File: aiplatform_v1beta1.projects.locations.ragCorpora.html

package info (click to toggle)
python-googleapi 2.180.0-1
  • links: PTS
  • area: main
  • in suites: forky
  • size: 527,124 kB
  • sloc: python: 11,076; javascript: 249; sh: 114; makefile: 59
file content (893 lines) | stat: -rw-r--r-- 97,288 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
<html><body>
<style>

body, h1, h2, h3, div, span, p, pre, a {
  margin: 0;
  padding: 0;
  border: 0;
  font-weight: inherit;
  font-style: inherit;
  font-size: 100%;
  font-family: inherit;
  vertical-align: baseline;
}

body {
  font-size: 13px;
  padding: 1em;
}

h1 {
  font-size: 26px;
  margin-bottom: 1em;
}

h2 {
  font-size: 24px;
  margin-bottom: 1em;
}

h3 {
  font-size: 20px;
  margin-bottom: 1em;
  margin-top: 1em;
}

pre, code {
  line-height: 1.5;
  font-family: Monaco, 'DejaVu Sans Mono', 'Bitstream Vera Sans Mono', 'Lucida Console', monospace;
}

pre {
  margin-top: 0.5em;
}

h1, h2, h3, p {
  font-family: Arial, sans serif;
}

h1, h2, h3 {
  border-bottom: solid #CCC 1px;
}

.toc_element {
  margin-top: 0.5em;
}

.firstline {
  margin-left: 2 em;
}

.method  {
  margin-top: 1em;
  border: solid 1px #CCC;
  padding: 1em;
  background: #EEE;
}

.details {
  font-weight: bold;
  font-size: 14px;
}

</style>

<h1><a href="aiplatform_v1beta1.html">Vertex AI API</a> . <a href="aiplatform_v1beta1.projects.html">projects</a> . <a href="aiplatform_v1beta1.projects.locations.html">locations</a> . <a href="aiplatform_v1beta1.projects.locations.ragCorpora.html">ragCorpora</a></h1>
<h2>Instance Methods</h2>
<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.ragCorpora.operations.html">operations()</a></code>
</p>
<p class="firstline">Returns the operations Resource.</p>

<p class="toc_element">
  <code><a href="aiplatform_v1beta1.projects.locations.ragCorpora.ragFiles.html">ragFiles()</a></code>
</p>
<p class="firstline">Returns the ragFiles Resource.</p>

<p class="toc_element">
  <code><a href="#close">close()</a></code></p>
<p class="firstline">Close httplib2 connections.</p>
<p class="toc_element">
  <code><a href="#create">create(parent, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Creates a RagCorpus.</p>
<p class="toc_element">
  <code><a href="#delete">delete(name, force=None, x__xgafv=None)</a></code></p>
<p class="firstline">Deletes a RagCorpus.</p>
<p class="toc_element">
  <code><a href="#get">get(name, x__xgafv=None)</a></code></p>
<p class="firstline">Gets a RagCorpus.</p>
<p class="toc_element">
  <code><a href="#list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</a></code></p>
<p class="firstline">Lists RagCorpora in a Location.</p>
<p class="toc_element">
  <code><a href="#list_next">list_next()</a></code></p>
<p class="firstline">Retrieves the next page of results.</p>
<p class="toc_element">
  <code><a href="#patch">patch(name, body=None, x__xgafv=None)</a></code></p>
<p class="firstline">Updates a RagCorpus.</p>
<h3>Method Details</h3>
<div class="method">
    <code class="details" id="close">close()</code>
  <pre>Close httplib2 connections.</pre>
</div>

<div class="method">
    <code class="details" id="create">create(parent, body=None, x__xgafv=None)</code>
  <pre>Creates a RagCorpus.

