contains information about the source of the models generated from Generative AI Studio. # Information about the base model of Genie models.
"baseModelUri": "A String", # Required. The public base model URI.
},
"modelGardenSource": { # Contains information about the source of the models generated from Model Garden. # Source information of Model Garden models.
"publicModelName": "A String", # Required. The model garden source model resource name.
"skipHfModelCache": True or False, # Optional. Whether to avoid pulling the model from the HF cache.
"versionId": "A String", # Optional. The model garden source model version ID.
},
},
"checkpoints": [ # Optional. Output only. The checkpoints of the model.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"containerSpec": { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
"args": [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`'s "default parameters" form. If you don't specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don't specify this field and don't specify the `command` field, then the container's [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"command": [ # Immutable. Specifies the command that runs when the container starts. This overrides the container's [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. If you do not specify this field, then the container's `ENTRYPOINT` runs, in conjunction with the args field or the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container's `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"deploymentTimeout": "A String", # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
"env": [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents an environment variable present in a Container or Python Module.
"name": "A String", # Required. Name of the environment variable. Must be a valid C identifier.
"value": "A String", # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
},
],
"grpcPorts": [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"healthProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"healthRoute": "A String", # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container's IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"imageUri": "A String", # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI's [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
"invokeRoutePrefix": "A String", # Immutable. Invoke route prefix for the custom container. "/*" is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: "/invoke/foo/bar", however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
"livenessProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"ports": [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { "containerPort": 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"predictRoute": "A String", # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container's IP address and port. Vertex AI then returns the container's response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"sharedMemorySizeMb": "A String", # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
"startupProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
},
"createTime": "A String", # Output only. Timestamp when this Model was uploaded into Vertex AI.
"defaultCheckpointId": "A String", # The default checkpoint id of a model version.
"deployedModels": [ # Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
{ # Points to a DeployedModel.
"checkpointId": "A String", # Immutable. The ID of the Checkpoint deployed in the DeployedModel.
"deployedModelId": "A String", # Immutable. An ID of a DeployedModel in the above Endpoint.
"endpoint": "A String", # Immutable. A resource name of an Endpoint.
},
],
"description": "A String", # The description of the Model.
"displayName": "A String", # Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"etag": "A String", # Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
"explanationSpec": { # Specification of Model explanation. # The default explanation specification for this Model. The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated. All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob. If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.
"metadata": { # Metadata describing the Model's input and output for explanation. # Optional. Metadata describing the Model's input and output for explanation.
"featureAttributionsSchemaUri": "A String", # Points to a YAML file stored on Google Cloud Storage describing the format of the feature attributions. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"inputs": { # Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance.
"a_key": { # Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
"denseShapeTensorName": "A String", # Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"encodedBaselines": [ # A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
"",
],
"encodedTensorName": "A String", # Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
"encoding": "A String", # Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
"featureValueDomain": { # Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. # The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
"maxValue": 3.14, # The maximum permissible value for this feature.
"minValue": 3.14, # The minimum permissible value for this feature.
"originalMean": 3.14, # If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
"originalStddev": 3.14, # If this input feature has been normalized to a standard deviation of 1.0, the original_stddev specifies the standard deviation of the domain prior to normalization.
},
"groupName": "A String", # Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
"indexFeatureMapping": [ # A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
"A String",
],
"indicesTensorName": "A String", # Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"inputBaselines": [ # Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
"",
],
"inputTensorName": "A String", # Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
"modality": "A String", # Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
"visualization": { # Visualization configurations for image explanation. # Visualization configurations for image explanation.
"clipPercentLowerbound": 3.14, # Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
"clipPercentUpperbound": 3.14, # Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
"colorMap": "A String", # The color scheme used for the highlighted areas. Defaults to PINK_GREEN for Integrated Gradients attribution, which shows positive attributions in green and negative in pink. Defaults to VIRIDIS for XRAI attribution, which highlights the most influential regions in yellow and the least influential in blue.
"overlayType": "A String", # How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
"polarity": "A String", # Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
"type": "A String", # Type of the image visualization. Only applicable to Integrated Gradients attribution. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
},
},
},
"latentSpaceSource": "A String", # Name of the source to generate embeddings for example based explanations.
"outputs": { # Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
"a_key": { # Metadata of the prediction output to be explained.
"displayNameMappingKey": "A String", # Specify a field name in the prediction to look for the display name. Use this if the prediction contains the display names for the outputs. The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
"indexDisplayNameMapping": "", # Static mapping between the index and display name. Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values. The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
"outputTensorName": "A String", # Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
},
},
},
"parameters": { # Parameters to configure explaining for Model's predictions. # Required. Parameters that configure explaining of the Model's predictions.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # Example-based explanations that returns the nearest neighbors from the provided dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
"integratedGradientsAttribution": { # An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 # An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
},
"outputIndices": [ # If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
"",
],
"sampledShapleyAttribution": { # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
"pathCount": 42, # Required. The number of feature permutations to consider when approximating the Shapley values. Valid range of its value is [1, 50], inclusively.
},
"topK": 42, # If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
"xraiAttribution": { # An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Supported only by image Models. # An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
},
},
},
"labels": { # The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
"a_key": "A String",
},
"metadata": "", # Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.
"metadataArtifact": "A String", # Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
"metadataSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"modelSourceInfo": { # Detail description of the source information of the model. # Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
"copy": True or False, # If this Model is copy of another Model. If true then source_type pertains to the original.
"sourceType": "A String", # Type of the model source.
},
"name": "A String", # The resource name of the Model.
"originalModelInfo": { # Contains information about the original Model if this Model is a copy. # Output only. If this Model is a copy of another Model, this contains info about the original.
"model": "A String", # Output only. The resource name of the Model this Model is a copy of, including the revision. Format: `projects/{project}/locations/{location}/models/{model_id}@{version_id}`
},
"predictSchemata": { # Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. # The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.
"instanceSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in PredictRequest.instances, ExplainRequest.instances and BatchPredictionJob.input_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"parametersSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via PredictRequest.parameters, ExplainRequest.parameters and BatchPredictionJob.model_parameters. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"predictionSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via PredictResponse.predictions, ExplainResponse.explanations, and BatchPredictionJob.output_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
},
"satisfiesPzi": True or False, # Output only. Reserved for future use.
"satisfiesPzs": True or False, # Output only. Reserved for future use.
"supportedDeploymentResourcesTypes": [ # Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.
"A String",
],
"supportedExportFormats": [ # Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
{ # Represents export format supported by the Model. All formats export to Google Cloud Storage.
"exportableContents": [ # Output only. The content of this Model that may be exported.
"A String",
],
"id": "A String", # Output only. The ID of the export format. The possible format IDs are: * `tflite` Used for Android mobile devices. * `edgetpu-tflite` Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. * `tf-saved-model` A tensorflow model in SavedModel format. * `tf-js` A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used in the browser and in Node.js using JavaScript. * `core-ml` Used for iOS mobile devices. * `custom-trained` A Model that was uploaded or trained by custom code. * `genie` A tuned Model Garden model.
},
],
"supportedInputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses GcsSource. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses GcsSource. * `bigquery` Each instance is a single row in BigQuery. Uses BigQuerySource. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"supportedOutputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * `bigquery` Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"trainingPipeline": "A String", # Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
"updateTime": "A String", # Output only. Timestamp when this Model was most recently updated.
"versionAliases": [ # User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
"A String",
],
"versionCreateTime": "A String", # Output only. Timestamp when this version was created.
"versionDescription": "A String", # The description of this version.
"versionId": "A String", # Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
"versionUpdateTime": "A String", # Output only. Timestamp when this version was most recently updated.
}
updateMask: string, Required. The update mask applies to the resource. For the `FieldMask` definition, see google.protobuf.FieldMask.
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # A trained machine learning Model.
"artifactUri": "A String", # Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
"baseModelSource": { # User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. # Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
"genieSource": { # Contains information about the source of the models generated from Generative AI Studio. # Information about the base model of Genie models.
"baseModelUri": "A String", # Required. The public base model URI.
},
"modelGardenSource": { # Contains information about the source of the models generated from Model Garden. # Source information of Model Garden models.
"publicModelName": "A String", # Required. The model garden source model resource name.
"skipHfModelCache": True or False, # Optional. Whether to avoid pulling the model from the HF cache.
"versionId": "A String", # Optional. The model garden source model version ID.
},
},
"checkpoints": [ # Optional. Output only. The checkpoints of the model.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"containerSpec": { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
"args": [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`'s "default parameters" form. If you don't specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don't specify this field and don't specify the `command` field, then the container's [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"command": [ # Immutable. Specifies the command that runs when the container starts. This overrides the container's [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. If you do not specify this field, then the container's `ENTRYPOINT` runs, in conjunction with the args field or the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container's `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"deploymentTimeout": "A String", # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
"env": [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents an environment variable present in a Container or Python Module.
"name": "A String", # Required. Name of the environment variable. Must be a valid C identifier.
"value": "A String", # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
},
],
"grpcPorts": [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"healthProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"healthRoute": "A String", # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container's IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"imageUri": "A String", # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI's [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
"invokeRoutePrefix": "A String", # Immutable. Invoke route prefix for the custom container. "/*" is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: "/invoke/foo/bar", however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
"livenessProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"ports": [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { "containerPort": 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"predictRoute": "A String", # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container's IP address and port. Vertex AI then returns the container's response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"sharedMemorySizeMb": "A String", # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
"startupProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
},
"createTime": "A String", # Output only. Timestamp when this Model was uploaded into Vertex AI.
"defaultCheckpointId": "A String", # The default checkpoint id of a model version.
"deployedModels": [ # Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
{ # Points to a DeployedModel.
"checkpointId": "A String", # Immutable. The ID of the Checkpoint deployed in the DeployedModel.
"deployedModelId": "A String", # Immutable. An ID of a DeployedModel in the above Endpoint.
"endpoint": "A String", # Immutable. A resource name of an Endpoint.
},
],
"description": "A String", # The description of the Model.
"displayName": "A String", # Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"etag": "A String", # Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
"explanationSpec": { # Specification of Model explanation. # The default explanation specification for this Model. The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated. All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob. If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.
"metadata": { # Metadata describing the Model's input and output for explanation. # Optional. Metadata describing the Model's input and output for explanation.
"featureAttributionsSchemaUri": "A String", # Points to a YAML file stored on Google Cloud Storage describing the format of the feature attributions. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"inputs": { # Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance.
"a_key": { # Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
"denseShapeTensorName": "A String", # Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"encodedBaselines": [ # A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
"",
],
"encodedTensorName": "A String", # Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
"encoding": "A String", # Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
"featureValueDomain": { # Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. # The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
"maxValue": 3.14, # The maximum permissible value for this feature.
"minValue": 3.14, # The minimum permissible value for this feature.
"originalMean": 3.14, # If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
"originalStddev": 3.14, # If this input feature has been normalized to a standard deviation of 1.0, the original_stddev specifies the standard deviation of the domain prior to normalization.
},
"groupName": "A String", # Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
"indexFeatureMapping": [ # A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
"A String",
],
"indicesTensorName": "A String", # Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"inputBaselines": [ # Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
"",
],
"inputTensorName": "A String", # Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
"modality": "A String", # Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
"visualization": { # Visualization configurations for image explanation. # Visualization configurations for image explanation.
"clipPercentLowerbound": 3.14, # Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
"clipPercentUpperbound": 3.14, # Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
"colorMap": "A String", # The color scheme used for the highlighted areas. Defaults to PINK_GREEN for Integrated Gradients attribution, which shows positive attributions in green and negative in pink. Defaults to VIRIDIS for XRAI attribution, which highlights the most influential regions in yellow and the least influential in blue.
"overlayType": "A String", # How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
"polarity": "A String", # Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
"type": "A String", # Type of the image visualization. Only applicable to Integrated Gradients attribution. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
},
},
},
"latentSpaceSource": "A String", # Name of the source to generate embeddings for example based explanations.
"outputs": { # Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
"a_key": { # Metadata of the prediction output to be explained.
"displayNameMappingKey": "A String", # Specify a field name in the prediction to look for the display name. Use this if the prediction contains the display names for the outputs. The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
"indexDisplayNameMapping": "", # Static mapping between the index and display name. Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values. The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
"outputTensorName": "A String", # Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
},
},
},
"parameters": { # Parameters to configure explaining for Model's predictions. # Required. Parameters that configure explaining of the Model's predictions.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # Example-based explanations that returns the nearest neighbors from the provided dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
"integratedGradientsAttribution": { # An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 # An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
},
"outputIndices": [ # If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
"",
],
"sampledShapleyAttribution": { # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
"pathCount": 42, # Required. The number of feature permutations to consider when approximating the Shapley values. Valid range of its value is [1, 50], inclusively.
},
"topK": 42, # If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
"xraiAttribution": { # An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Supported only by image Models. # An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
},
},
},
"labels": { # The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
"a_key": "A String",
},
"metadata": "", # Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.
"metadataArtifact": "A String", # Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
"metadataSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"modelSourceInfo": { # Detail description of the source information of the model. # Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
"copy": True or False, # If this Model is copy of another Model. If true then source_type pertains to the original.
"sourceType": "A String", # Type of the model source.
},
"name": "A String", # The resource name of the Model.
"originalModelInfo": { # Contains information about the original Model if this Model is a copy. # Output only. If this Model is a copy of another Model, this contains info about the original.
"model": "A String", # Output only. The resource name of the Model this Model is a copy of, including the revision. Format: `projects/{project}/locations/{location}/models/{model_id}@{version_id}`
},
"predictSchemata": { # Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. # The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.
"instanceSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in PredictRequest.instances, ExplainRequest.instances and BatchPredictionJob.input_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"parametersSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via PredictRequest.parameters, ExplainRequest.parameters and BatchPredictionJob.model_parameters. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"predictionSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via PredictResponse.predictions, ExplainResponse.explanations, and BatchPredictionJob.output_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
},
"satisfiesPzi": True or False, # Output only. Reserved for future use.
"satisfiesPzs": True or False, # Output only. Reserved for future use.
"supportedDeploymentResourcesTypes": [ # Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.
"A String",
],
"supportedExportFormats": [ # Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
{ # Represents export format supported by the Model. All formats export to Google Cloud Storage.
"exportableContents": [ # Output only. The content of this Model that may be exported.
"A String",
],
"id": "A String", # Output only. The ID of the export format. The possible format IDs are: * `tflite` Used for Android mobile devices. * `edgetpu-tflite` Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. * `tf-saved-model` A tensorflow model in SavedModel format. * `tf-js` A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used in the browser and in Node.js using JavaScript. * `core-ml` Used for iOS mobile devices. * `custom-trained` A Model that was uploaded or trained by custom code. * `genie` A tuned Model Garden model.
},
],
"supportedInputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses GcsSource. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses GcsSource. * `bigquery` Each instance is a single row in BigQuery. Uses BigQuerySource. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"supportedOutputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * `bigquery` Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"trainingPipeline": "A String", # Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
"updateTime": "A String", # Output only. Timestamp when this Model was most recently updated.
"versionAliases": [ # User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
"A String",
],
"versionCreateTime": "A String", # Output only. Timestamp when this version was created.
"versionDescription": "A String", # The description of this version.
"versionId": "A String", # Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
"versionUpdateTime": "A String", # Output only. Timestamp when this version was most recently updated.
}</pre>
</div>
<div class="method">
<code class="details" id="setIamPolicy">setIamPolicy(resource, body=None, x__xgafv=None)</code>
<pre>Sets the access control policy on the specified resource. Replaces any existing policy. Can return `NOT_FOUND`, `INVALID_ARGUMENT`, and `PERMISSION_DENIED` errors.