Args:
  parent: string, Required. The resource name of the Location to create the RagCorpus in. Format: `projects/{project}/locations/{location}` (required)
  body: object, The request body.
    The object takes the form of:

{ # A RagCorpus is a RagFile container and a project can have multiple RagCorpora.
  &quot;corpusStatus&quot;: { # RagCorpus status. # Output only. RagCorpus state.
    &quot;errorStatus&quot;: &quot;A String&quot;, # Output only. Only when the `state` field is ERROR.
    &quot;state&quot;: &quot;A String&quot;, # Output only. RagCorpus life state.
  },
  &quot;corpusTypeConfig&quot;: { # The config for the corpus type of the RagCorpus. # Optional. The corpus type config of the RagCorpus.
    &quot;documentCorpus&quot;: { # Config for the document corpus. # Optional. Config for the document corpus.
    },
    &quot;memoryCorpus&quot;: { # Config for the memory corpus. # Optional. Config for the memory corpus.
      &quot;llmParser&quot;: { # Specifies the LLM parsing for RagFiles. # The LLM parser to use for the memory corpus.
        &quot;customParsingPrompt&quot;: &quot;A String&quot;, # The prompt to use for parsing. If not specified, a default prompt will be used.
        &quot;globalMaxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute in this project. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If this value is not specified, max_parsing_requests_per_min will be used by indexing pipeline job as the global limit.
        &quot;maxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If unspecified, a default value of 5000 QPM would be used.
        &quot;modelName&quot;: &quot;A String&quot;, # The name of a LLM model used for parsing. Format: * `projects/{project_id}/locations/{location}/publishers/{publisher}/models/{model}`
      },
    },
  },
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was created.
  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the RagCorpus.
  &quot;displayName&quot;: &quot;A String&quot;, # Required. The display name of the RagCorpus. The name can be up to 128 characters long and can consist of any UTF-8 characters.
  &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Optional. Immutable. The CMEK key name used to encrypt at-rest data related to this Corpus. Only applicable to RagManagedDb option for Vector DB. This field can only be set at corpus creation time, and cannot be updated or deleted.
    &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
  },
  &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the RagCorpus.
  &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the RagCorpus.
    &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
      &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
      &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
        &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
          &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
          &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
          &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
        },
      },
    },
    &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
      &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
      &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
      &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
    },
  },
  &quot;ragFilesCount&quot;: 42, # Output only. Number of RagFiles in the RagCorpus. NOTE: This field is not populated in the response of VertexRagDataService.ListRagCorpora.
  &quot;ragVectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The Vector DB config of the RagCorpus.
    &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
      &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
        &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
        &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
      },
    },
    &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
      &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
    },
    &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
      &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
        &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
          &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
          &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
        },
        &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
          &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
            &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
            &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
            &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
          },
        },
      },
      &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
    },
    &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
      &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
        &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
        &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
      },
      &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
      },
    },
    &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
      &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
    },
    &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
      &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
      &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
    },
    &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
      &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
      &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
    },
  },
  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was last updated.
  &quot;vectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The config for the Vector DBs.
    &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
      &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
        &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
        &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
      },
    },
    &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
      &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
    },
    &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
      &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
        &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
          &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
          &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
        },
        &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
          &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
            &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
            &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
            &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
          },
        },
      },
      &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
    },
    &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
      &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
        &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
        &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
      },
      &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
      },
    },
    &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
      &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
    },
    &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
      &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
      &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
    },
    &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
      &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
      &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
    },
  },
  &quot;vertexAiSearchConfig&quot;: { # Config for the Vertex AI Search. # Optional. Immutable. The config for the Vertex AI Search.
    &quot;servingConfig&quot;: &quot;A String&quot;, # Vertex AI Search Serving Config resource full name. For example, `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}` or `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}`.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="delete">delete(name, force=None, x__xgafv=None)</code>
  <pre>Deletes a RagCorpus.

Args:
  name: string, Required. The name of the RagCorpus resource to be deleted. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}` (required)
  force: boolean, Optional. If set to true, any RagFiles in this RagCorpus will also be deleted. Otherwise, the request will only work if the RagCorpus has no RagFiles.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="get">get(name, x__xgafv=None)</code>
  <pre>Gets a RagCorpus.