Args:
resource: string, REQUIRED: The resource for which the policy is being specified. See [Resource names](https://cloud.google.com/apis/design/resource_names) for the appropriate value for this field. (required)
body: object, The request body.
The object takes the form of:
{ # Request message for `SetIamPolicy` method.
"policy": { # An Identity and Access Management (IAM) policy, which specifies access controls for Google Cloud resources. A `Policy` is a collection of `bindings`. A `binding` binds one or more `members`, or principals, to a single `role`. Principals can be user accounts, service accounts, Google groups, and domains (such as G Suite). A `role` is a named list of permissions; each `role` can be an IAM predefined role or a user-created custom role. For some types of Google Cloud resources, a `binding` can also specify a `condition`, which is a logical expression that allows access to a resource only if the expression evaluates to `true`. A condition can add constraints based on attributes of the request, the resource, or both. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). **JSON example:** ``` { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": [ "user:eve@example.com" ], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ], "etag": "BwWWja0YfJA=", "version": 3 } ``` **YAML example:** ``` bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z') etag: BwWWja0YfJA= version: 3 ``` For a description of IAM and its features, see the [IAM documentation](https://cloud.google.com/iam/docs/). # REQUIRED: The complete policy to be applied to the `resource`. The size of the policy is limited to a few 10s of KB. An empty policy is a valid policy but certain Google Cloud services (such as Projects) might reject them.
"bindings": [ # Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:alice@example.com`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`.
{ # Associates `members`, or principals, with a `role`.
"condition": { # Represents a textual expression in the Common Expression Language (CEL) syntax. CEL is a C-like expression language. The syntax and semantics of CEL are documented at https://github.com/google/cel-spec. Example (Comparison): title: "Summary size limit" description: "Determines if a summary is less than 100 chars" expression: "document.summary.size() < 100" Example (Equality): title: "Requestor is owner" description: "Determines if requestor is the document owner" expression: "document.owner == request.auth.claims.email" Example (Logic): title: "Public documents" description: "Determine whether the document should be publicly visible" expression: "document.type != 'private' && document.type != 'internal'" Example (Data Manipulation): title: "Notification string" description: "Create a notification string with a timestamp." expression: "'New message received at ' + string(document.create_time)" The exact variables and functions that may be referenced within an expression are determined by the service that evaluates it. See the service documentation for additional information. # The condition that is associated with this binding. If the condition evaluates to `true`, then this binding applies to the current request. If the condition evaluates to `false`, then this binding does not apply to the current request. However, a different role binding might grant the same role to one or more of the principals in this binding. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies).
"description": "A String", # Optional. Description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI.
"expression": "A String", # Textual representation of an expression in Common Expression Language syntax.
"location": "A String", # Optional. String indicating the location of the expression for error reporting, e.g. a file name and a position in the file.
"title": "A String", # Optional. Title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression.
},
"members": [ # Specifies the principals requesting access for a Google Cloud resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. Does not include identities that come from external identity providers (IdPs) through identity federation. * `user:{emailid}`: An email address that represents a specific Google account. For example, `alice@example.com` . * `serviceAccount:{emailid}`: An email address that represents a Google service account. For example, `my-other-app@appspot.gserviceaccount.com`. * `serviceAccount:{projectid}.svc.id.goog[{namespace}/{kubernetes-sa}]`: An identifier for a [Kubernetes service account](https://cloud.google.com/kubernetes-engine/docs/how-to/kubernetes-service-accounts). For example, `my-project.svc.id.goog[my-namespace/my-kubernetes-sa]`. * `group:{emailid}`: An email address that represents a Google group. For example, `admins@example.com`. * `domain:{domain}`: The G Suite domain (primary) that represents all the users of that domain. For example, `google.com` or `example.com`. * `principal://iam.googleapis.com/locations/global/workforcePools/{pool_id}/subject/{subject_attribute_value}`: A single identity in a workforce identity pool. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/group/{group_id}`: All workforce identities in a group. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/attribute.{attribute_name}/{attribute_value}`: All workforce identities with a specific attribute value. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/*`: All identities in a workforce identity pool. * `principal://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/subject/{subject_attribute_value}`: A single identity in a workload identity pool. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/group/{group_id}`: A workload identity pool group. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/attribute.{attribute_name}/{attribute_value}`: All identities in a workload identity pool with a certain attribute. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/*`: All identities in a workload identity pool. * `deleted:user:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a user that has been recently deleted. For example, `alice@example.com?uid=123456789012345678901`. If the user is recovered, this value reverts to `user:{emailid}` and the recovered user retains the role in the binding. * `deleted:serviceAccount:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a service account that has been recently deleted. For example, `my-other-app@appspot.gserviceaccount.com?uid=123456789012345678901`. If the service account is undeleted, this value reverts to `serviceAccount:{emailid}` and the undeleted service account retains the role in the binding. * `deleted:group:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a Google group that has been recently deleted. For example, `admins@example.com?uid=123456789012345678901`. If the group is recovered, this value reverts to `group:{emailid}` and the recovered group retains the role in the binding. * `deleted:principal://iam.googleapis.com/locations/global/workforcePools/{pool_id}/subject/{subject_attribute_value}`: Deleted single identity in a workforce identity pool. For example, `deleted:principal://iam.googleapis.com/locations/global/workforcePools/my-pool-id/subject/my-subject-attribute-value`.
"A String",
],
"role": "A String", # Role that is assigned to the list of `members`, or principals. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. For an overview of the IAM roles and permissions, see the [IAM documentation](https://cloud.google.com/iam/docs/roles-overview). For a list of the available pre-defined roles, see [here](https://cloud.google.com/iam/docs/understanding-roles).
},
],
"etag": "A String", # `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost.
"version": 42, # Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies).
},
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # An Identity and Access Management (IAM) policy, which specifies access controls for Google Cloud resources. A `Policy` is a collection of `bindings`. A `binding` binds one or more `members`, or principals, to a single `role`. Principals can be user accounts, service accounts, Google groups, and domains (such as G Suite). A `role` is a named list of permissions; each `role` can be an IAM predefined role or a user-created custom role. For some types of Google Cloud resources, a `binding` can also specify a `condition`, which is a logical expression that allows access to a resource only if the expression evaluates to `true`. A condition can add constraints based on attributes of the request, the resource, or both. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies). **JSON example:** ``` { "bindings": [ { "role": "roles/resourcemanager.organizationAdmin", "members": [ "user:mike@example.com", "group:admins@example.com", "domain:google.com", "serviceAccount:my-project-id@appspot.gserviceaccount.com" ] }, { "role": "roles/resourcemanager.organizationViewer", "members": [ "user:eve@example.com" ], "condition": { "title": "expirable access", "description": "Does not grant access after Sep 2020", "expression": "request.time < timestamp('2020-10-01T00:00:00.000Z')", } } ], "etag": "BwWWja0YfJA=", "version": 3 } ``` **YAML example:** ``` bindings: - members: - user:mike@example.com - group:admins@example.com - domain:google.com - serviceAccount:my-project-id@appspot.gserviceaccount.com role: roles/resourcemanager.organizationAdmin - members: - user:eve@example.com role: roles/resourcemanager.organizationViewer condition: title: expirable access description: Does not grant access after Sep 2020 expression: request.time < timestamp('2020-10-01T00:00:00.000Z') etag: BwWWja0YfJA= version: 3 ``` For a description of IAM and its features, see the [IAM documentation](https://cloud.google.com/iam/docs/).
"bindings": [ # Associates a list of `members`, or principals, with a `role`. Optionally, may specify a `condition` that determines how and when the `bindings` are applied. Each of the `bindings` must contain at least one principal. The `bindings` in a `Policy` can refer to up to 1,500 principals; up to 250 of these principals can be Google groups. Each occurrence of a principal counts towards these limits. For example, if the `bindings` grant 50 different roles to `user:alice@example.com`, and not to any other principal, then you can add another 1,450 principals to the `bindings` in the `Policy`.