Args:
  name: string, Required. The name of the RagCorpus resource. Format: `projects/{project}/locations/{location}/ragCorpora/{rag_corpus}` (required)
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # A RagCorpus is a RagFile container and a project can have multiple RagCorpora.
  &quot;corpusStatus&quot;: { # RagCorpus status. # Output only. RagCorpus state.
    &quot;errorStatus&quot;: &quot;A String&quot;, # Output only. Only when the `state` field is ERROR.
    &quot;state&quot;: &quot;A String&quot;, # Output only. RagCorpus life state.
  },
  &quot;corpusTypeConfig&quot;: { # The config for the corpus type of the RagCorpus. # Optional. The corpus type config of the RagCorpus.
    &quot;documentCorpus&quot;: { # Config for the document corpus. # Optional. Config for the document corpus.
    },
    &quot;memoryCorpus&quot;: { # Config for the memory corpus. # Optional. Config for the memory corpus.
      &quot;llmParser&quot;: { # Specifies the LLM parsing for RagFiles. # The LLM parser to use for the memory corpus.
        &quot;customParsingPrompt&quot;: &quot;A String&quot;, # The prompt to use for parsing. If not specified, a default prompt will be used.
        &quot;globalMaxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute in this project. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If this value is not specified, max_parsing_requests_per_min will be used by indexing pipeline job as the global limit.
        &quot;maxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If unspecified, a default value of 5000 QPM would be used.
        &quot;modelName&quot;: &quot;A String&quot;, # The name of a LLM model used for parsing. Format: * `projects/{project_id}/locations/{location}/publishers/{publisher}/models/{model}`
      },
    },
  },
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was created.
  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the RagCorpus.
  &quot;displayName&quot;: &quot;A String&quot;, # Required. The display name of the RagCorpus. The name can be up to 128 characters long and can consist of any UTF-8 characters.
  &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Optional. Immutable. The CMEK key name used to encrypt at-rest data related to this Corpus. Only applicable to RagManagedDb option for Vector DB. This field can only be set at corpus creation time, and cannot be updated or deleted.
    &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
  },
  &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the RagCorpus.
  &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the RagCorpus.
    &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
      &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
      &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
        &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
          &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
          &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
          &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
        },
      },
    },
    &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
      &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
      &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
      &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
    },
  },
  &quot;ragFilesCount&quot;: 42, # Output only. Number of RagFiles in the RagCorpus. NOTE: This field is not populated in the response of VertexRagDataService.ListRagCorpora.
  &quot;ragVectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The Vector DB config of the RagCorpus.
    &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
      &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
        &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
        &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
      },
    },
    &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
      &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
    },
    &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
      &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
        &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
          &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
          &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
        },
        &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
          &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
            &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
            &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
            &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
          },
        },
      },
      &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
    },
    &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
      &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
        &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
        &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
      },
      &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
      },
    },
    &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
      &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
    },
    &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
      &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
      &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
    },
    &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
      &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
      &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
    },
  },
  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was last updated.
  &quot;vectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The config for the Vector DBs.
    &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
      &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
        &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
        &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
      },
    },
    &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
      &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
    },
    &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
      &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
        &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
          &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
          &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
        },
        &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
          &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
            &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
            &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
            &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
          },
        },
      },
      &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
    },
    &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
      &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
        &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
        &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
      },
      &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
      },
    },
    &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
      &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
    },
    &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
      &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
      &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
    },
    &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
      &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
      &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
    },
  },
  &quot;vertexAiSearchConfig&quot;: { # Config for the Vertex AI Search. # Optional. Immutable. The config for the Vertex AI Search.
    &quot;servingConfig&quot;: &quot;A String&quot;, # Vertex AI Search Serving Config resource full name. For example, `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}` or `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}`.
  },
}</pre>
</div>

<div class="method">
    <code class="details" id="list">list(parent, pageSize=None, pageToken=None, x__xgafv=None)</code>
  <pre>Lists RagCorpora in a Location.

Args:
  parent: string, Required. The resource name of the Location from which to list the RagCorpora. Format: `projects/{project}/locations/{location}` (required)
  pageSize: integer, Optional. The standard list page size.
  pageToken: string, Optional. The standard list page token. Typically obtained via ListRagCorporaResponse.next_page_token of the previous VertexRagDataService.ListRagCorpora call.
  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # Response message for VertexRagDataService.ListRagCorpora.
  &quot;nextPageToken&quot;: &quot;A String&quot;, # A token to retrieve the next page of results. Pass to ListRagCorporaRequest.page_token to obtain that page.
  &quot;ragCorpora&quot;: [ # List of RagCorpora in the requested page.
    { # A RagCorpus is a RagFile container and a project can have multiple RagCorpora.
      &quot;corpusStatus&quot;: { # RagCorpus status. # Output only. RagCorpus state.
        &quot;errorStatus&quot;: &quot;A String&quot;, # Output only. Only when the `state` field is ERROR.
        &quot;state&quot;: &quot;A String&quot;, # Output only. RagCorpus life state.
      },
      &quot;corpusTypeConfig&quot;: { # The config for the corpus type of the RagCorpus. # Optional. The corpus type config of the RagCorpus.
        &quot;documentCorpus&quot;: { # Config for the document corpus. # Optional. Config for the document corpus.
        },
        &quot;memoryCorpus&quot;: { # Config for the memory corpus. # Optional. Config for the memory corpus.
          &quot;llmParser&quot;: { # Specifies the LLM parsing for RagFiles. # The LLM parser to use for the memory corpus.
            &quot;customParsingPrompt&quot;: &quot;A String&quot;, # The prompt to use for parsing. If not specified, a default prompt will be used.
            &quot;globalMaxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute in this project. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If this value is not specified, max_parsing_requests_per_min will be used by indexing pipeline job as the global limit.
            &quot;maxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If unspecified, a default value of 5000 QPM would be used.
            &quot;modelName&quot;: &quot;A String&quot;, # The name of a LLM model used for parsing. Format: * `projects/{project_id}/locations/{location}/publishers/{publisher}/models/{model}`
          },
        },
      },
      &quot;createTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was created.
      &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the RagCorpus.
      &quot;displayName&quot;: &quot;A String&quot;, # Required. The display name of the RagCorpus. The name can be up to 128 characters long and can consist of any UTF-8 characters.
      &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Optional. Immutable. The CMEK key name used to encrypt at-rest data related to this Corpus. Only applicable to RagManagedDb option for Vector DB. This field can only be set at corpus creation time, and cannot be updated or deleted.
        &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
      },
      &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the RagCorpus.
      &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the RagCorpus.
        &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
          &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
            &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
            &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
            &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
          },
          &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
            &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
              &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
              &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
              &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
            },
          },
        },
        &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
          &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
          &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
        },
      },
      &quot;ragFilesCount&quot;: 42, # Output only. Number of RagFiles in the RagCorpus. NOTE: This field is not populated in the response of VertexRagDataService.ListRagCorpora.
      &quot;ragVectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The Vector DB config of the RagCorpus.
        &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
          &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
            &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
            &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
          },
        },
        &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
          &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
        },
        &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
          &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
            &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
              &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
              &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
              &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
            },
            &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
              &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
                &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
                &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
                &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
              },
            },
          },
          &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
            &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
            &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
            &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
          },
        },
        &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
          &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
            &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
            &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
          },
          &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
          },
        },
        &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
          &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
        },
        &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
          &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
          &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
        },
        &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
          &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
          &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
        },
      },
      &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was last updated.
      &quot;vectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The config for the Vector DBs.
        &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
          &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
            &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
            &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
          },
        },
        &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
          &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
        },
        &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
          &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
            &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
              &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
              &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
              &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
            },
            &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
              &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
                &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
                &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
                &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
              },
            },
          },
          &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
            &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
            &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
            &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
          },
        },
        &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
          &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
            &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
            &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
          },
          &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
          },
        },
        &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
          &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
        },
        &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
          &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
          &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
        },
        &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
          &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
          &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
        },
      },
      &quot;vertexAiSearchConfig&quot;: { # Config for the Vertex AI Search. # Optional. Immutable. The config for the Vertex AI Search.
        &quot;servingConfig&quot;: &quot;A String&quot;, # Vertex AI Search Serving Config resource full name. For example, `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}` or `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}`.
      },
    },
  ],
}</pre>
</div>

<div class="method">
    <code class="details" id="list_next">list_next()</code>
  <pre>Retrieves the next page of results.

        Args:
          previous_request: The request for the previous page. (required)
          previous_response: The response from the request for the previous page. (required)

        Returns:
          A request object that you can call &#x27;execute()&#x27; on to request the next
          page. Returns None if there are no more items in the collection.
        </pre>
</div>

<div class="method">
    <code class="details" id="patch">patch(name, body=None, x__xgafv=None)</code>
  <pre>Updates a RagCorpus.