{ # Associates `members`, or principals, with a `role`.
"condition": { # Represents a textual expression in the Common Expression Language (CEL) syntax. CEL is a C-like expression language. The syntax and semantics of CEL are documented at https://github.com/google/cel-spec. Example (Comparison): title: "Summary size limit" description: "Determines if a summary is less than 100 chars" expression: "document.summary.size() < 100" Example (Equality): title: "Requestor is owner" description: "Determines if requestor is the document owner" expression: "document.owner == request.auth.claims.email" Example (Logic): title: "Public documents" description: "Determine whether the document should be publicly visible" expression: "document.type != 'private' && document.type != 'internal'" Example (Data Manipulation): title: "Notification string" description: "Create a notification string with a timestamp." expression: "'New message received at ' + string(document.create_time)" The exact variables and functions that may be referenced within an expression are determined by the service that evaluates it. See the service documentation for additional information. # The condition that is associated with this binding. If the condition evaluates to `true`, then this binding applies to the current request. If the condition evaluates to `false`, then this binding does not apply to the current request. However, a different role binding might grant the same role to one or more of the principals in this binding. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies).
"description": "A String", # Optional. Description of the expression. This is a longer text which describes the expression, e.g. when hovered over it in a UI.
"expression": "A String", # Textual representation of an expression in Common Expression Language syntax.
"location": "A String", # Optional. String indicating the location of the expression for error reporting, e.g. a file name and a position in the file.
"title": "A String", # Optional. Title for the expression, i.e. a short string describing its purpose. This can be used e.g. in UIs which allow to enter the expression.
},
"members": [ # Specifies the principals requesting access for a Google Cloud resource. `members` can have the following values: * `allUsers`: A special identifier that represents anyone who is on the internet; with or without a Google account. * `allAuthenticatedUsers`: A special identifier that represents anyone who is authenticated with a Google account or a service account. Does not include identities that come from external identity providers (IdPs) through identity federation. * `user:{emailid}`: An email address that represents a specific Google account. For example, `alice@example.com` . * `serviceAccount:{emailid}`: An email address that represents a Google service account. For example, `my-other-app@appspot.gserviceaccount.com`. * `serviceAccount:{projectid}.svc.id.goog[{namespace}/{kubernetes-sa}]`: An identifier for a [Kubernetes service account](https://cloud.google.com/kubernetes-engine/docs/how-to/kubernetes-service-accounts). For example, `my-project.svc.id.goog[my-namespace/my-kubernetes-sa]`. * `group:{emailid}`: An email address that represents a Google group. For example, `admins@example.com`. * `domain:{domain}`: The G Suite domain (primary) that represents all the users of that domain. For example, `google.com` or `example.com`. * `principal://iam.googleapis.com/locations/global/workforcePools/{pool_id}/subject/{subject_attribute_value}`: A single identity in a workforce identity pool. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/group/{group_id}`: All workforce identities in a group. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/attribute.{attribute_name}/{attribute_value}`: All workforce identities with a specific attribute value. * `principalSet://iam.googleapis.com/locations/global/workforcePools/{pool_id}/*`: All identities in a workforce identity pool. * `principal://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/subject/{subject_attribute_value}`: A single identity in a workload identity pool. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/group/{group_id}`: A workload identity pool group. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/attribute.{attribute_name}/{attribute_value}`: All identities in a workload identity pool with a certain attribute. * `principalSet://iam.googleapis.com/projects/{project_number}/locations/global/workloadIdentityPools/{pool_id}/*`: All identities in a workload identity pool. * `deleted:user:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a user that has been recently deleted. For example, `alice@example.com?uid=123456789012345678901`. If the user is recovered, this value reverts to `user:{emailid}` and the recovered user retains the role in the binding. * `deleted:serviceAccount:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a service account that has been recently deleted. For example, `my-other-app@appspot.gserviceaccount.com?uid=123456789012345678901`. If the service account is undeleted, this value reverts to `serviceAccount:{emailid}` and the undeleted service account retains the role in the binding. * `deleted:group:{emailid}?uid={uniqueid}`: An email address (plus unique identifier) representing a Google group that has been recently deleted. For example, `admins@example.com?uid=123456789012345678901`. If the group is recovered, this value reverts to `group:{emailid}` and the recovered group retains the role in the binding. * `deleted:principal://iam.googleapis.com/locations/global/workforcePools/{pool_id}/subject/{subject_attribute_value}`: Deleted single identity in a workforce identity pool. For example, `deleted:principal://iam.googleapis.com/locations/global/workforcePools/my-pool-id/subject/my-subject-attribute-value`.
"A String",
],
"role": "A String", # Role that is assigned to the list of `members`, or principals. For example, `roles/viewer`, `roles/editor`, or `roles/owner`. For an overview of the IAM roles and permissions, see the [IAM documentation](https://cloud.google.com/iam/docs/roles-overview). For a list of the available pre-defined roles, see [here](https://cloud.google.com/iam/docs/understanding-roles).
},
],
"etag": "A String", # `etag` is used for optimistic concurrency control as a way to help prevent simultaneous updates of a policy from overwriting each other. It is strongly suggested that systems make use of the `etag` in the read-modify-write cycle to perform policy updates in order to avoid race conditions: An `etag` is returned in the response to `getIamPolicy`, and systems are expected to put that etag in the request to `setIamPolicy` to ensure that their change will be applied to the same version of the policy. **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost.
"version": 42, # Specifies the format of the policy. Valid values are `0`, `1`, and `3`. Requests that specify an invalid value are rejected. Any operation that affects conditional role bindings must specify version `3`. This requirement applies to the following operations: * Getting a policy that includes a conditional role binding * Adding a conditional role binding to a policy * Changing a conditional role binding in a policy * Removing any role binding, with or without a condition, from a policy that includes conditions **Important:** If you use IAM Conditions, you must include the `etag` field whenever you call `setIamPolicy`. If you omit this field, then IAM allows you to overwrite a version `3` policy with a version `1` policy, and all of the conditions in the version `3` policy are lost. If a policy does not include any conditions, operations on that policy may specify any valid version or leave the field unset. To learn which resources support conditions in their IAM policies, see the [IAM documentation](https://cloud.google.com/iam/help/conditions/resource-policies).
}</pre>
</div>
<div class="method">
<code class="details" id="testIamPermissions">testIamPermissions(resource, permissions=None, x__xgafv=None)</code>
<pre>Returns permissions that a caller has on the specified resource. If the resource does not exist, this will return an empty set of permissions, not a `NOT_FOUND` error. Note: This operation is designed to be used for building permission-aware UIs and command-line tools, not for authorization checking. This operation may "fail open" without warning.
Args:
resource: string, REQUIRED: The resource for which the policy detail is being requested. See [Resource names](https://cloud.google.com/apis/design/resource_names) for the appropriate value for this field. (required)
permissions: string, The set of permissions to check for the `resource`. Permissions with wildcards (such as `*` or `storage.*`) are not allowed. For more information see [IAM Overview](https://cloud.google.com/iam/docs/overview#permissions). (repeated)
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # Response message for `TestIamPermissions` method.
"permissions": [ # A subset of `TestPermissionsRequest.permissions` that the caller is allowed.
"A String",
],
}</pre>
</div>
<div class="method">
<code class="details" id="updateExplanationDataset">updateExplanationDataset(model, body=None, x__xgafv=None)</code>
<pre>Incrementally update the dataset used for an examples model.
Args:
model: string, Required. The resource name of the Model to update. Format: `projects/{project}/locations/{location}/models/{model}` (required)
body: object, The request body.
The object takes the form of:
{ # Request message for ModelService.UpdateExplanationDataset.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # The example config containing the location of the dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # This resource represents a long-running operation that is the result of a network API call.
"done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
"error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
"code": 42, # The status code, which should be an enum value of google.rpc.Code.
"details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
"message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
},
"metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
"name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
"response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
}</pre>
</div>
<div class="method">
<code class="details" id="upload">upload(parent, body=None, x__xgafv=None)</code>
<pre>Uploads a Model artifact into Vertex AI.
Args:
parent: string, Required. The resource name of the Location into which to upload the Model. Format: `projects/{project}/locations/{location}` (required)
body: object, The request body.
The object takes the form of:
{ # Request message for ModelService.UploadModel.
"model": { # A trained machine learning Model. # Required. The Model to create.
"artifactUri": "A String", # Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
"baseModelSource": { # User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models. # Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
"genieSource": { # Contains information about the source of the models generated from Generative AI Studio. # Information about the base model of Genie models.
"baseModelUri": "A String", # Required. The public base model URI.
},
"modelGardenSource": { # Contains information about the source of the models generated from Model Garden. # Source information of Model Garden models.
"publicModelName": "A String", # Required. The model garden source model resource name.
"skipHfModelCache": True or False, # Optional. Whether to avoid pulling the model from the HF cache.
"versionId": "A String", # Optional. The model garden source model version ID.
},
},
"checkpoints": [ # Optional. Output only. The checkpoints of the model.
{ # Describes the machine learning model version checkpoint.
"checkpointId": "A String", # The ID of the checkpoint.
"epoch": "A String", # The epoch of the checkpoint.
"step": "A String", # The step of the checkpoint.
},
],
"containerSpec": { # Specification of a container for serving predictions. Some fields in this message correspond to fields in the [Kubernetes Container v1 core specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). # Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon ModelService.UploadModel, and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
"args": [ # Immutable. Specifies arguments for the command that runs when the container starts. This overrides the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify this field as an array of executable and arguments, similar to a Docker `CMD`'s "default parameters" form. If you don't specify this field but do specify the command field, then the command from the `command` field runs without any additional arguments. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). If you don't specify this field and don't specify the `command` field, then the container's [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and `CMD` determine what runs based on their default behavior. See the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `args` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"command": [ # Immutable. Specifies the command that runs when the container starts. This overrides the container's [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). Specify this field as an array of executable and arguments, similar to a Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. If you do not specify this field, then the container's `ENTRYPOINT` runs, in conjunction with the args field or the container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), if either exists. If this field is not specified and the container does not have an `ENTRYPOINT`, then refer to the Docker documentation about [how `CMD` and `ENTRYPOINT` interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). If you specify this field, then you can also specify the `args` field to provide additional arguments for this command. However, if you specify this field, then the container's `CMD` is ignored. See the [Kubernetes documentation about how the `command` and `args` fields interact with a container's `ENTRYPOINT` and `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). In this field, you can reference [environment variables set by Vertex AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) and environment variables set in the env field. You cannot reference environment variables set in the Docker image. In order for environment variables to be expanded, reference them by using the following syntax: $( VARIABLE_NAME) Note that this differs from Bash variable expansion, which does not use parentheses. If a variable cannot be resolved, the reference in the input string is used unchanged. To avoid variable expansion, you can escape this syntax with `$$`; for example: $$(VARIABLE_NAME) This field corresponds to the `command` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
"A String",
],
"deploymentTimeout": "A String", # Immutable. Deployment timeout. Limit for deployment timeout is 2 hours.
"env": [ # Immutable. List of environment variables to set in the container. After the container starts running, code running in the container can read these environment variables. Additionally, the command and args fields can reference these variables. Later entries in this list can also reference earlier entries. For example, the following example sets the variable `VAR_2` to have the value `foo bar`: ```json [ { "name": "VAR_1", "value": "foo" }, { "name": "VAR_2", "value": "$(VAR_1) bar" } ] ``` If you switch the order of the variables in the example, then the expansion does not occur. This field corresponds to the `env` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents an environment variable present in a Container or Python Module.
"name": "A String", # Required. Name of the environment variable. Must be a valid C identifier.
"value": "A String", # Required. Variables that reference a $(VAR_NAME) are expanded using the previous defined environment variables in the container and any service environment variables. If a variable cannot be resolved, the reference in the input string will be unchanged. The $(VAR_NAME) syntax can be escaped with a double $$, ie: $$(VAR_NAME). Escaped references will never be expanded, regardless of whether the variable exists or not.
},
],
"grpcPorts": [ # Immutable. List of ports to expose from the container. Vertex AI sends gRPC prediction requests that it receives to the first port on this list. Vertex AI also sends liveness and health checks to this port. If you do not specify this field, gRPC requests to the container will be disabled. Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers v1 core API.
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"healthProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes readiness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"healthRoute": "A String", # Immutable. HTTP path on the container to send health checks to. Vertex AI intermittently sends GET requests to this path on the container's IP address and port to check that the container is healthy. Read more about [health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). For example, if you set this field to `/bar`, then Vertex AI intermittently sends a GET request to the `/bar` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/ DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"imageUri": "A String", # Required. Immutable. URI of the Docker image to be used as the custom container for serving predictions. This URI must identify an image in Artifact Registry or Container Registry. Learn more about the [container publishing requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), including permissions requirements for the Vertex AI Service Agent. The container image is ingested upon ModelService.UploadModel, stored internally, and this original path is afterwards not used. To learn about the requirements for the Docker image itself, see [Custom container requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). You can use the URI to one of Vertex AI's [pre-built container images for prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) in this field.
"invokeRoutePrefix": "A String", # Immutable. Invoke route prefix for the custom container. "/*" is the only supported value right now. By setting this field, any non-root route on this model will be accessible with invoke http call eg: "/invoke/foo/bar", however the [PredictionService.Invoke] RPC is not supported yet. Only one of `predict_route` or `invoke_route_prefix` can be set, and we default to using `predict_route` if this field is not set. If this field is set, the Model can only be deployed to dedicated endpoint.
"livenessProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes liveness probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
"ports": [ # Immutable. List of ports to expose from the container. Vertex AI sends any prediction requests that it receives to the first port on this list. Vertex AI also sends [liveness and health checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) to this port. If you do not specify this field, it defaults to following value: ```json [ { "containerPort": 8080 } ] ``` Vertex AI does not use ports other than the first one listed. This field corresponds to the `ports` field of the Kubernetes Containers [v1 core API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core).
{ # Represents a network port in a container.
"containerPort": 42, # The number of the port to expose on the pod's IP address. Must be a valid port number, between 1 and 65535 inclusive.
},
],
"predictRoute": "A String", # Immutable. HTTP path on the container to send prediction requests to. Vertex AI forwards requests sent using projects.locations.endpoints.predict to this path on the container's IP address and port. Vertex AI then returns the container's response in the API response. For example, if you set this field to `/foo`, then when Vertex AI receives a prediction request, it forwards the request body in a POST request to the `/foo` path on the port of your container specified by the first value of this `ModelContainerSpec`'s ports field. If you don't specify this field, it defaults to the following value when you deploy this Model to an Endpoint: /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict The placeholders in this value are replaced as follows: * ENDPOINT: The last segment (following `endpoints/`)of the Endpoint.name][] field of the Endpoint where this Model has been deployed. (Vertex AI makes this value available to your container code as the [`AIP_ENDPOINT_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) * DEPLOYED_MODEL: DeployedModel.id of the `DeployedModel`. (Vertex AI makes this value available to your container code as the [`AIP_DEPLOYED_MODEL_ID` environment variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).)
"sharedMemorySizeMb": "A String", # Immutable. The amount of the VM memory to reserve as the shared memory for the model in megabytes.
"startupProbe": { # Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic. # Immutable. Specification for Kubernetes startup probe.