Args:
  name: string, Output only. The resource name of the RagCorpus. (required)
  body: object, The request body.
    The object takes the form of:

{ # A RagCorpus is a RagFile container and a project can have multiple RagCorpora.
  &quot;corpusStatus&quot;: { # RagCorpus status. # Output only. RagCorpus state.
    &quot;errorStatus&quot;: &quot;A String&quot;, # Output only. Only when the `state` field is ERROR.
    &quot;state&quot;: &quot;A String&quot;, # Output only. RagCorpus life state.
  },
  &quot;corpusTypeConfig&quot;: { # The config for the corpus type of the RagCorpus. # Optional. The corpus type config of the RagCorpus.
    &quot;documentCorpus&quot;: { # Config for the document corpus. # Optional. Config for the document corpus.
    },
    &quot;memoryCorpus&quot;: { # Config for the memory corpus. # Optional. Config for the memory corpus.
      &quot;llmParser&quot;: { # Specifies the LLM parsing for RagFiles. # The LLM parser to use for the memory corpus.
        &quot;customParsingPrompt&quot;: &quot;A String&quot;, # The prompt to use for parsing. If not specified, a default prompt will be used.
        &quot;globalMaxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute in this project. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If this value is not specified, max_parsing_requests_per_min will be used by indexing pipeline job as the global limit.
        &quot;maxParsingRequestsPerMin&quot;: 42, # The maximum number of requests the job is allowed to make to the LLM model per minute. Consult https://cloud.google.com/vertex-ai/generative-ai/docs/quotas and your document size to set an appropriate value here. If unspecified, a default value of 5000 QPM would be used.
        &quot;modelName&quot;: &quot;A String&quot;, # The name of a LLM model used for parsing. Format: * `projects/{project_id}/locations/{location}/publishers/{publisher}/models/{model}`
      },
    },
  },
  &quot;createTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was created.
  &quot;description&quot;: &quot;A String&quot;, # Optional. The description of the RagCorpus.
  &quot;displayName&quot;: &quot;A String&quot;, # Required. The display name of the RagCorpus. The name can be up to 128 characters long and can consist of any UTF-8 characters.
  &quot;encryptionSpec&quot;: { # Represents a customer-managed encryption key spec that can be applied to a top-level resource. # Optional. Immutable. The CMEK key name used to encrypt at-rest data related to this Corpus. Only applicable to RagManagedDb option for Vector DB. This field can only be set at corpus creation time, and cannot be updated or deleted.
    &quot;kmsKeyName&quot;: &quot;A String&quot;, # Required. The Cloud KMS resource identifier of the customer managed encryption key used to protect a resource. Has the form: `projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key`. The key needs to be in the same region as where the compute resource is created.
  },
  &quot;name&quot;: &quot;A String&quot;, # Output only. The resource name of the RagCorpus.
  &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the RagCorpus.
    &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
      &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
      &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
        &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
          &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
          &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
          &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
        },
      },
    },
    &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
      &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
      &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
      &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
    },
  },
  &quot;ragFilesCount&quot;: 42, # Output only. Number of RagFiles in the RagCorpus. NOTE: This field is not populated in the response of VertexRagDataService.ListRagCorpora.
  &quot;ragVectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The Vector DB config of the RagCorpus.
    &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
      &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
        &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
        &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
      },
    },
    &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
      &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
    },
    &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
      &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
        &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
          &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
          &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
        },
        &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
          &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
            &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
            &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
            &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
          },
        },
      },
      &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
    },
    &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
      &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
        &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
        &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
      },
      &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
      },
    },
    &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
      &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
    },
    &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
      &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
      &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
    },
    &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
      &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
      &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
    },
  },
  &quot;updateTime&quot;: &quot;A String&quot;, # Output only. Timestamp when this RagCorpus was last updated.
  &quot;vectorDbConfig&quot;: { # Config for the Vector DB to use for RAG. # Optional. Immutable. The config for the Vector DBs.