"exec": { # ExecAction specifies a command to execute. # ExecAction probes the health of a container by executing a command.
"command": [ # Command is the command line to execute inside the container, the working directory for the command is root ('/') in the container's filesystem. The command is simply exec'd, it is not run inside a shell, so traditional shell instructions ('|', etc) won't work. To use a shell, you need to explicitly call out to that shell. Exit status of 0 is treated as live/healthy and non-zero is unhealthy.
"A String",
],
},
"failureThreshold": 42, # Number of consecutive failures before the probe is considered failed. Defaults to 3. Minimum value is 1. Maps to Kubernetes probe argument 'failureThreshold'.
"grpc": { # GrpcAction checks the health of a container using a gRPC service. # GrpcAction probes the health of a container by sending a gRPC request.
"port": 42, # Port number of the gRPC service. Number must be in the range 1 to 65535.
"service": "A String", # Service is the name of the service to place in the gRPC HealthCheckRequest. See https://github.com/grpc/grpc/blob/master/doc/health-checking.md. If this is not specified, the default behavior is defined by gRPC.
},
"httpGet": { # HttpGetAction describes an action based on HTTP Get requests. # HttpGetAction probes the health of a container by sending an HTTP GET request.
"host": "A String", # Host name to connect to, defaults to the model serving container's IP. You probably want to set "Host" in httpHeaders instead.
"httpHeaders": [ # Custom headers to set in the request. HTTP allows repeated headers.
{ # HttpHeader describes a custom header to be used in HTTP probes
"name": "A String", # The header field name. This will be canonicalized upon output, so case-variant names will be understood as the same header.
"value": "A String", # The header field value
},
],
"path": "A String", # Path to access on the HTTP server.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
"scheme": "A String", # Scheme to use for connecting to the host. Defaults to HTTP. Acceptable values are "HTTP" or "HTTPS".
},
"initialDelaySeconds": 42, # Number of seconds to wait before starting the probe. Defaults to 0. Minimum value is 0. Maps to Kubernetes probe argument 'initialDelaySeconds'.
"periodSeconds": 42, # How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1. Must be less than timeout_seconds. Maps to Kubernetes probe argument 'periodSeconds'.
"successThreshold": 42, # Number of consecutive successes before the probe is considered successful. Defaults to 1. Minimum value is 1. Maps to Kubernetes probe argument 'successThreshold'.
"tcpSocket": { # TcpSocketAction probes the health of a container by opening a TCP socket connection. # TcpSocketAction probes the health of a container by opening a TCP socket connection.
"host": "A String", # Optional: Host name to connect to, defaults to the model serving container's IP.
"port": 42, # Number of the port to access on the container. Number must be in the range 1 to 65535.
},
"timeoutSeconds": 42, # Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. Must be greater or equal to period_seconds. Maps to Kubernetes probe argument 'timeoutSeconds'.
},
},
"createTime": "A String", # Output only. Timestamp when this Model was uploaded into Vertex AI.
"defaultCheckpointId": "A String", # The default checkpoint id of a model version.
"deployedModels": [ # Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
{ # Points to a DeployedModel.
"checkpointId": "A String", # Immutable. The ID of the Checkpoint deployed in the DeployedModel.
"deployedModelId": "A String", # Immutable. An ID of a DeployedModel in the above Endpoint.
"endpoint": "A String", # Immutable. A resource name of an Endpoint.
},
],
"description": "A String", # The description of the Model.
"displayName": "A String", # Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
"encryptionSpec": { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
"kmsKeyName": "A String", # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
},
"etag": "A String", # Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
"explanationSpec": { # Specification of Model explanation. # The default explanation specification for this Model. The Model can be used for requesting explanation after being deployed if it is populated. The Model can be used for batch explanation if it is populated. All fields of the explanation_spec can be overridden by explanation_spec of DeployModelRequest.deployed_model, or explanation_spec of BatchPredictionJob. If the default explanation specification is not set for this Model, this Model can still be used for requesting explanation by setting explanation_spec of DeployModelRequest.deployed_model and for batch explanation by setting explanation_spec of BatchPredictionJob.
"metadata": { # Metadata describing the Model's input and output for explanation. # Optional. Metadata describing the Model's input and output for explanation.
"featureAttributionsSchemaUri": "A String", # Points to a YAML file stored on Google Cloud Storage describing the format of the feature attributions. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML tabular Models always have this field populated by Vertex AI. Note: The URI given on output may be different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"inputs": { # Required. Map from feature names to feature input metadata. Keys are the name of the features. Values are the specification of the feature. An empty InputMetadata is valid. It describes a text feature which has the name specified as the key in ExplanationMetadata.inputs. The baseline of the empty feature is chosen by Vertex AI. For Vertex AI-provided Tensorflow images, the key can be any friendly name of the feature. Once specified, featureAttributions are keyed by this key (if not grouped with another feature). For custom images, the key must match with the key in instance.
"a_key": { # Metadata of the input of a feature. Fields other than InputMetadata.input_baselines are applicable only for Models that are using Vertex AI-provided images for Tensorflow.
"denseShapeTensorName": "A String", # Specifies the shape of the values of the input if the input is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"encodedBaselines": [ # A list of baselines for the encoded tensor. The shape of each baseline should match the shape of the encoded tensor. If a scalar is provided, Vertex AI broadcasts to the same shape as the encoded tensor.
"",
],
"encodedTensorName": "A String", # Encoded tensor is a transformation of the input tensor. Must be provided if choosing Integrated Gradients attribution or XRAI attribution and the input tensor is not differentiable. An encoded tensor is generated if the input tensor is encoded by a lookup table.
"encoding": "A String", # Defines how the feature is encoded into the input tensor. Defaults to IDENTITY.
"featureValueDomain": { # Domain details of the input feature value. Provides numeric information about the feature, such as its range (min, max). If the feature has been pre-processed, for example with z-scoring, then it provides information about how to recover the original feature. For example, if the input feature is an image and it has been pre-processed to obtain 0-mean and stddev = 1 values, then original_mean, and original_stddev refer to the mean and stddev of the original feature (e.g. image tensor) from which input feature (with mean = 0 and stddev = 1) was obtained. # The domain details of the input feature value. Like min/max, original mean or standard deviation if normalized.
"maxValue": 3.14, # The maximum permissible value for this feature.
"minValue": 3.14, # The minimum permissible value for this feature.
"originalMean": 3.14, # If this input feature has been normalized to a mean value of 0, the original_mean specifies the mean value of the domain prior to normalization.
"originalStddev": 3.14, # If this input feature has been normalized to a standard deviation of 1.0, the original_stddev specifies the standard deviation of the domain prior to normalization.
},
"groupName": "A String", # Name of the group that the input belongs to. Features with the same group name will be treated as one feature when computing attributions. Features grouped together can have different shapes in value. If provided, there will be one single attribution generated in Attribution.feature_attributions, keyed by the group name.
"indexFeatureMapping": [ # A list of feature names for each index in the input tensor. Required when the input InputMetadata.encoding is BAG_OF_FEATURES, BAG_OF_FEATURES_SPARSE, INDICATOR.
"A String",
],
"indicesTensorName": "A String", # Specifies the index of the values of the input tensor. Required when the input tensor is a sparse representation. Refer to Tensorflow documentation for more details: https://www.tensorflow.org/api_docs/python/tf/sparse/SparseTensor.
"inputBaselines": [ # Baseline inputs for this feature. If no baseline is specified, Vertex AI chooses the baseline for this feature. If multiple baselines are specified, Vertex AI returns the average attributions across them in Attribution.feature_attributions. For Vertex AI-provided Tensorflow images (both 1.x and 2.x), the shape of each baseline must match the shape of the input tensor. If a scalar is provided, we broadcast to the same shape as the input tensor. For custom images, the element of the baselines must be in the same format as the feature's input in the instance[]. The schema of any single instance may be specified via Endpoint's DeployedModels' Model's PredictSchemata's instance_schema_uri.