    &quot;apiAuth&quot;: { # The generic reusable api auth config. Deprecated. Please use AuthConfig (google/cloud/aiplatform/master/auth.proto) instead. # Authentication config for the chosen Vector DB.
      &quot;apiKeyConfig&quot;: { # The API secret. # The API secret.
        &quot;apiKeySecretVersion&quot;: &quot;A String&quot;, # Required. The SecretManager secret version resource name storing API key. e.g. projects/{project}/secrets/{secret}/versions/{version}
        &quot;apiKeyString&quot;: &quot;A String&quot;, # The API key string. Either this or `api_key_secret_version` must be set.
      },
    },
    &quot;pinecone&quot;: { # The config for the Pinecone. # The config for the Pinecone.
      &quot;indexName&quot;: &quot;A String&quot;, # Pinecone index name. This value cannot be changed after it&#x27;s set.
    },
    &quot;ragEmbeddingModelConfig&quot;: { # Config for the embedding model to use for RAG. # Optional. Immutable. The embedding model config of the Vector DB.
      &quot;hybridSearchConfig&quot;: { # Config for hybrid search. # Configuration for hybrid search.
        &quot;denseEmbeddingModelPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # Required. The Vertex AI Prediction Endpoint that hosts the embedding model for dense embedding generations.
          &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
          &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
          &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
        },
        &quot;sparseEmbeddingConfig&quot;: { # Configuration for sparse emebdding generation. # Optional. The configuration for sparse embedding generation. This field is optional the default behavior depends on the vector database choice on the RagCorpus.
          &quot;bm25&quot;: { # Message for BM25 parameters. # Use BM25 scoring algorithm.
            &quot;b&quot;: 3.14, # Optional. The parameter to control document length normalization. It determines how much the document length affects the final score. b is in the range of [0, 1]. The default value is 0.75.
            &quot;k1&quot;: 3.14, # Optional. The parameter to control term frequency saturation. It determines the scaling between the matching term frequency and final score. k1 is in the range of [1.2, 3]. The default value is 1.2.
            &quot;multilingual&quot;: True or False, # Optional. Use multilingual tokenizer if set to true.
          },
        },
      },
      &quot;vertexPredictionEndpoint&quot;: { # Config representing a model hosted on Vertex Prediction Endpoint. # The Vertex AI Prediction Endpoint that either refers to a publisher model or an endpoint that is hosting a 1P fine-tuned text embedding model. Endpoints hosting non-1P fine-tuned text embedding models are currently not supported. This is used for dense vector search.
        &quot;endpoint&quot;: &quot;A String&quot;, # Required. The endpoint resource name. Format: `projects/{project}/locations/{location}/publishers/{publisher}/models/{model}` or `projects/{project}/locations/{location}/endpoints/{endpoint}`
        &quot;model&quot;: &quot;A String&quot;, # Output only. The resource name of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model. Pattern: `projects/{project}/locations/{location}/models/{model}`
        &quot;modelVersionId&quot;: &quot;A String&quot;, # Output only. Version ID of the model that is deployed on the endpoint. Present only when the endpoint is not a publisher model.
      },
    },
    &quot;ragManagedDb&quot;: { # The config for the default RAG-managed Vector DB. # The config for the RAG-managed Vector DB.
      &quot;ann&quot;: { # Config for ANN search. RagManagedDb uses a tree-based structure to partition data and facilitate faster searches. As a tradeoff, it requires longer indexing time and manual triggering of index rebuild via the ImportRagFiles and UpdateRagCorpus API. # Performs an ANN search on RagCorpus. Use this if you have a lot of files (&gt; 10K) in your RagCorpus and want to reduce the search latency.
        &quot;leafCount&quot;: 42, # Number of leaf nodes in the tree-based structure. Each leaf node contains groups of closely related vectors along with their corresponding centroid. Recommended value is 10 * sqrt(num of RagFiles in your RagCorpus). Default value is 500.
        &quot;treeDepth&quot;: 42, # The depth of the tree-based structure. Only depth values of 2 and 3 are supported. Recommended value is 2 if you have if you have O(10K) files in the RagCorpus and set this to 3 if more than that. Default value is 2.
      },
      &quot;knn&quot;: { # Config for KNN search. # Performs a KNN search on RagCorpus. Default choice if not specified.
      },
    },
    &quot;vertexFeatureStore&quot;: { # The config for the Vertex Feature Store. # The config for the Vertex Feature Store.
      &quot;featureViewResourceName&quot;: &quot;A String&quot;, # The resource name of the FeatureView. Format: `projects/{project}/locations/{location}/featureOnlineStores/{feature_online_store}/featureViews/{feature_view}`
    },
    &quot;vertexVectorSearch&quot;: { # The config for the Vertex Vector Search. # The config for the Vertex Vector Search.
      &quot;index&quot;: &quot;A String&quot;, # The resource name of the Index. Format: `projects/{project}/locations/{location}/indexes/{index}`
      &quot;indexEndpoint&quot;: &quot;A String&quot;, # The resource name of the Index Endpoint. Format: `projects/{project}/locations/{location}/indexEndpoints/{index_endpoint}`
    },
    &quot;weaviate&quot;: { # The config for the Weaviate. # The config for the Weaviate.
      &quot;collectionName&quot;: &quot;A String&quot;, # The corresponding collection this corpus maps to. This value cannot be changed after it&#x27;s set.
      &quot;httpEndpoint&quot;: &quot;A String&quot;, # Weaviate DB instance HTTP endpoint. e.g. 34.56.78.90:8080 Vertex RAG only supports HTTP connection to Weaviate. This value cannot be changed after it&#x27;s set.
    },
  },
  &quot;vertexAiSearchConfig&quot;: { # Config for the Vertex AI Search. # Optional. Immutable. The config for the Vertex AI Search.
    &quot;servingConfig&quot;: &quot;A String&quot;, # Vertex AI Search Serving Config resource full name. For example, `projects/{project}/locations/{location}/collections/{collection}/engines/{engine}/servingConfigs/{serving_config}` or `projects/{project}/locations/{location}/collections/{collection}/dataStores/{data_store}/servingConfigs/{serving_config}`.
  },
}