"",
],
"inputTensorName": "A String", # Name of the input tensor for this feature. Required and is only applicable to Vertex AI-provided images for Tensorflow.
"modality": "A String", # Modality of the feature. Valid values are: numeric, image. Defaults to numeric.
"visualization": { # Visualization configurations for image explanation. # Visualization configurations for image explanation.
"clipPercentLowerbound": 3.14, # Excludes attributions below the specified percentile, from the highlighted areas. Defaults to 62.
"clipPercentUpperbound": 3.14, # Excludes attributions above the specified percentile from the highlighted areas. Using the clip_percent_upperbound and clip_percent_lowerbound together can be useful for filtering out noise and making it easier to see areas of strong attribution. Defaults to 99.9.
"colorMap": "A String", # The color scheme used for the highlighted areas. Defaults to PINK_GREEN for Integrated Gradients attribution, which shows positive attributions in green and negative in pink. Defaults to VIRIDIS for XRAI attribution, which highlights the most influential regions in yellow and the least influential in blue.
"overlayType": "A String", # How the original image is displayed in the visualization. Adjusting the overlay can help increase visual clarity if the original image makes it difficult to view the visualization. Defaults to NONE.
"polarity": "A String", # Whether to only highlight pixels with positive contributions, negative or both. Defaults to POSITIVE.
"type": "A String", # Type of the image visualization. Only applicable to Integrated Gradients attribution. OUTLINES shows regions of attribution, while PIXELS shows per-pixel attribution. Defaults to OUTLINES.
},
},
},
"latentSpaceSource": "A String", # Name of the source to generate embeddings for example based explanations.
"outputs": { # Required. Map from output names to output metadata. For Vertex AI-provided Tensorflow images, keys can be any user defined string that consists of any UTF-8 characters. For custom images, keys are the name of the output field in the prediction to be explained. Currently only one key is allowed.
"a_key": { # Metadata of the prediction output to be explained.
"displayNameMappingKey": "A String", # Specify a field name in the prediction to look for the display name. Use this if the prediction contains the display names for the outputs. The display names in the prediction must have the same shape of the outputs, so that it can be located by Attribution.output_index for a specific output.
"indexDisplayNameMapping": "", # Static mapping between the index and display name. Use this if the outputs are a deterministic n-dimensional array, e.g. a list of scores of all the classes in a pre-defined order for a multi-classification Model. It's not feasible if the outputs are non-deterministic, e.g. the Model produces top-k classes or sort the outputs by their values. The shape of the value must be an n-dimensional array of strings. The number of dimensions must match that of the outputs to be explained. The Attribution.output_display_name is populated by locating in the mapping with Attribution.output_index.
"outputTensorName": "A String", # Name of the output tensor. Required and is only applicable to Vertex AI provided images for Tensorflow.
},
},
},
"parameters": { # Parameters to configure explaining for Model's predictions. # Required. Parameters that configure explaining of the Model's predictions.
"examples": { # Example-based explainability that returns the nearest neighbors from the provided dataset. # Example-based explanations that returns the nearest neighbors from the provided dataset.
"exampleGcsSource": { # The Cloud Storage input instances. # The Cloud Storage input instances.
"dataFormat": "A String", # The format in which instances are given, if not specified, assume it's JSONL format. Currently only JSONL format is supported.
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage location for the input instances.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
},
"gcsSource": { # The Google Cloud Storage location for the input content. # The Cloud Storage locations that contain the instances to be indexed for approximate nearest neighbor search.
"uris": [ # Required. Google Cloud Storage URI(-s) to the input file(s). May contain wildcards. For more information on wildcards, see https://cloud.google.com/storage/docs/wildcards.
"A String",
],
},
"nearestNeighborSearchConfig": "", # The full configuration for the generated index, the semantics are the same as metadata and should match [NearestNeighborSearchConfig](https://cloud.google.com/vertex-ai/docs/explainable-ai/configuring-explanations-example-based#nearest-neighbor-search-config).
"neighborCount": 42, # The number of neighbors to return when querying for examples.
"presets": { # Preset configuration for example-based explanations # Simplified preset configuration, which automatically sets configuration values based on the desired query speed-precision trade-off and modality.
"modality": "A String", # The modality of the uploaded model, which automatically configures the distance measurement and feature normalization for the underlying example index and queries. If your model does not precisely fit one of these types, it is okay to choose the closest type.
"query": "A String", # Preset option controlling parameters for speed-precision trade-off when querying for examples. If omitted, defaults to `PRECISE`.
},
},
"integratedGradientsAttribution": { # An attribution method that computes the Aumann-Shapley value taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365 # An attribution method that computes Aumann-Shapley values taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1703.01365
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for IG with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is within the desired error range. Valid range of its value is [1, 100], inclusively.
},
"outputIndices": [ # If populated, only returns attributions that have output_index contained in output_indices. It must be an ndarray of integers, with the same shape of the output it's explaining. If not populated, returns attributions for top_k indices of outputs. If neither top_k nor output_indices is populated, returns the argmax index of the outputs. Only applicable to Models that predict multiple outputs (e,g, multi-class Models that predict multiple classes).
"",
],
"sampledShapleyAttribution": { # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. # An attribution method that approximates Shapley values for features that contribute to the label being predicted. A sampling strategy is used to approximate the value rather than considering all subsets of features. Refer to this paper for model details: https://arxiv.org/abs/1306.4265.
"pathCount": 42, # Required. The number of feature permutations to consider when approximating the Shapley values. Valid range of its value is [1, 50], inclusively.
},
"topK": 42, # If populated, returns attributions for top K indices of outputs (defaults to 1). Only applies to Models that predicts more than one outputs (e,g, multi-class Models). When set to -1, returns explanations for all outputs.
"xraiAttribution": { # An explanation method that redistributes Integrated Gradients attributions to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 Supported only by image Models. # An attribution method that redistributes Integrated Gradients attribution to segmented regions, taking advantage of the model's fully differentiable structure. Refer to this paper for more details: https://arxiv.org/abs/1906.02825 XRAI currently performs better on natural images, like a picture of a house or an animal. If the images are taken in artificial environments, like a lab or manufacturing line, or from diagnostic equipment, like x-rays or quality-control cameras, use Integrated Gradients instead.
"blurBaselineConfig": { # Config for blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383 # Config for XRAI with blur baseline. When enabled, a linear path from the maximally blurred image to the input image is created. Using a blurred baseline instead of zero (black image) is motivated by the BlurIG approach explained here: https://arxiv.org/abs/2004.03383
"maxBlurSigma": 3.14, # The standard deviation of the blur kernel for the blurred baseline. The same blurring parameter is used for both the height and the width dimension. If not set, the method defaults to the zero (i.e. black for images) baseline.
},
"smoothGradConfig": { # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf # Config for SmoothGrad approximation of gradients. When enabled, the gradients are approximated by averaging the gradients from noisy samples in the vicinity of the inputs. Adding noise can help improve the computed gradients. Refer to this paper for more details: https://arxiv.org/pdf/1706.03825.pdf
"featureNoiseSigma": { # Noise sigma by features. Noise sigma represents the standard deviation of the gaussian kernel that will be used to add noise to interpolated inputs prior to computing gradients. # This is similar to noise_sigma, but provides additional flexibility. A separate noise sigma can be provided for each feature, which is useful if their distributions are different. No noise is added to features that are not set. If this field is unset, noise_sigma will be used for all features.
"noiseSigma": [ # Noise sigma per feature. No noise is added to features that are not set.
{ # Noise sigma for a single feature.
"name": "A String", # The name of the input feature for which noise sigma is provided. The features are defined in explanation metadata inputs.