  x__xgafv: string, V1 error format.
    Allowed values
      1 - v1 error format
      2 - v2 error format

Returns:
  An object of the form:

    { # This resource represents a long-running operation that is the result of a network API call.
  &quot;done&quot;: True or False, # If the value is `false`, it means the operation is still in progress. If `true`, the operation is completed, and either `error` or `response` is available.
  &quot;error&quot;: { # The `Status` type defines a logical error model that is suitable for different programming environments, including REST APIs and RPC APIs. It is used by [gRPC](https://github.com/grpc). Each `Status` message contains three pieces of data: error code, error message, and error details. You can find out more about this error model and how to work with it in the [API Design Guide](https://cloud.google.com/apis/design/errors). # The error result of the operation in case of failure or cancellation.
    &quot;code&quot;: 42, # The status code, which should be an enum value of google.rpc.Code.
    &quot;details&quot;: [ # A list of messages that carry the error details. There is a common set of message types for APIs to use.
      {
        &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
      },
    ],
    &quot;message&quot;: &quot;A String&quot;, # A developer-facing error message, which should be in English. Any user-facing error message should be localized and sent in the google.rpc.Status.details field, or localized by the client.
  },
  &quot;metadata&quot;: { # Service-specific metadata associated with the operation. It typically contains progress information and common metadata such as create time. Some services might not provide such metadata. Any method that returns a long-running operation should document the metadata type, if any.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
  &quot;name&quot;: &quot;A String&quot;, # The server-assigned name, which is only unique within the same service that originally returns it. If you use the default HTTP mapping, the `name` should be a resource name ending with `operations/{unique_id}`.
  &quot;response&quot;: { # The normal, successful response of the operation. If the original method returns no data on success, such as `Delete`, the response is `google.protobuf.Empty`. If the original method is standard `Get`/`Create`/`Update`, the response should be the resource. For other methods, the response should have the type `XxxResponse`, where `Xxx` is the original method name. For example, if the original method name is `TakeSnapshot()`, the inferred response type is `TakeSnapshotResponse`.
    &quot;a_key&quot;: &quot;&quot;, # Properties of the object. Contains field @type with type URL.
  },
}</pre>
</div>

</body></html>