"sigma": 3.14, # This represents the standard deviation of the Gaussian kernel that will be used to add noise to the feature prior to computing gradients. Similar to noise_sigma but represents the noise added to the current feature. Defaults to 0.1.
},
],
},
"noiseSigma": 3.14, # This is a single float value and will be used to add noise to all the features. Use this field when all features are normalized to have the same distribution: scale to range [0, 1], [-1, 1] or z-scoring, where features are normalized to have 0-mean and 1-variance. Learn more about [normalization](https://developers.google.com/machine-learning/data-prep/transform/normalization). For best results the recommended value is about 10% - 20% of the standard deviation of the input feature. Refer to section 3.2 of the SmoothGrad paper: https://arxiv.org/pdf/1706.03825.pdf. Defaults to 0.1. If the distribution is different per feature, set feature_noise_sigma instead for each feature.
"noisySampleCount": 42, # The number of gradient samples to use for approximation. The higher this number, the more accurate the gradient is, but the runtime complexity increases by this factor as well. Valid range of its value is [1, 50]. Defaults to 3.
},
"stepCount": 42, # Required. The number of steps for approximating the path integral. A good value to start is 50 and gradually increase until the sum to diff property is met within the desired error range. Valid range of its value is [1, 100], inclusively.
},
},
},
"labels": { # The labels with user-defined metadata to organize your Models. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. See https://goo.gl/xmQnxf for more information and examples of labels.
"a_key": "A String",
},
"metadata": "", # Immutable. An additional information about the Model; the schema of the metadata can be found in metadata_schema. Unset if the Model does not have any additional information.
"metadataArtifact": "A String", # Output only. The resource name of the Artifact that was created in MetadataStore when creating the Model. The Artifact resource name pattern is `projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}`.
"metadataSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"modelSourceInfo": { # Detail description of the source information of the model. # Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
"copy": True or False, # If this Model is copy of another Model. If true then source_type pertains to the original.
"sourceType": "A String", # Type of the model source.
},
"name": "A String", # The resource name of the Model.
"originalModelInfo": { # Contains information about the original Model if this Model is a copy. # Output only. If this Model is a copy of another Model, this contains info about the original.
"model": "A String", # Output only. The resource name of the Model this Model is a copy of, including the revision. Format: `projects/{project}/locations/{location}/models/{model_id}@{version_id}`
},
"predictSchemata": { # Contains the schemata used in Model's predictions and explanations via PredictionService.Predict, PredictionService.Explain and BatchPredictionJob. # The schemata that describe formats of the Model's predictions and explanations as given and returned via PredictionService.Predict and PredictionService.Explain.
"instanceSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single instance, which are used in PredictRequest.instances, ExplainRequest.instances and BatchPredictionJob.input_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"parametersSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the parameters of prediction and explanation via PredictRequest.parameters, ExplainRequest.parameters and BatchPredictionJob.model_parameters. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI, if no parameters are supported, then it is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
"predictionSchemaUri": "A String", # Immutable. Points to a YAML file stored on Google Cloud Storage describing the format of a single prediction produced by this Model, which are returned via PredictResponse.predictions, ExplainResponse.explanations, and BatchPredictionJob.output_config. The schema is defined as an OpenAPI 3.0.2 [Schema Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). AutoML Models always have this field populated by Vertex AI. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
},
"satisfiesPzi": True or False, # Output only. Reserved for future use.
"satisfiesPzs": True or False, # Output only. Reserved for future use.
"supportedDeploymentResourcesTypes": [ # Output only. When this Model is deployed, its prediction resources are described by the `prediction_resources` field of the Endpoint.deployed_models object. Because not all Models support all resource configuration types, the configuration types this Model supports are listed here. If no configuration types are listed, the Model cannot be deployed to an Endpoint and does not support online predictions (PredictionService.Predict or PredictionService.Explain). Such a Model can serve predictions by using a BatchPredictionJob, if it has at least one entry each in supported_input_storage_formats and supported_output_storage_formats.
"A String",
],
"supportedExportFormats": [ # Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
{ # Represents export format supported by the Model. All formats export to Google Cloud Storage.
"exportableContents": [ # Output only. The content of this Model that may be exported.
"A String",
],
"id": "A String", # Output only. The ID of the export format. The possible format IDs are: * `tflite` Used for Android mobile devices. * `edgetpu-tflite` Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. * `tf-saved-model` A tensorflow model in SavedModel format. * `tf-js` A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used in the browser and in Node.js using JavaScript. * `core-ml` Used for iOS mobile devices. * `custom-trained` A Model that was uploaded or trained by custom code. * `genie` A tuned Model Garden model.
},
],
"supportedInputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.input_config. If PredictSchemata.instance_schema_uri exists, the instances should be given as per that schema. The possible formats are: * `jsonl` The JSON Lines format, where each instance is a single line. Uses GcsSource. * `csv` The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsSource. * `tf-record` The TFRecord format, where each instance is a single record in tfrecord syntax. Uses GcsSource. * `tf-record-gzip` Similar to `tf-record`, but the file is gzipped. Uses GcsSource. * `bigquery` Each instance is a single row in BigQuery. Uses BigQuerySource. * `file-list` Each line of the file is the location of an instance to process, uses `gcs_source` field of the InputConfig object. If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"supportedOutputStorageFormats": [ # Output only. The formats this Model supports in BatchPredictionJob.output_config. If both PredictSchemata.instance_schema_uri and PredictSchemata.prediction_schema_uri exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema). The possible formats are: * `jsonl` The JSON Lines format, where each prediction is a single line. Uses GcsDestination. * `csv` The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses GcsDestination. * `bigquery` Each prediction is a single row in a BigQuery table, uses BigQueryDestination . If this Model doesn't support any of these formats it means it cannot be used with a BatchPredictionJob. However, if it has supported_deployment_resources_types, it could serve online predictions by using PredictionService.Predict or PredictionService.Explain.
"A String",
],
"trainingPipeline": "A String", # Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
"updateTime": "A String", # Output only. Timestamp when this Model was most recently updated.
"versionAliases": [ # User provided version aliases so that a model version can be referenced via alias (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_alias}` instead of auto-generated version id (i.e. `projects/{project}/locations/{location}/models/{model_id}@{version_id})`. The format is a-z{0,126}[a-z0-9] to distinguish from version_id. A default version alias will be created for the first version of the model, and there must be exactly one default version alias for a model.
"A String",
],
"versionCreateTime": "A String", # Output only. Timestamp when this version was created.
"versionDescription": "A String", # The description of this version.
"versionId": "A String", # Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
"versionUpdateTime": "A String", # Output only. Timestamp when this version was most recently updated.
},
"modelId": "A String", # Optional. The ID to use for the uploaded Model, which will become the final component of the model resource name. This value may be up to 63 characters, and valid characters are `[a-z0-9_-]`. The first character cannot be a number or hyphen.
"parentModel": "A String", # Optional. The resource name of the model into which to upload the version. Only specify this field when uploading a new version.
"serviceAccount": "A String", # Optional. The user-provided custom service account to use to do the model upload. If empty, [Vertex AI Service Agent](https://cloud.google.com/vertex-ai/docs/general/access-control#service-agents) will be used to access resources needed to upload the model. This account must belong to the target project where the model is uploaded to, i.e., the project specified in the `parent` field of this request and have necessary read permissions (to Google Cloud Storage, Artifact Registry, etc.).
}
x__xgafv: string, V1 error format.
Allowed values
1 - v1 error format
2 - v2 error format
Returns:
An object of the form:
{ # This resource represents a long-running operation that is the result of a network API call.
"done": True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
"error": { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
"code": 42, # The status code, which should be an enum value of google.rpc.Code.
"details": [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
{
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
],
"message": "A String", # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
},
"metadata": { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
"name": "A String", # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
"response": { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
"a_key": "", # Properties of the object. Contains field @type with type URL.
},
}</pre>
</div>
</body></html>
|